On the Subgroups of Fundamental Group in the Fixed Point Theory

by

Dae-Shik Chun, Ki-Yeol Yang and Jong-Gyoon Kim

Department of Mathematics, Chonbuk National University, Chonju (560-756), Korea

1. Introduction

Let X be a topological space with x_o as a base point. A homotopy $h_t: X \longrightarrow X$ $(t \in I)$ is called a cyclic homotopy based at 1_X (identity map), if $h_o = h_1 = 1_X$. Let $f: X \longrightarrow X$ be a given continuous map such that $f(x_o) = x_o$. A homotopy $h_t: X \longrightarrow X$ is called a cyclic homotopy based at f if $h_o = h_1 = f$. If h_t is a cyclic homotopy (based at 1_X or based at f), the path $\sigma: I \longrightarrow X$ given by $\sigma(t) = h_t(x_o)$ is a loop which will be called the trace of h_t .

The set of homotopy classes of those loops which are the trace of some cyclic homotopy based at 1_X form a subgroup of the fundamental group $\Pi_1(X, x_o)$ which we denote by $G(X, x_o)$ ([4], p.842).

The set of homotopy classes of those loops which are the trace of some cyclic homotopy based at f form a subgroup of $\Pi_1(X,x_o)$ which we denote by $T(f,x_o)$ ([8], p.31).

The set of elements of $\Pi_1(X, f(x_o)) = \Pi_1(X, x_o)$ which operate trivially on $f_*\Pi_n(X, x_o)$ for all $n \ge 1$ form a subgroup of $\Pi_1(X, x_o)$ which is denoted by $P(X, f, x_o)$ ([3], p.9).

A lot of good properties of the above subgroups are investigated and are used in dealing with the numbers of fixed points of $f: X \longrightarrow X$.

In the present paper, we deal with the properties of $P(X, f, x_o)$, the computations

^{*} This research was supported by the Basic Science Research Institute Program, Ministry of Education, 1988.

of $P(X, f, x_o)$, and the relations among the above subgroups.

2. Preliminaries

We will introduce some terminologies and notations, and will summarize the results essential to our main results.

A topological space X is a polyhedron if there exists a simplicial complex K such that |K| is homeomorphic to X.

Definition 1. The set of elements of $\Pi_1(X,x_o)$ which operate trivially on $\Pi_n(X,x_o)$ for $n\geq 1$ ([6], p. 126) form a subgroup of $\Pi_1(X,x_o)$ which will be denoted by $P(X,x_o)$ ([4], p. 843).

By the above definitions, we have $P(X, x_o) \subseteq P(X, f, x_o)$.

Definition 2. For a given integer n>0, a path-connected space X is said to be n-simple if there exists a point $x_o \in X$ such that $\prod_1(X,x_o)$ operates trivially on $\prod_n(X,x_o)$.

The above two definitions lead to the following:

A space X is n-simple for all n>1 if and only if $P(X,x_o)=\prod_1(X,x_o)$.

Sometimes we will write $\Pi_1(X)$ rather than $\Pi_1(X,x_o)$ for brevity, if the base point is unimportant.

In the sequel we will generally assume X to be a connected compact polyhedron and the continuous map $f \colon X \longrightarrow X$ to be $f(x_o) = x_o$. We may assume that the maps with which we deal fix the base point x_o , since we consider the space X in the view point of fixed point theory and we have complete freedom of choice of the base point for the subgroups of $\Pi_1(X,x_o)$, ([1], p.17).

3. Statement of the main results

Since any element of $T(f,x_o)$ operates trivially on $f \in \Pi_n(X,x_o)$ for all $n \ge 1$ ([1], p. 44), we have the following:

$$T(f,x_o)\subseteq P(X,f,x_o)$$
.(A)

The subgroup of $\Pi_1(X,x_o)$ which operates trivially on $f_*\Pi_1(X,x_o)$ is precisely the centralizer of $f_*\Pi_1(X,x_o)$ in $\Pi_1(X,x_o)$, denoted by $Z(f_*\Pi_1(X),\Pi_1(X))$.

Thus we have the following:

$$P(X, f, x_{\theta}) \subseteq Z(f, \Pi_1(X), \Pi_1(X)).$$

By the above fact and (A), we have

$$T(f,x_o)\subseteq P(X,f,x_o)\subseteq Z(f_*\Pi_1(X),\Pi_1(X))\subseteq \Pi_1(X,x_o)$$
....(B)

If f_* is an epimorphism for all $n \ge 1$, that is, $f_* \prod_n (X, x_o) = \prod_n (X, x_o)$, then by the definitions we have

$$P(X,x_o)=P(X,f,x_o).$$

Theorem 1. If X is a connected aspherical polyhedron(in the sense of $\Pi_n(X, x_o) = 0$ for n > 1) and $f: X \longrightarrow X$ is a continuous map, then we have

$$T(f,x_0) = P(X,f,x_0) = Z(f,\Pi_1(X),\Pi_1(X)).$$

Proof. In the case that X is aspherical, $\Pi_n(X,x_o)$ is the trivial group for n>1 (denoted by 0). So we may consider the case of n=1 only, and we have $P(X,f,x_o)=Z(f_*\Pi_1(X),\Pi_1(X))$. On the other hand, we have $Z(f_*\Pi_1(X),\Pi_1(X))\subseteq T(f,x_o)$ ([2], p.102).

Thus we have $P(X, f, x_o) = Z(f * \Pi_1(X), \Pi_1(X)) \subseteq T(f, x_o) \subseteq P(X, f, x_o).$ ///

Moreover, if X is a connected aspherical polyhedron and f_* is an epimorphism, then we have the following:

 $T(f,x_o) = P(X,x_o) = P(X,f,x_o) = Z(\Pi_1(X)) = Z(f_*\Pi_1(X),\Pi_1(X)), \text{ where } Z(\Pi_1(X))$ means the center of $\Pi_1(X,x_o)$.

By Theorem 1, we can see the following result: If X is connected aspherical, then $P(X, f, x_o) = \prod_1 (X, x_o)$ implies $T(f, x_o) = \prod_1 (X, x_o)$, that is, $f: X \longrightarrow X$ satisfies the Jiang condition, and every nice results of Jiang follow.

The subgroup of $\Pi_1(X,x_o)$ which operates trivially on $\Pi_1(X,x_o)$ itself is precisely

the center of $\Pi_1(X,x_o)$. Thus we have

$$P(X,x_n)\subseteq Z(\Pi_1(X)).$$

We have $G(X, x_o) \subseteq P(X, x_o)$ ([4], p.843). So we have

$$G(X,x_o)\subseteq P(X,x_o)\subseteq Z(\P_1(X))\subseteq Z(f_{\bullet}\Pi_1(X), \Pi_1(X))\subseteq \Pi_1(X,x_o)\cdots(C)$$

On the other hand, we have

$$G(X,x_o)\subseteq T(f,x_o)$$
 ([2], p. 101).(D)

An H-space consists of a pointed topological space (X, e) together with a continuous multiplication and an element e such that right and left multiplication are both homotopic to the identity of X.

Proposition 2. If X is an H-space, then

$$G(X, x_o) = T(f, x_o) = P(X, x_o) = P(X, f, x_o) = Z(\prod_{i=1}^{n} (X, x_o)) = \prod_{i=1}^{n} (X, x_o).$$

Proof. Since $G(X,x_o)=\Pi_1(X,x_o)$ ([4], p.844), the result follows from (B), (C), (D), and the fact of $P(X,x_o)\subseteq P(X,f,x_o)$.

We compute $P(X, f, x_o)$ for some special spaces.

For the circle S^1 and the 1-dimensional torus T, we have

$$P(S^1, f, x_0) \cong Z$$
 and $P(T, f, x_0) \cong Z \times Z$,

because they are both *H*-spaces. For the sphere S^2 , we have $P(S^2, f, x_o) = 0$ because of the $\Pi_1(S^2) = 0$.

Theorem 3. Let X be connected aspherical and let $f: X \longrightarrow X$ be any continuous map. Then

$$P(X, f, x_o) = \Pi_1(X, x_o)$$
 if and only if $f_*\Pi_1(X) \subseteq Z(\Pi_1(X))$.

Proof. Assume $P(X, f, x_o) = \Pi_1(X, x_o)$. Then we have $Z(f_*\Pi_1(X), \Pi_1(X)) = \Pi_1(X, x_o)$. This means that every element $\alpha \in \Pi_1(X, x_o)$ commutes with every element $(f\sigma) \in f_*\Pi_1(X)$, and thus we have $f_*\Pi_1(X) \subseteq Z(\Pi_1(X))$. Conversely assume $f_*\Pi_1(X) \subseteq Z(\Pi_1(X))$.

 $(X)\subseteq Z(\Pi_1(X))$. Then every element commutes with any element of $f_*\Pi_1(X)$.

So $\Pi_1(X,x_o)$ operates trivially on $f_*\Pi_1(X)$. Since X is aspherical, we may consider the case of n=1 only, and we have $P(X,f,x_o)=\Pi_1(X,x_o)$.

A graph is a 1-dimensional simplicial complex.

Lemma 4. Let X be a connected compact graph. Then for any continuous map $f: X \longrightarrow X$, we have

$$T(f,x_o) = P(X,f,x_o) = Z(f_* \prod_1(X), \prod_1(X)).$$

Proof. Since X is 1-dimensional, we have $\prod_{n}(X, x_n) = 0$ for n > 1, and thus X is aspherical. The conclusion follows from Theorem 1.

Theorem 5. Let X be a connected compact graph that is not of the same homotopy type as S^1 . Suppose f_* is an epimorphism. Then $T(f,x_o) = P(X,f,x_o) = 0$.

Proof. The fundamental group of a graph is a free group ([5], 6.3.11) and the only graph X such that $Z(\Pi_1(X))$ is nontrivial has the same homotopy type as S^1 . But, X is not of the same homotopy type as S^1 . So we have $Z(\Pi_1(X))=0$.

Consequently, by Lemma 4 we have $T(f,x_o)=P(X,f,x_o)=0$. ///

References

- W. Barnier, The Jiang subgroup for a map, Doctoral Dissertation, Univ. of California, Los Angeles, 1967.
- 2. R.F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Chicago, 1971.
- 3. D.S. Chun, A Simply acting Subgroup of the Fundamental Group, Honam Math. J. Vol. 6, 1984.
- 4. D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965),
- 5. P. J. Hilton and S. Wylie, Homology Theory, Cambridge Univ. Press, 1960.
- 6. S.T. Hu, Homotopy Theory, Academic Press Inc. 1959.
- 7. B.J. Jiang, Estimation of the Nielsen numbers, Acta Math. Sinica 14 (1964), 304~312. (=Chinese Math. -Acta 5(1964), 330~339).
- 8. B. J. Jiang, Lectures on Nielsen Fixed Point Theory, Amer. Math. Society, Vol. 14 (1983).