ON A VECTOR FIELD PROBLEM OVER A LENS SPACE *

JIN HO KWAK+ AND JAEUN LEE++

For a real vector bundle ξ , we denote by $span \ \xi$ the maximum number of linearly independent cross sections of ξ . In particular, we denote span $M = \text{span } \tau M$, where τM is the tangent bundle of a smooth manifold M. Let \oplus denote Whitney sum of vector bundles. According to context, the integer m will denote either itself or the trivial m-plane bundle over an appropriate space. The $stable\ span$ of a smooth manifold M is defined by

st.span
$$M = \text{span}(\tau M \oplus 1) - 1 = \text{span}(M \times P) - p$$

for any p-dimensional parallelizable manifold P. Note that st.span M^n = n if and only if M^n is stably parallelizable, and span M^n = n if and only if M^n is parallelizable.

Let p be an odd prime and n a non-negative integer, and let $L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1})$ denote a generalized lens space. If all the a_i are equal to 1, then $L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1})$ is known as a standard lens space, denoted by $L^{2n+1}(p)$ simply. Associated with the principal Z_p bundle $\pi: S^{2n+1} \to L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1})$ one may form a complex line bundle γ over $L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1})$ by dividing out the diagonal actions of Z_p on $S^{2n+1} \times \mathbb{C}$, where the generator of Z_p acts on \mathbb{C} by multiplication by $\exp(2\pi i/p)$. There are also the similarly defined line bundles where Z_p acts on \mathbb{C} by multiplication by $\exp(2\pi bi/p)$ which are just the complex tensor power γ^b . The tangent bundle of a lens space is described as follows:

Received May 10, 1989.

^{*}This work is partially supported by KOSEF.

THEOREM 1 ([7]). $\tau L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1}) \oplus 1$ is isomorphic to $re(\gamma^{a_1} \oplus \gamma^{a_2} \oplus \cdots \oplus \gamma^{a_{n+1}})$ over $L^{2n+1}(p; a_1, a_2, \ldots, a_{n+1})$, where re denotes the realification of a complex vector bundle.

For the canonical complex line bundle γ (will be denoted by $\gamma_{n,p}$ from now on) over the standard lens space $L^{2n+1}(p)$, to determine the span of $\operatorname{re}(m\gamma_{n,p}) = \operatorname{re}(\gamma_{n,p} \oplus \cdots \oplus \gamma_{n,p})$, (m times Whitney sum) is the generalized vector field problem. Let $\eta_{n,p}$ denote the realification of $\gamma_{n,p}$, so that $m\eta_{n,p} = \operatorname{re}(m\gamma_{n,p})$ for any m. In this paper we will give a characterization of a lower bound of the span of $m\eta_{n,p}$ and some estimation of the span of $m\eta_{n,p}$.

Let $X = (X, T_p)$ be a Hausdorff space with a free cyclic group action of order p generated by an action T_p . The index of (X, T_p) is the largest integer 2n + 1 for which there is an equivariant map of the (2n + 1)-sphere S^{2n+1} into X. The coindex of (X, T_p) is the least integer 2n + 1 for which there is an equivariant map of X into S^{2n+1} . Here S^{2n+1} is assumed to have the standard linear Z_p action. Note that an even dimensional sphere does not admit a free Z_p action for an odd prime p, because if there would be a free Z_p action on even dimension sphere, the Euler characteristic 2 of the sphere would be p times the Euler characteristic of its quotient space, which is impossible.

Let $V_k(\mathbb{C}^n)$ be the (complex) Stiefel manifold of orthonormal k-frames in the n-dimensional complex space \mathbb{C}^n . We define a free Z_p action T_p on $V_k(\mathbb{C}^n)$ such that $\exp(2\pi i/p)$ acts on each vector of k-frames. Similarly, we can define a free Z_p action on the real Stiefel manifold $V_k(\mathbb{R}^{2n})$.

Let v_1, v_2, \ldots, v_k be linearly independent real vectors in \mathbb{R}^{2n} and let $GS(v_1, v_2, \ldots, v_k) = (v'_1, v'_2, \ldots, v'_k)$ be the result of the Gram-Schmidt Orthogonalization process, i.e.,

$$v_1' = \frac{v_1}{\|v_1\|},$$

and

$$v_j' = \frac{v_j - \sum_{i < j} < v_i, v_i' > v_i'}{\|v_j - \sum_{i < j} < v_i, v_i' > v_i'\|}, \quad j \ge 2.$$

Then, GS is an equivariant map on $V_k(\mathbf{R}^{2n})$. Indeed, if we let $GS(e^{i\theta}v_1)$, $e^{i\theta}v_2,\ldots,e^{i\theta}v_k)=(w_1,w_2,\ldots,w_k),$ then

$$w_1 = \frac{e^{i\theta}v_1}{\|e^{i\theta}v_1\|} = e^{i\theta}\frac{v_1}{\|v_1\|} = e^{i\theta}v_1',$$

and

$$\begin{aligned} w_j &= \frac{e^{i\theta}v_j - \sum_{i < j} \langle e^{i\theta}v_i, e^{i\theta}v_i' \rangle e^{i\theta}v_i'}{\|e^{i\theta}v_j - \sum_{i < j} \langle e^{i\theta}v_i, e^{i\theta}v_i' \rangle e^{i\theta}v_i'\|} \\ &= e^{i\theta} \frac{v_j - \sum_{i < j} \langle v_i, v_i' \rangle v_i'}{\|v_j - \sum_{i < j} \langle v_i, v_i' \rangle v_i'\|} \\ &= e^{i\theta}v_j' \quad \text{for} \quad j \ge 2. \end{aligned}$$

The problem to estimate the lower bound of span $(m\gamma_{n,p})$ can be characterized as follows:

THEOREM 2. The following statements are equivalent:

- (1) $\operatorname{span}(m\gamma_{n,p}) \geq k$,
- (2) there is a \mathbb{Z}_p equivariant map from S^{2n+1} into $V_k(\mathbb{C}^m)$, i.e., $index(V_k(\mathbf{C}^m), T_p) \ge 2n + 1,$ (3) there is a map $\phi : \mathbf{C}^{n+1} \times \mathbf{C}^k \to \mathbf{C}^m$ such that
- i) $\phi(e^{i\theta}z, w) = \phi(z, e^{i\theta}w) = e^{i\theta}\phi(z, w)$ for each $e^{i\theta}$ in Z_n ,
- ii) $\phi(z, w) = 0$ iff z = 0 or w = 0,
- iii) $\phi(z, aw_1 + bw_2) = a\phi(z, w_1) + b\phi(z, w_2)$ for any complex numbers a and b.

Proof. (1) \Leftrightarrow (2). Let \tilde{T} be the Z_p action on $S^{2n+1} \times V_k(\mathbb{C}^m)$ defined by $\tilde{T}(z,v)=(T(z),T_p(v))$ for $z\in S^{2n+1}$ and $v\in V_k(\mathbb{C}^m)$, and let π be the map from $S^{2n+1} \times V_k(\mathbb{C}^m)/\tilde{T}$ onto $L^{2n+1}(p) = S^{2n+1}/T$ induced by the projection from $S^{2n+1} \times V_k(\mathbb{C}^m)$ onto S^{2n+1} . Then π is the projection of the k-frame bundle associated with $m\gamma_{n,p}$. And the existence of a cross section of this bundle is equivalent to the existence of an equivariant map from S^{2n+1} to $V_k(\mathbb{C}^m)$.

 $(2) \Rightarrow (3)$. Let f be a Z_p equivariant map from S^{2n+1} to $V_k(\mathbb{C}^m)$, and we define a map $\phi: \mathbb{C}^{n+1} \times \mathbb{C}^k \to \mathbb{C}^m$ by

$$\phi(z,w) = \begin{cases} f(\frac{z}{\|z\|}) \bullet \|z\|w & \text{if } z \neq 0 \\ 0 & \text{if } z = 0, \end{cases}$$

where ullet means the matrix multiplication and $f(\frac{z}{\|z\|}) \in V_k(\mathbb{C}^m)$ is regarded as an $m \times k$ complex matrix, and w is a column vector in \mathbb{C}^k . Then ϕ is clearly continuous and satisfies (i), (ii), and (iii). Indeed, $\phi(e^{i\theta}z, w) = f(e^{i\theta}\frac{z}{\|z\|}) \bullet \|z\|w = e^{i\theta}f(\frac{z}{\|z\|}) \bullet \|z\|w = e^{i\theta}\phi(z, w) = f(\frac{z}{\|z\|}) \bullet e^{i\theta}\|z\|w = \phi(z, e^{i\theta}w)$ for any $e^{i\theta}$. If $z \neq 0$ and $\phi(z, w) = f(\frac{z}{\|z\|}) \bullet \|z\|w = 0$, then w = 0, because $f(\frac{z}{\|z\|})$ has rank k. Clearly $\phi(z, aw_1 + bw_2) = a\phi(z, w_1) + b\phi(z, w_2)$ for any complex a and b.

 $(3) \Rightarrow (2)$. Let $\phi: \mathbb{C}^{n+1} \times \mathbb{C}^k \to \mathbb{C}^m$ be the map given in (3) and let $z \in S^{2n+1}$ be any element. Then $\phi(z, e_1), \phi(z, e_2), \ldots, \phi(z, e_k)$ are linearly independent, where e_1, e_2, \ldots, e_k denotes the standard basis for \mathbb{C}^k . Then $g(z) = GS(\phi(z, e_1), \phi(z, e_2), \ldots, \phi(z, e_k))$ is the desired Z_p equivariant map from S^{2n+1} to $V_k(\mathbb{C}^m)$.

Similarly, we can prove the following theorem:

THEOREM 3. The following statements are equivalent:

- (1) $\operatorname{span}(m\eta_{n,p}) \geq k$,
- (2) there is a Z_p equivariant map from S^{2n+1} into $V_k(\mathbb{R}^{2m})$, i.e., index $(V_k(\mathbb{R}^{2m}), T_p) \geq 2n+1$,
 - (3) there is a map $\phi: \mathbf{R}^{2n+2} \times \mathbf{R}^k \to \mathbf{R}^{2m}$ such that
 - i) $\phi(e^{i\theta}x, y) = e^{i\theta}\phi(x, y)$ for each $e^{i\theta} \in \mathbb{Z}_p$, $x \in \mathbb{R}^{2n+1}$ and $y \in \mathbb{R}^k$,
 - ii) $\phi(x, y) = 0$ iff x = 0 or y = 0
 - iii) $\phi(x, ay_1 + by_2) = a\phi(x, y_1) + b\phi(x, y_2)$ for any real numbers a and b.

Since $(n+1)\eta_{n,p} = \tau L^{2n+1}(p) \oplus 1$ has a nontrivial cross section, span $(m\eta_{n,p}) \geq 1$ for any $m \geq n+1$. For m < n+1, if span $(m\eta_{n,p}) \geq 1$, then by Theorem 3, there exists a Z_p equivariant map f from S^{2n+1} to $V_1(\mathbf{R}^{2m}) = S^{2m-1}$. But there is no map from S^k to S^l which commutes with some free actions of a nontrivial finite group on the spheres S^k , S^l

if k > l, by a generalized theorem of Borsuk and Ulam (for example, see [2]). Hence we have

THEOREM 4. $span(m\eta_{n,p}) = 0$ if and only if $n \ge m$.

Therefore, we can restrict our concern to find span $(m\eta_{n,p})$ for m > n from now on.

THEOREM 5. If a 2k-connected space X admits a free Z_p action, then there exists a Z_p equivariant map from S^{2k+1} to X.

Proof. Let k = 0 to prove it by induction on k. With the identification

$$Z_p = \{\exp(2\pi i n/p) : n = 0, 1, \dots, p-1\}$$

as the subgroup of S^1 , we define a map $f: \mathbb{Z}_p \to X$ by

$$f(1) = x_0$$

and

$$f(\exp(2\pi i n/p)) = \exp(2\pi i n/p)x_0,$$

where x_0 is a fixed element in X. Since $\Pi_0(X) = 0$, f has an extension

$$\overline{f}:\{z\in S^1:0\leq {
m arg}\ z\leq 2\pi/p\} o X.$$

Now, we define $\tilde{f}: S^1 \to X$ by

$$\widetilde{f}(z) = \exp(2\pi i h/p)\overline{f}(\exp(-2\pi i h/p)z),$$

where $2\pi h/p \le \arg z \le 2\pi (h+1)/p$, $h=1,2,\ldots,p-1$. Then \tilde{f} is clearly continuous and Z_p equivariant. Suppose that the theorem is true for k < n, and let X be 2n-connected. First, we divide the sphere S^{2n+1} into p subsets:

$$S_b^{2n+1} = \{(z_1, \dots, z_{n+1}) \in S^{2n+1} : 2\pi b/p \le \arg z_{n+1} \le 2\pi (b+1)/p\},\$$

$$b = 0, 1, \dots, p-1.$$

We can see that the boundary $\partial(S_0^{2n+1})$ of S_0^{2n+1} is the union of

$$B_1 = \{(z_1, \dots, z_{n+1}) \in S^{2n+1} : \arg z_{n+1} = 0\}$$

and

$$B_2 = \{(z_1, \ldots, z_{n+1}) \in S^{2n+1} : \arg z_{n+1} = 2\pi/p\},\$$

and each B_i is homeomorphic to the 2n-dimensional standard ball. Hence, by the induction hypothesis, there exists a Z_p equivariant map f from the boundary $\partial(B_1)$ of B_1 to X and this f has an extension f_1 from B_1 to X, because X is 2n-1 connected. And we extend f_1 to f_2 over $B_1 \cup B_2$ by defining

$$f_2(z) = \exp(2\pi i/p) f_1(\exp(-2\pi i/p)z)$$

for $z \in B_2$. This map f_2 is well-defined continuous map, because $B_1 \cap B_2 = S^{2n-1} \subset S^{2n+1}$ is the domain of f. Since $B_1 \cup B_2$ is homeomorphic to S^{2n} and X is 2n-connected, f_2 has an extension \overline{f} over S_0^{2n+1} . Now we extend \overline{f} over S^{2n+1} to get a desired Z_p equivariant map \tilde{f} as follows:

$$\widetilde{f}(z) = \exp(2\pi i b/p)\overline{f}(\exp(-2\pi i b/p)z)$$
 for $z \in S_b^{2n+1}$, $b = 1, 2, \dots, p-1$.

Actually, it is trivial to show that the map \tilde{f} is Z_p equivariant from the construction of \tilde{f} .

COROLLARY 6. $span(m\eta_{n,p}) \ge 2(m-n)$ for all m.

Proof. Since $V_k(\mathbb{C}^n)$ is 2(n-k)-connected, there exists a Z_p equivariant map f from S^{2n+1} to $V_{m-n}(\mathbb{C}^m)$.

Let $\tilde{f}: V_{m-n}(\mathbf{C}^m) \to V_{2(m-n)}(\mathbf{R}^{2m})$ be the map defined by

$$\tilde{f}(v_1,\ldots,v_{m-n})=(re(v_1),re(iv_1),\ldots,re(v_{m-n}),re(iv_{m-n})),$$

where $re(z_1, z_2, ..., z_m) = (x_1, y_1, x_2, y_2, ..., x_m, y_m)$ and $z_j = x_j + iy_j$, j = 1, 2, ..., m. Then \tilde{f} is a Z_p equivariant map, and so does $\tilde{f} \circ f: S^{2n+1} \to V_{2(m-n)}(\mathbf{R}^{2m})$. Thus, we get $\operatorname{span}(m\eta_{n,p}) \geq 2(m-n)$.

Let ζ be a real 2m-dimensional vector bundle over the lens space $L^{2n+1}(p)$ with m > n, and let ζ have k linearly independent cross sections, then the geometric dimension of $\zeta - 2m$ is less than 2m - k. Hence, the Atiyah's γ -operator satisfies

$$\gamma_t(\zeta - 2m) = \sum_{i \ge 0} \gamma^i(\zeta - 2m)t^i$$
$$= 1 + \gamma^1(\zeta - 2m)t + \gamma^2(\zeta - 2m)t^2 + \cdots,$$

and

$$\gamma^i(\zeta - 2m) = 0$$
 for $i \ge 2m - k$.

Now for $\zeta = m\eta_{n,p}$, we have (cf. [5])

$$\gamma_t(\overline{\eta}_{n,p}) = 1 + \overline{\eta}_{n,p}t - \overline{\eta}_{n,p}t^2,$$

where

$$\overline{\eta}_{n,p}=\eta_{n,p}-2\in \widetilde{KO}(L^{2n+1}(p)).$$

Hence,

$$\begin{split} \gamma_t(m\overline{\eta}_{n,p}) &= (1 + \overline{\eta}_{n,p}t - \overline{\eta}_{n,p}t^2)^m \\ &= \sum_{i=0}^m \binom{m}{i} (\overline{\eta}_{n,p})^i (t - t^2)^i \end{split}$$

in $\widetilde{KO}(L^{2n+1}(p))$, and the γ -dimension on $m\overline{\eta}_{n,p}$ is $\dim_{\gamma}(m\overline{\eta}_{n,p}) = 2\sup\{i|\binom{m}{i}(\overline{\eta}_{n,p})^i \neq 0\}.$

Kambe [5] computed $\widetilde{KO}(L^{2n+1}(p))$.

THEOREM 7. Let $q = \frac{1}{2}(p-1)$ and n = s(p-1) + r, $0 \le r < p-1$. Then

$$\widetilde{KO}(L^{2n+1}(p)) \cong \left\{ \begin{array}{ll} (Z_{p^s+1})^{\left[\frac{r}{2}\right]} \oplus (Z_{p^s})^{q-\left[\frac{r}{2}\right]} & \text{if } n \neq 0 \; (\bmod \; 4) \\ Z_2 \oplus (Z_{p^s+1})^{\left[\frac{r}{2}\right]} \oplus (Z_{p^s})^{q-\left[\frac{r}{2}\right]} & \text{if } n = 0 \; (\bmod \; 4), \end{array} \right.$$

and the direct summand $(Z_{p^s+1})^{\left[\frac{r}{2}\right]}$ and $(Z_{p^s})^{q-\left[\frac{r}{2}\right]}$ are generated additively by $\overline{\eta}_{n,p},\ldots,(\overline{\eta}_{n,p})^{\left[\frac{r}{2}\right]}$ and $(\overline{\eta}_{n,p})^{\left[\frac{r}{2}\right]+1},\ldots,(\overline{\eta}_{n,p})^q$ respectively.

Moreover its ring structure is given by

$$(\overline{\eta}_{n,p})^{q+1} = \sum_{i=0}^{q} \frac{-(2q+1)}{2i-1} {q+i+1 \choose 2i-2} (\overline{\eta}_{n,p})^{i}$$

and

$$(\overline{\eta}_{n,p})^{\left[\frac{n}{2}\right]+1}=0.$$

From the group $\widetilde{KO}(L^{2n+1}(p))$, we can see that the order of the element $\overline{\eta}_{n,p}^i$ is $p^{1+\left[\frac{n-2i}{p-1}\right]}$ for $1 \leq i \leq \left[\frac{n}{2}\right]$, and then

$$\dim_{\gamma}(m\overline{\eta}_{n,p}) = 2\sup\{i | \binom{m}{i} \neq 0 \mod(p^{1+\left\lfloor \frac{n-2i}{p-1} \right\rfloor})\}.$$

Therefore, we have

THEOREM 8.

$$span(m\eta_{n,p}) \le 2m - \dim_{\gamma}(m\overline{\eta}_{n,p})$$

$$= 2\{m - \sup\{i | \binom{m}{i} \ne 0 \mod(p^{1+\left[\frac{n-2i}{p-1}\right]})\}\}.$$

References

- G. Bredon and A. Kosinski, Vector fields on π-manifolds. Ann. Math., 84 (1966), 85-90.
- A. Dold, Simple proofs of some Borsuk-Ulam results. Proceedings of the Northwestern Homotopy Theory Conference (Evanston, III., 1982), 65-69, Contemp. Math., 19, Amer. Math. Soc., Providence, 1983.
- J. Ewing, S. Moolgavkar, L. Smith and R. Stong, Stable parallelizability of lens spaces. J. of Pure and Applied Algebra, 10 (1977), 177-191.
- 4. D. Husemoller, Fiber Bundles. Springer Verlag, New York, 1975.
- 5. T. Kambe, The real and complex K_{Λ} -rings of lens space and their applications. J. Math. Soc. of Japan, 18 (1966), 135-146.
- 6. D. Sjerve, Geometric dimension of vector bundles over lens spaces. Trans. Amer. Math. Soc., 134 (1968), 545-558.
- R. H. Szczarba, On tangent bundles of fiber spaces and quotient spaces. Amer. J. Math. 86 (1964), 685-697.

- 8. T. Yoshida, Note on equivariant maps from spheres to Stiefel manifolds. Hiroshima Math. J. 4 (1974), 521-525.
 - ⁺Department of Mathematics Pohang Institute of Science and Technology Pohang, 790–600, Korea
 - ⁺⁺Department of Mathematics Kyungpook National University Taegu, 702-701, Korea