Comm. Korean Math. Soc. 4 (1989), No. 2, pp. 321~329

ON A VECTOR FIELD PROBLEM
OVER A LENS SPACE *

JIN Ho Kwak* AND JAEUN LEgtt

For a real vector bundle £, we denote by span ¢ the maximum number
of linearly independent cross sections of . In particular, we denote
span M = span TM, where 7M is the tangent bundle of a smooth
manifold M. Let @ denote Whitney sum of vector bundles. According
to context, the integer m will denote either itself or the trivial m~plane
bundle over an appropriate space. The stable span of a smooth manifold

M is defined by
st.span M = span(tM ®&1) — 1 =span(M x P)—p

for any p-dimensional parallelizable manifold P. Note that st.span M™
= n if and only if M™ is stably parallelizable, and span M™ = n if and
only if M™ is parallelizable.

Let p be an odd prime and n a non-negative integer, and let L2"*!(p;
a1,as,...,an41) denote a generalized lens space. If all the a; are equal
to 1, then L2"*1(p;a;,as,...,an41) is known as a standard lens space,
denoted by L?"+!(p) simply. Associated with the principal Z, bundle
w2 §2r+l o [2nHl(piay.ay,...,ap41) one may form a complex line
bundle v over L?"*1(p;a;,ay,...,ant1) by dividing out the diagonal
actions of Z, on $?"*! x C, where the generator of Z, acts on C by
multiplication by exp(2ni/p). There are also the similarly defined line
bundles where Z, acts on C by multiplication by exp(2xbi/p) which are
just the complex tensor power v®. The tangent bundle of a lens space is
described as follows :
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THEOREM 1 ([7]). 7L2"*(p;a1,az,...,an41) ® 1 is isomorphic to
re(Y*" @42 @ - - - @ y*"+) over L2+ (p;ay,az,...,an41), Wwhere re de-
notes the realification of a complex vector bundle.

For the canonical complex line bundle v (will be denoted by 75, from
now on) over the standard lens space L?*"*!(p), to determine the span
of re(Mmynp) =re(Ynp ® - D Ynp), (M times Whitney sum) is the gen-
eralized vector field problem. Let 7, , denote the realification of v, p, so
that mny, , = re(myy ) for any m. In this paper we will give a charac-
terization of a lower bound of the span of m7y, , and some estimation of
the span of mn, ;.

Let X = (X,T},) be a Hausdorff space with a free cyclic group action
of order p generated by an action T,,. The indez of (X,T,) is the largest
integer 2n + 1 for which there is an equivariant map of the (2n + 1)-
sphere $?**! into X. The coindez of (X, T}) is the least integer 2n + 1
for which there is an equivariant map of X into S?**!. Here S?**! is
assumed to have the standard linear Z, action. Note that an even dimen-
sional sphere does not admit a free Z, action for an odd prime p, because
if there would be a free Z, action on even dimension sphere, the Euler
characteristic 2 of the sphere would be p times the Euler characteristic
of its quotient space, which is impossible.

Let Vi(C™) be the (complex) Stiefel manifold of orthonormal k-frames
in the n-dimensional complex space C”. We define a free Z, action T}, on
Vi(C™) such that exp(27i/p) acts on each vector of k—frames. Similarly,
we can define a free Z, action on the real Stiefel manifold Vz(R?").

Let vy, v2,...,v; be linearly independent real vectors in R?>" and let
GS(vy,ve,...,0k) = (v},v3,...,v;) be the result of the Gram-Schmidt
Orthogonalization process, i.e.,

o =
Y ol
and
] vj-—ZKj <v,-,v§> ‘U;

v

= ji>2
T e = Xieg <wi,vi> il
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Then, GS is an equivariant map on Vi(R?"). Indeed, if we let GS(e*fv,,

e%vs,...,e%%) = (w1, ws,...,w;), then
6i9v1 ig V1 0,1
W = ———— = ¢€ =€ Uy
llet®vs]| llval| ’
and

€% =3 <efvi, > ey
ety — Yo, <efui,etfvl> o]
0 Vi~ 2icj <VHYi> Y
o = Sics <virvi> il
"v; for j>2.

wj

=€

The problem to estimate the lower bound of span(m, ;) can be char-
acterized as follows :

THEOREM 2. The following statements are equivalent:

(1) span(mvy,,) >k,

(2) there is a Z, equivariant map from S?"*! into Vi(C™), ie.,
index(Vi(C™), T,) > 2n + 1,

(3) there is a map ¢ : C"*! x C¥ — C™ such that

1) ¢(ez,w) = ¢(z,e%w) = e §(z,w) for each e’ in Z,,
i) ¢(z,w)=0iff z=0 orw =0,
i) ¢(z,aw; +bwsy) = ad(z, w1)+ bp(z,w,) for any complex numbers
a and b.

Proof. (1) ¢ (2). Let T be the Z,, action on §?"+1x V4 (C™) defined by
T(z,v) = (T(2), T, (v)) for z € §2"1 and v € Vi(C™), and let 7 be the
map from §2"+! x Vi(C™)/T onto L?**1(p) = §?"*+! /T induced by the
projection from $2"*! x V4 (C™) onto S?"*!. Then ~ is the projection of
the k—frame bundle associated with myy, ,. And the existence of a cross

section of this bundle is equivalent to the existence of an equivariant
map from S2"+1 to Vi (C™).



324 Jin Ho Kwak and Jaeun Lee

(2) = (3). Let f be a Z, equivariant map from S***! to Vx(C™), and
we define a map ¢ : C*t1 x C¥ » C™ by

oy = { [0l 20

0 if z=0,
where ® means the matrix multiplication and f(“—:-“) € Vi(C™) is re-
garded as an m x k complex matrix, and w is a column vector in
Ck. Then ¢ is clearly continuous and satisfies (i), (ii), and (iii). In-
deed, #(e*?z,w) = f(ew“-f") o |zljw = eiof(]r‘zi") o |z]|w = e*¢(z,w) =
fyq) ® ef)zllw = ¢(z,ew) for any €. If z # 0 and ¢(z,w) =
f(i51) @ llzllw = 0, then w = 0, because f(yZy) has rank k. Clearly
é(z,aw; + bwz) = ad(z,w1) + bg(z, w2) for any complex a and b.

(3) = (2). Let ¢ : C™*! x C* — C™ be the map given in (3) and
let z € §?"*! be any element. Then ¢(z,e1), #(2,€z2),...,P(2,ex) are
linearly independent, where €1, e, .. .,er denotes the standard basis for
C*. Then g(z) = GS(4(z,e1),9(2,€2),--.,8(2,¢ex)) is the desired Z,
equivariant map from $27+! to V;(C™).

Similarly, we can prove the following theorem:

THEOREM 3. The following statements are equivalent:

(1) span(mny,p) > k,

(2) there is a Z, equivariant map from $*"+1 into Vi(R*™), i.e., index

(Vi(R?™),Tp) >2n+ 1,

(3) there is a map ¢ : R¥*2 x R*¥ — R?™ such that
i) ¢(e'z,y) = e¥¢(z,y) for each €' € Z,, z € R?"*! and y € R,
i) ¢(z,y) =0if z=00ry=0

i) @(z,ays +bys) = a¢(x,y1) + b(z, y2) for any real numbers a and

b.

Since (n + 1)ap, = 7L?"*'(p) @ 1 has a nontrivial cross section,
span(mny, ) > 1 for any m > n+ 1. For m < n+ 1, if span(mn, ,) > 1,
then by Theorem 3, there exists a Z, equivariant map f from $***! to
Vi(R?™) = §?™—1, But there is no map from S* to S' which commutes
with some free actions of a nontrivial finite group on the spheres §*, S'
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if £ > 1, by a generalized theorem of Borsuk and Ulam (for example, see
[2]). Hence we have

THEOREM 4. span(mmny ) = 0 if and only if n > m.

Therefore, we can restrict our concern to find span(mn, ,) for m > n
from now on.

THEOREM 5. If a 2k—connected space X admits a free Z, action, then
there exists a Z, equivariant map from S2k+1 o X .

Proof. Let k = 0 to prove it by induction on k. With the identification
Zp = {exp(2minfp): n=0,1,...,p—1}
as the subgroup of S*, we define a map f: Z, —» X by
F(1) ==

and
f(exp(27in/p)) = exp(27in/p)z,,

where z¢ is a fixed element in X. Since IIo(X) = 0, f has an extension
f:{ze 8 :0<Larg2<2r/p} = X.
Now, we define f : S — X by
f(z) = exp(2nih/p)f(exp(—2nik/p)z),
where 2rh/p < arg z < 2n(h + 1)/p,h = 1,2,...,p — 1. Then fis
clearly continuous and Z, equivariant. Suppose that the theorem is true

for k < n, and let X be 2n—connected. First, we divide the sphere S?7+1
into p subsets:

Szn-i-l —_ {(21,- . -,zn+1) € S2n+1_: 27rb/p S arg Znp41 S 27l'(b+ 1)/?}7
b::O,l,...,p“‘l‘
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We can see that the boundary 9(SZ"*!) of S2"*! is the union of
Bl = {(2.'1,. '-,zn+1) € 52n+l Iarg Zp41 = 0}

and
BZ == {(Zl,- .o ,Zn+1) (S 52n+1 arg Zp41 = 21{/1)}’

and each B; is homeomorphic to the 2n-dimensional standard ball.
Hence, by the induction hypothesis, there exists a Z, equivariant map
f from the boundary 0(B,;) of B; to X and this f has an extension f;
from B; to X, because X is 2n — 1 connected. And we extend f; to f,
over B, U B; by defining

Ja(z) = exp(2ni/p) f1(exp(—27i/p)z)

for z € B;. This map f; is well-defined continuous map, because By N
B, = §?771 C §?27+1 i5 the domain of f. Since B; U B, is homeomorphic
to §2" and X is 2n—connected, f, has an extension f over Sg""'l. Now
we extend f over §2"+1 to get a desired Z, equivariant map f as follows:

f(2) = exp(2rib/p)f(exp(—2mib/p)z) for z € S;**!, b=1,2,...,p— 1.

Actually, it is trivial to show that the map f is Z, equivariant from the
construction of f.

COROLLARY 6. span(mnyp) > 2(m — n) for all m.

Proof. Since Vi(C™) is 2(n — k)-connected, there exists a Z, equiv-
ariant map f from $?"*! to V,,_,(C™).
Let f: Vinen(C™) = Va(m_n)(R?™) be the map defined by

f(v1,--.,vm_n) = (re(v1),re(iv1), .- -, 7e(Vm—n), re(iVm—n)),
where re(z1,22,...,2m) = (m"l,yl,xz,yg,...,xm,ym) and z; = z; +
wyj, 7 = 1,2,...,m. Then f is a Z, equivariant map, and so does

Fof: S o Voo n)(RZ™). Thus, we get span(mn,p) > 2(m — n).
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Let ¢ be a real 2m-dimensional vector bundle over the lens space
L?***1(p) with m > n, and let { have k linearly independent cross sec-
tions, then the geometric dimension of ( —2m is less than 2m —k. Hence,
the Atiyah’s y—operator satisfies

1(¢—2m) =Y A (¢ — 2m)t!
i>0
=147 (¢ —2m)t +7°(( —2m)t* +---,
and _ .
Y({(—2m)=0 for i>2m—k.
Now for { = mn, ,, we have (cf. [5])

— _ - = 42
'Yt(nn,p) =1+ nn,pt - nn,pt >
where .
Tpp =Tnp —2€ Ko(L*+ (p))-

Hence,
Y p) = (1 + Tyt — T pt°)™

= i (%) i -

in I?B(L““(p)), and the y-dimension on m7, , is dim,(m7, ,) =

25up{if(7) (7n p)" # 0}-
Kambe [5] computed KO(L2"+(p))..

THEOREM 7. Let g=2(p—1)andn=s(p—1)+r, 0<r<p-1
Then
(Zpe1 13 @ (2, )17 13 if n # 0 (mod 4)

RO(L2"+ (p)) { :
( ®)) Zy @ (Zper1) 5 @ (Z,0)77 31 ifn = 0 (mod 4),

and the direct summand (Zp,+1)[’:‘] and (Z,:)17 (3! are generated addi-
tively by T - -, (Tnp) % and (7, ,)131%,... (7, ,)? respectively.
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Moreover its ring structure is given by

o = S (114 )

and
(ﬁn p)[%]+l = 0'

From the group KO(L?"*!(p)), we can see that the order of the ele-
ment 7, nnp isp 45 for 1 <t <[], and then

dimn.,(m77,,) = 2 supd(] (m) # 0 mod(p* *15=1)}.

Therefore, we have

THEOREM 8.
span(mna,p) < 2m — dim(m7,, ,)

=2{m — sup{il( ) #0 mod (p*IF=E1)}).
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