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GLOBAL CLASS FIELD THEORY SUMMARIZED
AND ITS APPLICATION

JA KYUNG Koo, SUNGHAN BAE AND SANG GEUN HAHN

1. Introduction Hopefully this summary will communicate the sim­
plicity and power of the results of class field theory even though no proofs
are presented-a fact which is bound to eliminate to some extent the
sharp precision found in a complete course.

The first part of this summary -will be a very classical presentation of
global class field theory such as it can be found in the work of Hasse
[11], i.e., pre-World-War II class field theory. The second part will re­
summarize class field theory in a more modem fashion using ideles, i.e.,
Chevalley's formulation [6, 7, 8].

What are the goals of class field theory? To answer this we need some
definitions.

Let K be a finite extension of the rationals Q. Unless otherwise stated
all fields discussed in this summary will be finite extensions of Q. Let
{) K be the ring of algebraic integers of K. A fractional ideal, 2t, is a
nonzero finitely generated {) K-module where the generators ~e in K.
So we can write 2t = (a1, ... , at) where a's are the generators of 2t.
IT ~ = ((31, ... ,(38) we define the product 2!~ = (... ,ad3j, ... ) as the
{) K-module generated by the products of the various generators of 2t
and~. Under this multiplication the set of fractional ideals forms a
multiplicative group A K , the ideal group of K, with {)K = (1) as the
identity element.

The arithmetic of K is the study of the ideal group A K , subgroups
of A K , factor groups of subgroups of A K , groups isomorphic to these
groups and certain ideals in A K . We can now state the three-fold goal
of class field theory.

(I) Describe all finite abelian extensions of K in terms of the arith­
metic of K. (L is an abelian extension of K if the Galois group
G(L / K) is abelian.)
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(Il) Canonically realize G(L/K) in terms of the arithmetic of K when
G(L / K) is abelian.

(Ill) Describe the decomposition of a prime ideal from K to L in terms
of the arithmetic of K whenever G(L/K) is abelian.

2. Terminologies Let L be a Galois extension of K of degree n.
Let {)K ({)L resp.) be the ring of algebraic integers of K (L resp.). It is
known that if p is a prime ideal in {)K, then

where ~I, ••• , ~g are distinct prime ideals in {)L. The integer e is called
the ramification index of p. IT ~ lv, then {)K / P is a field which can be
thought of as a subfield of {h/~, and [{)L/~ : {)K/V] = f is called the
residue class degree of V (or of ~). It is also known that efg = n =
[L : K]. We say p splits completely from K to L if 9 = n. Why look
at primes which split completely? An answer is given by the following
theorem.

THEOREM 2.1. [13, p.136]. Let L} and L2 be Galois extensions of K
and S},' S2 be the set of primes which split completely from K to L l ,

L2 resp. Then SI C S2 (with finitely many exceptions) if and only if
L l :J L2 • So SI = S2 if and only if L} = L2 •

3. The beginnings of class field theory Kronecker (1821-1891)
looked at Abel's work and saw that certain equations in one variable aris­
ing from elliptic curves give abelian extensions of imaginary quadratic
fields. He wondered if such a procedure would give all abelian exten­
sions and because of this he set forth the problem of finding all abelian
extensions of a given algebraic number field. Kronecker had posed one
of the major questions of class field theory. Furthermore, he stated the
following which was proved completely by Weber (1842-1913).

THEOREM 3.1. (Kronecker-Weber, 1886-1887). [13, p.165]. Let L be
a finite abelian extension of Q. Then there exists a positive integer m
such that L C Q(e21t"i/m).

It was basically Weber during the period 1891-1909, Takagi during the
period 1920-1922, Artin in 1927 and Hasse during the period 1926-1930
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who gave the world class field theory in its general classical form which we
persent now. A summary of class field theory over the rationals is given
in [12, p. 4-6]. We adopt a convention. Let Qm = Q(e271"i/m) where m
is a positive integer. We shall always assume that m is not of the form
2a where a is odd, because then Q24 = Qo. So we are not eliminating
any cyclotomic fields by this restriction. The attainment of the first goal
of class field theory is an immediate benefit of the Kronecker-Weber
theorem. We say such an m in Th. 3.1. is a defining(or admissible)
modulw of L. The conductor IL of L is the greatest common divisor of
all defining moduli m of K.

IT m is any positive integer, let Cm be the unit group of ZjmZ. Let m
be a defining modulus of L. Since G(Qm/Q) ~ Cm, L is the fixed field
of some subgroup of Cm which we denote by h,m. Thus we have that

(I) each abelian extension L of Q is given in terms of the arithmetic
ofQ.

With m as before let gcd(a,m) = 1. Then a E Cm. Let (L/a), the
Artin symbol, be the automorphism on L given by restricting ( -+ (0
(where ( = e271"i/m) to L. Then (LI ) maps Cm onto G(LjQ) and has
kernel h,m, i.e., we have the following theorem.

THEOREM 3.2. (Artin's Law of Reciprocity). H L is an abelian ex­
tension of Q with defining modulus m, then the following sequence is
exact

1 ----+ h,m -+ Cm <.!:.!J G(LIQ) ----+ 1.

Thus (LI ) induces an isomorphism G(LIQ) '" CmlIL,mo Another
way to put this is

(11) G(LIQ) has been canonically realized in terms of the arithmetic
ofQ.

Let L be a Galois extension of K. IT the ramification index e of p
equals 1, then we say p is unramijied in L. IT e > 1, then p ramifies in
L. IT a E Z, let (a) be the principal ideal aZ. IT p is a prime number, we
identify p and the prime ideal (p).

THEOREM 3.3. (Conductor-Ramification Theorem). IfL is an abelian
extension ofQ, then p ramifies in L if and only ifpilL.

THEOREM 3.4. (Decomposition Theorem). Let m be a defining mod-
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ulus of L. Ifpfm then the order ofph,m in Cm/h,m is f, the residue
class degree of p.

Let L be a Galois extension of K. Let Spl(L / K) denote the set of all
prime ideals of K which split completely in L.

Let m = fL. Then, since efg = n = [L : Q], p E Spl(L/Q) if and
only if e = 1 and f = 1 if and only if Pf fL and pE h,/L. This is the
realization of

(Ill) describing the decomposition of a prime in terms of the arithmetic
of Q.

4. Classical global class field theory (Classical presentations of
class field theory are found in [11], [13] and [14]).

Since the Kronecker-Weber theorem does not hold for an arbitrary
ground field K, we need to replace the notions mentioned in §3 with
something more general.

A K -modulus mt is a formal product of an ideal mto C {)K and some
real infinite K-primes. All the infinite primes are raised to the first
power here. Let p= denote the real infinite Q-prime associated with the
identity map on Q. We let mt = (m)p= when K = Q.

Let A!JJt be the set of all fractional ideals ~ E AK such that the unique
factorization of 2l and mt into K -primes has no K -primes in common.
Let K* = K - {O}. If a E K*, let (a) be the principal ideal a{)K .

If (a) E A!JJt, then it turns out that a = a/b for a, b E {)K and (a),
(b) E A!JJt. Let (a) E A!JJt. Then "a =1 mod mt" means a =b mod 9Jlo
where a = a/b are as above and ua > 0 for each real infinite K-prime PIT
occuring in 9Jl. We have generalized the notion of congurence. The ray
mod 9Jl is the subgroup R!JJt of A!JJt, R!JJt = {(a) E A!JJt Ia == 1 mod mt}.
The ray class group mod 9Jl is the quotient group C!JJt = A!JJt/R!JJt which
turns out to be finite. In case K = Q and mt = (m)p=, C!JJt ~ Cm via
ep : (a )R!JJt -+ ab- l where a = ±ab-l . Thus C!JJt generalizes Cm. If mt =
1, the modulus having no K-primes, then A!JJt = AK and R!JJt = (K*)
and so Cl = A K /(K*) the ideal class group of K.

Generalizing IL,m is not at all trivial because we do not have the
Kroecker-Weber theorem. Let L/K be an abelian extension. Let mt
be a K-modulus. Let AL!JJt be the set of all fractional ideals U E AL,
such that the unique fractorizations of U and mtO{)L into L-primes con-
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tain no L-primes in common. Let R L,1J1t = {(0:) ~ A L,1J1t I 0: = 1 mod
mtot9 L and TO: > 0 for all real infinite L - prime ~T such that ~T I PO'
where PO' occurs in mt}.

Let CL,1J1t = AL,IJ1tIRL,1J1t and let h/K,1J1t = N L/ K(CL,IJ1t), a subgroup
of CIJ1t. H m is a defining modulus of LIQ and mt = (m)poo, then it
turns out that h/Q,1J1t ~ h,m. So h/K,1J1t generalizes h,m and, in fact,
h/K,1J1t will play the same role in the theory over K as h,m played in
the theory over Q.

To generalize the notion of "the conductor of L" and "a defining mod­
ulus of L" we need the following very deep theorem.

THEOREM 4.1. (Weber-Takagi-Chevalley). Let mt be a K-modulus.
Given abe1ian extension LIK there exists a unique K-modulus fL/K
such that (CIJ1t: h/K,IJ1t) = [L: K] if and only iffL/Klmt.

The unique modulus fL/K in the theorem is called the conductor of
LIK and any K-modulus mt such that fL/Klmt is called a defining mod­
ulus of LIK.

H K = Q, then it can be shown that

So fL/Q is a generalization of h. Let L = Q(.Jd) where d is a square
free integer. Then

{
/4dl if d == 2 or 3 mod 4

f L = Idl if d == 1 mod 4

[13, p.198]. In order to replace Qm by something more general we need
the following theorem proved by Takagi (1920).

THEOREM 4.2. (Existence Theorem). Given a K -modulus 9R and a
subgroup IIJ1t of CIJ1t there exists a unique abelian extension L of [{ such
that

(a) mt is a defining modulus of L IK and
(b) h/K,IJ1t(= N L/ K CL,IJ1t) = IIJ1t.
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Let 19Jt be a subgroup of C9Jt and L an abelian extension of K. We
say L is the class field of 19Jt if (a) and (b) of Th. 4.2. are satisfied.
Let 1!11t = {I} C C9Jt. Then the class field of 19Jt, denote K(R9Jt), is
called the ray clO;!!s field of K modmt. When 9.n = 1, the ray class
field K(R(l») = K is called the Hilbert class field of K. In this case,

G(KjK) '" AKj(K*). IT K = Q, it turns out that Qm is the ray class
field of Q mod rot where rot = (m )Poo. So the ray class field modrot is
what replaces Qm in the general theory.

THEOREM 4.3. (Takagi, 1920). Given LjK abelian, there exists a
K-modulus 9.n such that L C K(R9Jt).

THEOREM 4.4. The conductor fL/K is the "smallest" K-modulus 9.n
such that L C K(R9Jt). "Smallest" means that if L C K(R9Jt) then
fL/KIOO1. Also 9.n is a defining modulus of LjK if and only if L C
K(~).

Thus we have found all abelian extensions of K, i.e., they are the
subfields of the ray class fields of K. But the construction problem is
another and is still one of the major open problems in number theory,
so called "the Hilbert's 12-th problem". (For more on this topic see [3),
[15}, [17], [IS} and [19]).

We shall now canonically realize G(LjK)-Artin's law of reciprocity.
Let 9.n be a defining modulus of L j K. Let P be a finite K -prime such
that p f!»t. Then there exists a unique automorphism in G(LjK),

denoted (L~K), such that

for all a E '19 L. The Artin symbol is the natural extension of this map as
follows. IT ~ = p~l ... p:. (aj E Z), then

(L~) = ( L:~) al ••• ( L:~) a.
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It can be shown that if (a) E Rmt then (~~f) = 1 and so we can

define the Artin symbol on Gmt = Amt/Rmt as follows. IT c E Gmt and

c = 21Rmt, then let (L~K) = (L~K).
If K = Q and 9J1 = (m)poo is a defining modulus of L/Q, it is not

difficult to show that (L~K) = (L/r.p(c)) where c.p is the map given in

Gmt ~ Gm and (L/ ) is the map defined in Th. 3.2. Thus this definition
of the Artin symbol is a generalization of that given before theorem 3.2.
In 1927 Artin proved the following theorem.

THEOREM 4.5 (Artin's Law of Reciprocity). The following sequence
is exact

( LIK)

1 ---+ h/K,mt ---+ Gmt ---+ G(L/K) ---+ 1.

COROLLARY 4.6. Let 9J1 be a defining modulus of L/K. Then L c
K(Rrot), G(K(Rmt)/K) '" Gmt and G(K(Rmt)/L) ~h/K,mt.

Artin's reciprocity law thus allows us to give a Galois interpretation
to class field theory, i.e., the following picture gives the basic.

K(Rmt)(i )
THEOREM 4.7. (Takagi's Conductor-Ramification Theorem, 1920). A

K -prime p ramifies in L if and only if pIfL/K.

Let L/K be Galois. Then L is an unramified extension of K if no
K -prime, finite or infinite, ramifies in L.

THEOREM 4.8. The Hilbert class field K ofK is the maximal unram­
ified abe1ian extension of K.

THEOREM 4.9. (Takagi's Decomposition Theorem, 1920). Let 9J1 be
a defining modulus of L/K. Let p be a finite K -prime such that p f 9J1.
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Let p = pRrot in Crot. Then the order of Ph/K,rot in CfJJt/h/K,fJJt is f,
the residue class degree of p.

COROLLARY 4.10. Let P be a K-prime. Then p E Spl(KjK) if and
only Hp E (K*).

COROLLARY 4.11. Let L/K be abe1ian and p a finite K-prime. Then

PE Spl(L/K) if and only ifPffL/K and (L~K) = 1.

5. Post World War IT Class Field Theory (Presentation of class
field theory using ideles can be found in [2], [5], [9], [10], [14] and [16].)

Let K be a finite extension of Q and let CK = J K / K*, the idele class
group. Let L be a Galois extension of K. There is a natural embedding
JK ~ JL, i.e., j --. j where j~ = jp for ~Ip. Think "JK c J L".
If a E G = G(L/K), there is a unique topological isomorphism also
denoted by a mapping LD'-l~ onto L~ which extends a E G(L/K).
(lalD'-l~ = laal~ for a E L, i.e., I ID'-l~ is defined via I I~. SO if ~ =
~r is infinite, then lalD'-l~T = laal~T = ITa(a)1 on C, i.e., a-l~r =
~rO" gives the action of a-Ion the infinite L-prime ~r.) To turn J L

into a G-module we define the ~-component of aj where j E J L as
follows (aj)l.p = o-(jq-ll.p). One also naturally embeds CK in CL via
jK* --. jL* where j E J K. Think "CK C CL'" Make CL a G-module
via a(jL*) = 0-]' L* and define the norm map N L/K : CL --. CK via

NL/K(jL*) = IT a(jL*)
D'EG

due to the fact that CK is the fixed G-submodule of CL.
Let D K be the connected component of the identity in the topological

group CK. Then DK is characterized algebraically as the set of all
infinitely divisible elements of CK, i.e., if a E DK then for any positive

integer n there is b E CL such that a = bn • Also DK =nNL/KCL where
L

L runs through all finite abelian extensions of K. It can be shown that
DK is a closed subgroup of CK and so CK= CK/ DK is a topological
group. Since NL/KDL C DK, we can extend NL/ K to N L/K : CL --. C'K
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where NL/K(aDL) = NL/Ka· DK. Let I~/K = NL/KC~, IT L/K is
abelian, then I~/K is an open subgroup of Cl<.

THEOREM 5.1. (Existence Theorem). Let I' be an open subgroup of
Cl<. Then tbere exists a unique finite abelian extension L of K such
that I~/K(= NL/KCIJ = I'.

Let I' be an open subgroup of Ck and L a finite abelian extension of
K. Then L is the class field of I' if NL/KC~ = I'.

Let i, j E J K and let 9Jt be a K -modulus. Then "j = i mod 9Jt" means
ordp(ji-1 - l)p 2:: ordp 9Jt for all finite K-primes vim and (ji-1)p E

(Kp)2 for all infinite K-primes v19Jt. Write "j = imod9Jt" if it is also
true that (ji-1)p E Up, the unit ~oup of K p, if Vf9Jt. Let JfJR. = {j E

J K I j == 1 mod9Jt}. Let IfJR. = JfJR. . K* /K*, the congruence subgroup of
CK mod 9Jt. It can be shown that CK/I1 ~ AK/(K*).

Let L/K be abelian. 9Jt is called a defining modulus of L/K if IfJR. C
NL/KCL. Let 9Jt be a defining modulus of L/K. The global norm
residue symbol (, L / K) : J K -+ G(LjK) is defined as follows. Let
j E J K. Then there exists a E K* such that j = a mod 9Jt. Define

. (L/K)OrdP(jQ_l),
(J,L/K) = IT -

ptfJJt p
p finite

where (L~K) is an Artin symbol. This is well defined and it can

be shown that if a E K* then (a, L / K) = 1. Hence we can define
( ,L/K) on CK by (jK*, L/K) . (j,L/K). Moreover, if jK* E DK
then (jK*,L/K) = 1. So we can define ( ,L/K) on Cl< = CK/DK via
(J,L/K) = (j,L/K) where J= jK*· DK E Cl<.

THEOREM 5.2. (Artin's Law of Reciprocity). Let L be a finite abelian
extension of K. Then

, C' ( ,L/K) /1 ---t I L / K ---t K ---t G(L K) ---t 1

is exact.
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Define ( ,K): C~ ~ G(Kab jK) by

(I,K) = lim(I,L/K) E limG(LjK) = G(Kab jK)
+-- +--
"L L

where L runs over all finite abelian extensions of K. One can show us­
ing Th. 5.2. that ( ,K) gives an isomorphism from C~ onto G(Kab jK).
(This is true for a finite extension K of Q, not for function fields over fi­
nite constant field.) So C~ will replace {CfJR 19J1 is a K-modulus}. Fur­
thermore this map gives an isomorphism G(KabjL) "" NL/KC~ = I~/K

and so I~/K will replace {h/K,fJR 19J1 is a defining modulus of L/K}.

Since DK = n IfJR' let Ik = IfJRjDK(C C~). Let 9J1 be a K­
!IJl

K-modulus

modulus. Then it can be shown that I~(R'.1R;)/K = NK(R'JJl)/KC~(R'JR) =
Ik. IT 9J1 is a defining modulus of LjK, then l rot C I~/K and we have
the following Galois interpretation.

C'K

The conductor fL/K of LjK is the greatest common divisor of the
defining moduli of LjK.

THEOREM 5.3. (Conductor-Ramification Theorem). A K-prime p
ramifies in L if and only ifplfL/K.

IT P is a prime ideal, let j(p) be the element of JK whose q-th compo­
nent is given by

. {1r ifp=q
J(p)q= 1 ifP#q

where q is a K-prime and 1r is a unifomizing parameter of KtJ. j(p) is
called "the idele of p". Let j(p) =j(p)K*. DK in C~.
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THEOREM 5.4. (Decomposition Theorem). Let LIK be abelian. Sup­
pose p is a finite K -prime which does not ramify in L. Then the order
of j (p)I~/K in CK14./K is the residue dass degree! of p.

COROLLARY 5.5. PE Spl(LIK)ifandonlyifPffL/K and(j(p),LIK)
=1.

6. Remarks Gauss (1777-1855) tried to decide when x 2 -a = 0 mod
p has a solution (p f a and p is a prime). He came up with his law of
reciprocity-one formulation of which is the following theorem.

THEORME 6.1. (Gauss' Quadratic Reciprocity). [1, p.l22]. Hp and q
are odd primes not dividing a and p == q mod 4a, then x2

- a =0 mod p
has a solution if and only if x 2 - a =0 mod q has a solution.

In other words, whether or not there is a solution to x 2 - a == 0 mod p
depends only on the arithmetic progression mod4a to which p belongs.
But the following can also be shown.

THEOREM 6.2. [4, p.236]. Let L = Q(.jd) where d is a square free
integer. Then an odd prime p splits completely from Q to L if and only
if x 2

- d =0 mod p has a solution and Pf d.

IT p is an odd prime, a E Z, and p f a, the Legendre Symbol (alp) is
given by

(a) {I if x2 == amod p has a solution
p = -1 if x 2 == a mod p has no solution.

H b is an odd prime integer where b = p~l ...P:' and gcd(a, b) = 1, the
,Jacobi Symbol (alb) is given by

Let L = Q( .jd). Identify G(LIQ) and the multiplicative group of order 2
generated by -1 by mapping the generator of G(LIQ) to -1. Under this
identification if p is an odd prime not dividing !L, then (Lip) = (dip).
This follows from Th. 6.2., the Decomposition theorem and Artin's law
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of reciprocity which say (d/p) = 1 if and only if p E Spl(L/Q) if and
only if (L/p) = 1. Since (L/ ) is a homomorphism, if b is an odd positive
integer and gcd(d, b) = 1 then (L/b) = (d/b). Therefore the Artin symbol
is a generalization of the Jacobi symbol which is a generalization of the
Legendre Symbol.

Not only does the Artin symbol generalize the Legencire Symbol but
Gauss' law of quadratic reciprocity (Th. 6.1) can be deduced from Artin's
law of reciprocity (Th. 3.2) as follows. Let p and q be odd primes not
dividing a and let p =q mod 4a. Then the following six statements are
equivalent.

(1) x 2 =a modp has a solution.
(2) x 2 =d mod p has a solution where a = d· square and d is square

free.
(3) pE Spl(Q(..;J)/Q). (By Th. 6.2.)
(4) (Q( ./J)/p) = 1. (By Th 3.4 and Artin's law of reciprocity.)
(5) (Q( ./J)/q) = 1. (Since p == q mod 4a => p = q mod 4d => p ==

q mod f Q(-./ii) => (Q(..;J)/ p) = (Q(Vd) / q) by the definition of

(Q(Vd)/p).)
(6) x 2 = a mod q has a solution.

7. Application An appropriate conclusion would be an application
to a Diophantine problem which we now present. Given a prime p do
there exist x, y E Z such that p = x2 + xy + 9y2 has a solution? We
will show that there is a solution if and only if p = 1, 4, 9, 11, 16 or
29 mod 35.

Let K = Q(J-35). Then {)K has an integral basis 1 and (1+J-35)/2,
1.e.,

Also

( 1+J=35) ( I-J 35 )x
2 + xy + 9y2 = X + 2 Y x + 2 Y

(
1+ J-35)=N K / Q x + 2 y.
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Thus the question is : For which p is there an element of {}K whose
norm is p? To answer this we need the following general definitions and
theorem.

Let K/Q be a Galois extension of degree n. Let aI, ... , an be an inte­
gral base of K. The norm form associated with K (which is independent
of the integral basis chosen) is

The form FK is homogeneous of degree n with coefficients in Z.

THEOREM 7.1. Let K be a totally imaginary abelian extension of Q
with [K : Q] = n. Suppose Pf IK. Let FK(XI, ... , x n ) be the norm form
associated with K. Then FK(XI, ••. ,xn ) =p has a solution with Xi E Z
if and only ifp E Spl(K/Q).

PROOF: IT U is a complex conjugation, then we can write G(K/Q) =
{TI, ..• , Tn /2, UTI, •.• , UTn /2}. Let a E K*. Then

n/2

NK/Qa = II(Tia)u(Tia) > o.
i=I

Hence FK(XI, ... , x n ) = p has a solution if and only if NK/Qa = p for
some a E {} K if and only if there is a principal prime ideal p of K having
norm p. On the other hand p E Spl(K/Q) if and only if there is a K­
prime.p having norm p ; and.p is principal by Cor. 4.10 if and only if
.p E Spl(E}K) .

We will show that the Hilbert Class field K of K is Q(.;5, .J=7).
Let Cm be the character group of the unit group Cm of Z/mZ. If

gcd(a, m) > 1, then let X(a) = 0 for any X E Cm. A positive integer b
is a defining modulU3 of X E Cm if a =1 mod b implies X( a) = 1. The
conductor Ix of X E Cm is the smallest defining modulus of X. If m is a
defining modulus of a number field L, let

XL,m = {X E Cm I X(h) = 1 for all hE h,rn}
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the character group of L mod m.

THEOREM 7.2. (Hasse Conductor-Discriminant Formula) Let m be a.
defining modulus of L. Then

IL = lcm{fx I X E XL,m}

and

(km = least common multiple, dL = discriminant of L).

Let L = Q(v'5, yC7). Then we have the following diagram :

Now G(Qs/Q) ~ Cs which is cyclic generated by say al and G(Q7/Q)
~C7 which js also cyclic generated by say a2. Then C3S ~ G(Q3S/Q) ~
G(Qs/Q) x G(Q7/Q) ~ {al mod 5} x {a2 mod 7}. Define characters Xl
and X2 on {al mod 5} x{a2 mod 7) as follows : XI(al) = A, XI(a2) = 1

and X2(al) = 1, X2(a2) = ~ + V;i. Then we can take {Xl} X {X2}

to be the character group of c3s . Since G(Qs/Q(V5» ~ (ai mod 5)
and G(Q7/Q(yC7» ~ (a~ mod 7), we get G(Q3s/L) ~ (ai mod 5) x
(a~ mod 7). Hence XL,3S = (Xi) X (Xn by Th. 3.2. Now the following
proposition can be shown.

PROPOSITION. The defining moduli of X E Cm are precisely the mul­
tiples of Ix.

Thus since 5 is a defining modulus of xi, f = 1 or 5. But clearly 1 is not
a defining modulus of xi. So fX2 = 5. Similarly fxa = 7, fX2xa = 35

1 2 1 2
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and fX o = 1 where Xo = 1 is the principal character. Therefore by
Th. 7.2 IdLI = 52 . 72 and fL = 5·7.

We are ready to show that K = Q(.;5, v='7). Let L = Q(.;5, y=7).
Since K and L are both non-real abelian extensions of Q, no infinite
K-prime ramifies in L. By Th. 3.3, considering the conductors fK = 35
(see §4) and fL = 35, the finite Q-primes which ramify in K are the
same as those which ramify in L, namely, 5 and 7. The ramification
index of 5 inK is 2. Thus since 5 does not ramify in Q(y=7), 5 ramifies
in L with ramification index 2. Similarly, the ramification indices of 7 in
K and L are the same. Therefore L is an unramified extension of K and
so L c K by Th. 4.8. Now the following result can be deduced without
using class field theory from facts about Dirichlet L-series.

THEOREM 7.3. Let K = Q( Vd) where d < -2. Suppose fK is odd.
Let (a/Id!) be the Jacobi symbol. Then the class number of K is

hF _(2) L C~I)
2 1df o<x<!t

gcd(x,!k)=l

(A similar but slightly more complicated result holds if fK is even [4,
p.346].)

Thus if K = Q(V-35), then fK = 35 and (2/ld!) = (2/35) =
(2/5)(2/7) = -1. Therefore hK = 1/3{(1/35) + (2/35) + (3/35) +
(4/35)+(6/35)+(8/35)+(9/35)+(11/35)+(12/35)+(13/35)+(16/35)+
(17/35)} = 1/3{1-1 + 1 + 1-1-1 + 1 + 1 + 1 + 1 + 1 + 1} = 2 and so
the order of G(K/K) is 2, which implies [K : K] = 2. Since [L : Q] = 4
and L C K, L = K.

When L = Q(.;5, ..;=7), we will show that pE Spl(L/Q) if and only
if p = 1,4,9,11,16 or 29 mod 35. Let al = 3 and a2 = 5. As in the ex­
ample given just before Proposition, under the natural isomorphism we
have G(Q3S/Q) ~ (al mod 5) X (a2 mod 7) = (3 mod 5) x (5 mod 7)
and G(Q3S/L) ~ G(Qs/Q(.;'5)) x G(QdQ(v='7)) ~ (32 mod 5) X

(52 mod 7). Therefore h,IL = G(Q3S/L) f'V {4 mod 35}. The result
follows from Th. 3.4.

Returning to the original problem if follows that if K = Q(V-35) and
Pi' fK = 35 then, by Th. 7.1, p = x 2+xy+9y2 has a solution if and only
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if pE Spl(l(IQ), which is equivalent to pE Spl(Q(V5, v='7)/Q), which
in turn is equivalent to p =1,4,9,11, 16 or 29 mod 35. Now suppose

p = 5. If 5 = x2 +xy+9y2 = (x+xy+(~)2) - (,)2 +9y2 has a

solution, then 20 = (2x + y)2 + 35y2 has a solution which is not the
case. A similar argument shows that 7 = x 2 + xy +9y 2 does not have a
solution.
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