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ON ABELIAN UNIVERSAL ALGEBRAS

JUNG R. Cna

o. Introduction.

In the field of universal algebra, many people have been looking for
properties of universal algebras which are close to properties of groups.
One of the studies led some people in the study of "Abelian" universal
algebras. Since J.D.H. Smith ([22]) introduced the notion of "Central­
ity", the idea has been simplified as "commutator" ([11], [12]), and lots
of work has been done in connection with lattices of congruences and
modules of over endomorphism rings ([3], [10], [12]' [13]). Some of the
material presented in this paper overlaps other persons' work already
published, but the approach is different and there are some new results.

We will simply say 'algebra' for 'universal algebra' in this paper. It
is also assumed that the readers have basic concepts of universal alge­
bra such as: subalgebra, homomorphism, direct product, variety, term­
function, and so on. One may refer to [2] and [9] for terminology.

Let (A, Sl) be an algebra. An equivalence relation B on A is called a
congruence relation (or simply a congruence) provided, if ai =8 bi for
i = 1,2, ... ,n, then f(al,aZ, ... ,an ) =8 f(b1,ab, ... ,bn ), for all f E Sl
and al,b1,az,bz, ... ,an,bn in A. An equivalence class of a congruence
is called a congruence class.

For congruences B and "., of A, let B0"., denote the relational product of
Band 'f/, BV"., denote the smallest congruence of A containing both Band
'f/, and B 1\ 'f/ denote the largest congruence of A containing both B and
".,. Two congruene Band"., are said to permute each other if B0"., = 'f/ 0 B.
It is well known that B1\"., = Bn 'f/, and that B V"., = B 0 "., if B and 'f/
permute.

An algebra is called permutable if every pair of congruences permute,
and a variety is permutable if every algebra in it is permutable. An

Received December 13, 1988. Revised May 4, 1989.

- 303-



304 Jung R. Cho

algebra is called modular if the lattice of congruenes of the algebra is
modular, and a variety is modular if every algebra in it is modular.

An algebra is called abelian if there is a congruence eofAx A such
that

eV 1rl = eV 1r2 = I, and e1\ 1rl = e1\ 1r2 = d,

where I is the universal congruence, and d is the diagonal, and 1rl, 1r2

are the kernels of the projections ofAx A onto A.
We will study some properties of abelian universal algebras in per­

mutable varieties and modular varieties. We also find some relation be­
tween the 'abelian' and 'medial' properties. Since quasigroups are good
example of permutable algebras, we will consider quasigroups as special
cases and most examples will be given by quasigroups.

LEMMA 1.1 (BIRKHOFF [1]). Permutable algebras are modular. l

COROLLARY. Permutable varieties are modular.

The following lemma characterizes permutable varieties by a term­
function.

LEMMA 1.2 (MAL'CEV [18]). A variety of algebras is pennutable if
and only if tbere is a term-function p(x, y, z) in tbree variables such tbat
eve.ty algebra in tbe variety satisfies the identities

p(x,x,z) = z and p(x,z,z) = x.

Such a polynomial is called a Ma.l'cev polynomialof the variety and we
will see this polynomial plays the single most important role for algebras
in permutable varieties.

A quasigroup (Q,., /, \) is an algebra with three binary operations '.',
'I " and '\' such that ([8]), for all x,y and z in Q,

x· (x\y) = y, (y/x)· x = y, x\(x· y) = y, and (y. x)/x = y.

1 Later, B. J6nsson ([15], [16]) proved lattices of congruences of permutable algebras
are Arguesian which in turn implies the modularity.
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We will write xy for x' y, omitting '.'.

COROLLARY. Varieties of quasigroups are permutable.

Proof. Let p(x, y, z) = (x/(y\y»(y\z), then

p(x,x, z) = (x/(x\x»(x\z) = x(x\z) = z

and
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p(x, z, z) = (x/(z\z»(z\z) = (x/z)z = x.

Thus p(x, y, z) is a Mal'cev polynomial for varieties of quasigroups.

Speaking of permutable algebras, a permutable algebra may not be­
long to a permutable variety, even to a modular variety.

I

A

B

A == {{(O,O)}, HO,I), (1,0), (1,1)}}

C B == {{(O,O)}, {(0,1)},{(1,0),(1,1)}}

C == {{(0,0),(1,0)},{(0,1),(1,1)}}

Figure

EXAMPLE 1.3. Let S = {O, 1} be two-element If!t-zero semigroup,
that is a semigroup such that xy = x for all x and y. Since S has
only two elements, S has only the trivial congruences, I and .6., which
permute trivially. Thus S is pennutable. The relation {{(O, 0), (1, 1n,
{(O, 1), (1, On} is a congruence of S x S, and this is a common comple­
ment of the kernels of the projections. Thus S is an abelian semigroup.
Since S x S is also a left-zero semigroup, any partition is a congruence.
However, the lattice of congruences of S x S is not modular. A non­
modular sublattice of it is shown in the Figure above. Thus, any variety
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containing 5, which must contain 5 x 5, is not modular, and so this
variety is not pennutable by Lemma 1.1.

2. Abelian Algebras in Permutable Varieties.

For an abelian group (A, +), an n-ary operation f on A is called
linear over (A, +) if f is an homomorphism of (A, +)n into (A, +), and
is called affine if there is a linear operation 9 and an element d in A such
that

for all Xl,X2, ••• , X n in A. An algebra (A,O) is called linear if there can
be defined an abelian group (A, +) such that every operation in 0 is
linear over (A, +), and is called affine if every operation in 0 is affine.2

A quasigroup (Q",I, \) is called medial if (xy)(zw) = (xz)(yw) for all
x, y, z, w in Q. It is not hard to see that if Q is a medial quasigroup then
(x 01 y) 02 (z 01 w) = (x ~ z) 01 (y 02 w) for all x, y, z, win Q, where 01

and 02 are any operations among '.', 'I " and '\' ([3], [6]).
Let (Q",I, \) be a medial quasigroup. It is shown that ([3], [14],

[24]) there can be defined an abelian group (Q, +) with two commuting
automorphisms <.p and t/J of (Q, +) such that x . Y = <.px + t/Jy + d, for all
x, y in Q, where d is a fixed element of Q. The rest two operations of
the quasigroup are then defined by xly = lp-IX - lp-lt/Jy - lp-Id, and
y\x = t/J-l<.py - t/J-I x - t/J-1d. Thus we can easily see that (Q,., I, \) is
affine over (Q, +). Furthermore, if we define a relation eon Q x Q by
(x, y) -e (x', V') if and only if xy = x'y', then ecan be shown to be a
congruence. It is not hard to see ~ is in fact a common complement of
the kernels of the two projections of Q X Q into Q. Consequently, every
medial quasigroup is affine as well as abelian.

This is not a property of medial quasigroups only. The next nice
theorem of P. Gumm shows some equivalent conditions for algebras to
be abelian.

Two operation f and g, m-ary and n-ary respectively, on an algebra

2 These are definitions of R. McKenzie ([17]). For other equivalent definitions, see
[121 and [131·
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A are said to commute each other if
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f(g( Xll, X12,· .. ,Xln ), g(X21, X22,· .. , X2n), . . " g(Xml, Xm2,· .. , x mn )

=g(f(Xll, X21, ... ,xmI), f( X12, X22, ... ,Xm2), ... ,f(Xl n, X2n, ... ,xmn ),

for all Xij E A, for 1 :s; i :s; m and 1 :s; j :s; n. An algebra (A, {l) is said
to be medial if any two operation in {l, not necessarily distinct, commute
each other.

THEOREM 2.1 (P. GUMM [10]). For an algebra A in a permutable
variety, tbe following conditions are equivalent:

(i) A is abelian.
(ii) A is affine.

(iii) Fundamental operations commute witb a Mal'cev polynomial of
tbe variety.

(iv) od = {(x, x) Ix EA} is a congruence class of a congruence of
Ax A.

Especially, the property (iii) above implies that the property of being
abelian in a permutable variety can be defined by a set of identities, and
so the class of abelian algebras in a permutable variety from a subvariety.

An algebra is called hamiltonian if every subalgebra is an equivalence
class of some congruence of the algebra, and a variety is hamiltonian if
every algebra in it is so.3

COROLLARY 1. (P. GUMM [10]). If A is an algebra in a permutable
variety sucb tbat A x A is bamiltonian, tben A is abelian.

Proof. Since od is a subalgebra ofAx A, it is a congruence class of a
congruence ofAx A. Thus A is abelian by the preceding theorem.

We know that every subgroup of a group is normal if the group is
abelian, but not conversely. An well known counterexample of this is
the group of quaternion units. However, we can say a little more with
the above corollary.

3 This idea is developed by Norton ([21]). Also see [17].
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COROLLARY 2. Let G be a group. Then G is abe1ian if and only if
every- subgroup ofG x G is a normal subgroup ofG x G.

Since all operations and so all term-functions commute each other for
medial algebras, medial algebras in a permutable variety is abelian, by
(iii) of Theorem 2.1. However, not every abelian algebra in a permutable
variety is medial.

EXAMPLE 2.2. Let G be the ring of 2 x 2 matrices over the Galois
field GF(2), and let

a = [~~] and p= [~ ~].

Since a and p are invertible, they are automorphisms of G. Define a
quasigroup on G by

x· y = ax + py, x/y = a-lex - py), and x\y = p-l(y - ax),

then (G,', j, \) is linear over the additive group (G, +) of the ring, and
so it is abelian. Since quasigroups are permutable it belongs to the
permutable variety ofall quasigroups. However, (G,', /, \) is not medial
because

_ __ [01] [11] __ _
(0·1)(0·0) = a· p = lIt- 1 0 = p. a = (0·0)(1·0),

where 0 denote the zero matrix and 1 the identity matrix.

The following lemma gives a condition for an abelian quasigroup to
be medial.

LEMMA 2.3. Let Q be an abe1ian quasigroup with an idempotent
element e. Then Q is medial if and only ife(xe) = (ex)e for all x in Q.

Proof. Let p(x,y,z) be a Mal'cev polynomial of Q, then

p(xe, e, ey) = p(xe, ee, ey) = p(x, e, e)p(e, e, y) = xy
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by (iii) of Theorem 2.1. Thus

309

(xy)(zw) = p(xe, e, ey)p(ze, e, ew)

= p(p(xe, e, ey)e, e, ep(ze, e, ew»
= p(p(xe, e, ey)p(e, e, e), p(e, e, e), p(e, e, e)p(ze, e, ew)

= p(p« xe)e, ee, (ey)e ),p(e, e, e),p(e(ze), ee, e(ew») .

=p(p«xe)e, e, e(ze»,p(ee, e, ee ),p« ey)e, e, e(ew»)

=p(p((xe )e, e, (ez)e ),p(ee, e, ee),p(e(ye), e, e(ew»)

= p(p(xe, e, ez)p(e, e, e),p(e, e, e),p(e, e, e)p(ye, e, ew)

= p(p(xe, e, ez )e, e, ep(ye, e, ew»

=p(xe, e, ez)p(ye, e, ew)

= (xz)(yw).

Thus, Q is medial. Conversely, if e is an idempotent element of a medial
quasigroup, e(xe) = (ee)( xe) = (ex)(ee) = (ex )e.

A loop is a quasigroup with a neutral element 1 such that Ix = xl = 1
for all x in the quasigroup.

COROLLARY 1. A loop L is an abelian group if and only if L x L is
hamiltonian.

Proof. The necessity is trivial since very abelian group is hamiltonian.
H L x L is hamiltonian, then L is abelian by the corollary to Theorem
2.1. HI is the identity element of L, 1 is idempotent and l(xl) = (lx)1
for all x in L. Thus L is medial by the preceding lemma. It is not hard
to see a medial quasigroup with an identity element is an abelian group
([3], [20]).

COROLLARY 2. (EVANS [7]). A variety of loops is hamiltonian if and
only if it is a variety of groups.

LEMMA 2.4. (MAL'CEV [18]). Let Bl , B2 , ••• , Bk be pairwise dis­
joint subsets of an algebra (A, 0). Then, Bb B2 , ••• , B k are congruence
classes of a congruence of (A, 0) if and only if, for every translation r
and i = 1,2, ... , k, r(Bi) ~ B j for some j or r(Bd n B j = 0 for all j.
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An algebra (A, 0) is said to satisfy the term condition if for any n-ary
termfunction w and elements x, y, a2, ~, ... , an, bn of A,

w(x,a2, .. · ,an) = w(x,~, ... ,bn)

implies
w(y, a2, ... , an) = w(y, b2, .. . , bn).

It is not hard to see abelian algebras in a permutable variety satisfy
the term condition: if w(x, a2, ... , an) = w(x,~, ... , bn) then, with a
Mal'cev polynomial p(x, y, z),

w(y, a2, ... ,an) = p(w(y, a2,.·., an), w(x, a2, , an), w(x, az, ,an))

= p(w(y,az, ... ,an),w(x,a2, ,an), w(x,b2, ,bn))

= w(p(y, x, x ),p(az, a2, bz), ,pean, an, bn)

= w(y, b2 , ••• , bn ).

For the converse, let a = {(x, x) I x EA}. Then, for any translation
r ofAx A, rea) ~ a or rea) n a = 0 by the term condition. By
the preceding lemma, a is a congruence class of a congruence ofAx A.
Hence, A is abelian by (iv) of Theorem 2.1. We have proved the following
theorem in another way.

THEOREM 2.5 (GuMM [11]). In a permutable variety, an algebra is
abelian if and only if it satisfies the term condition.

3. Module Representation of Abelian AIgebras.

LEMMA 3.1 (GUMM [10]). Let A be an algebra in a pennutable
variety and p(x, y, z) a Mal'cev polynomial of the variety. Then, for all
x, y, z, U, v and w of A,

p(x, y, z) = p(z, y, x) and p(x, y,p(u, v, w)) = p(p(x, y, u), v, w)).

An element e in an algebra (A, 0) is called idempotent if f( e, e, ... , e)
= e for all f E O. An algebra is idempotent it every element of it is
idempotent. We are now readv to define an abelian group on A which
will serve as an underlying group of a module over a ring.
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Let A be an abelian algebra with an idempotent element e and
p(x, y, z) be a Mal'cev polynomial of A. Define new operations '+' and
'-' on A by

x+y=p(x,e,y) and -x=p(e,x,e)

for all x and y in A. By the preceding lemma, '+' is commutative and
associative. Because e + x = x + e = p(x, e, e) = x, e is the identity
element with respect to '+'. Furthermore,

x + (-x) = p(x, e,p(e, x, e)) = p(p(x, e, e), x, e) = p(x, x, e) = e.

Thus, -x is the inverse of x with respect to '+'. We have proved:

LEMMA 3.2. The algebra (A,+,-,e) defined above is an abelian
group.

Let (Q, 0, /, \) be an idempotent abelian quasigroup. Fixing an ele­
ment e of Q, the abelian group is defined by the operation

x +y =p(x,e,y) ="(x/(e\e))(e\y) = (x/e)(e\y).

Thus xy = (x e) + (ey). In particular, x = xx = xe + ex, and so

xe = x + (-ex)

= p(x, e,p(e, ex, e))

= p(p(x, e, e),p(e, e, e),p(e, ex, e))

= p(p(x, e, e),p(e, e, ex ),p(e, e, e))

= p(x, ex, e)

for all x in Q. Thus, for every y in Q,

e(ye) = p(e, e, e)p(y, ey, e) = p(ey, e(ey), ee) = (ey)e.

Hence, (Q, 0, /, \) is medial by Lemma 2.3. We have shown:

THEOREM 3.3. Idempotent abelian quasigroups are medial.

A mapping f : An -+ A is called an algebraic function if there is a
term function 9 of A and element aI, a2, ... ,ak in A such that
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for all Xl, X2, ••• ,Xn in A.
Let (A, U) be an abelian algebra in a permutable variety with an idem­

potent element e, p(x, y, z) a Mal'cev polynomial of A, and (A, +, -, e)
the abelian group defined above. Let R be the set of all unary algebraic
functions of (A, U) with only e permitted as a constant, that is, for each
J in R there is a binary term function w(x, y) such that J(x) = w(x, e)
for all X in A. Define binary operations '+' and '.' on R by

(f +g)(x) = J(x) + g(x) and (f. g)(x) = J(g(x».

By the way they are defined, '+' is commutative and associative, and '.'
is associative. The zero mapping X t-+ e is the identity with respect to
'+' since the zero mapping can be given as the unary algebraic function
p(e, x, x). The identity mapping x t-+ x is the unit element with respect
to '.' since it can be given by p(x, e, e). For 1 E R, the mapping x t-+

p(e,J(x),e) is the additive inverse of J. From the definition

«(f+g)·h)(x) = (f+g)(h(x» = J(h(x»+g(h(x» = (f·h)(x)+(g·h)(x).

Thus, (R,+,') is right distributive. Now let I,g,h E R with J(x) =
w(x, e), then

(f. (g + h»(x) = I«g + h)(x»

=J(g(x) + hex»~

= w(g(x ) + h(x), e)

=w(p(g(x),e,h(x»,p(e,e,e»
= p(w(g(x), e), w(e, e), w(h(x), e»

= p(f(g(x»,e,J(h(x»)
= (f. g)(x) + (f. h)(x),

and so (R, +, .) is left distributive. Hence, (R, +, .) is a unitary ring.
Suppose, furthermore, that A is medial. If f,g E R with f(x) = u(x,e)
and g(x) = v(x, e) for some term-functions u(x, y) and v(x, y), then

(J. g)(x) = u(g(x), e) = u(vex, e), v(e, e» = v(u(x, e), u(e, e»
= v(f(x), e) = (g. I)(x)
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and hence R is commutative. Putting these as a lemma, we have:
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LEMMA 3.4. H A is an abelian algebra in a permutable variety with
an idempotent element e, then the set R ofall unary algebraic functions,
with only e permitted as a constant, is a unitary ring. H, furthermore,
A is medial, R is commutative.

With notations above, (A, +, -, e) is a module over the ring R. The
only thing that bothers is to show f( x + y) = f( x) + I(y) for fER and
x,y E A. IT fER, then I(x) = u(x,e) for some term-function u(x,y).
Thus, for all x, yEA,

I (x + y) = u(x + y, e)

= u(p(x, e, y),p(e, e, e))

= p(u(x, e), u(e, e), u(y, e))

=p(/(x),e,/(y))

= f(x) + fey)·

Since all operations of A is linear over (A, +), so is every term-function of
A. Let w be an n-ary term-function of A. Then, for Xl, X2, ... , Xn E A,

W(XI,X2, ... ,xn ) = w(xl,+e + ... + e, ,e + + e + xn )

= w(xl, e, ... , e) + + w(e, , e, xn ).

Let Wi(x) = w(e, ,e, x, e, ... ,e) with x at the i-th position, then
Wi E Rfor i = 1,2, , n, and w(xl, X2, ... , xn ) = WI(XI)+W2(X2)+"'+
Wn(x n ). Thus W is expressed as a polynomial of the module (A, +, -, e).

Conversely, every polynomial of the module (A,+,-,e) can be ex­
pressed as an algebraic function of (A, 0) by replacing every occurrence
of x +y with p(x, e, y) and -x with p(e, x, e), while replacing fER with
the corresponding term-function.

Varieties of modules over a fixed ring is permutable since the lattice
of congruences of module is a sublattice of the lattice of congruences of
the underlying group,which is permutable. We note that modules are
abelian since a is a congruence class of the congruence ~ defined by
(x, y) ={ (x', y') if x - y = x' - y' .
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Two algebras (A,O) and (B, W) are said to be polynomially equiva­
lent if there is a bijection p : A -t B such that for every O-term func­
tion w there exists a w-term function w' such that w(xI, X2, ... , x n ) =
W'(P(XI); p(X2), ... , p(xn » for all XI, X2, ... , Xn in A, and vice versa.
That is they are representations of each other in another form of alge­
bras.

Summarizing the results in previous paragraphs, we have the following
theorem. The first part of the theorem is shown also by P. Gumm ([10)).

THEOREM 3.5. Let (A, 0) be an algebra in a permutable variety with
an idempotent element e. Then, (A, 0) is abelian if and only if, taking
e as a nullary operation, (A, 0) is polynomially equivalent to a module
over a unitary ring. Furthermore, (A,O) is medial if and only iftbe ring
is commutative.

We can show the following corollaries without much difficulties.

COROLLARY 1. Let (A,O) be an abelian algebra in a permutable
variety, with an idempotent element e. If

f(g( e, ,e), ,g(e, , X, ••• ,e), ,g(e, ,e» X at (i,j)

=g(f(e, , e), ,f(e, ,X, ••• ,e), ,f(e, ,e» X at (j, i)

for all f,g EO, X E A, and i, j, then (A,O) is medial.

COROLLARY 2. Every idempotent abelian algebra in a permutable
variety is medial.

The restriction that algebras have an idempotent element is a rather
strong condition. Without an idempotent element, we can still say a lot
about abelian algebras in permutable varieties. As we have seen in defi­
nitions, an affine operation is simply a translation of a linear operation.
Thus, if there is a way of shifting or linearizing operations so that the
algebra under new operations is abelian with an idempotent element, we
will be happy. Luckily, this is the case.

For simplicity, we denote the sequence (Xl,X2, ..• ,xn ) by ~ and the
sequence (e, e, ... , e) by ~, for appropriate n. Let (A, 0) be an abelian
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algebra in a permutable variety, and p(x, y, z) be a Mal'cev polynomial.
Fix an element e of A. For each operation f EO, we define a new
operation f* by

f*(~) = p(f(~), f(§.), e),

and let 0* = {f* If EO}. For every term-function w of (A,O), let w*
be the term-function of (A, 0*) corresponding to w.

LEMMA 3.6. With the notations above,

(i) e is an idempotent element of (A, 0*),
(ii) w*(~) =p(w(~),w(§.),e) for every term-function W of(A,O),

(iii) p*(x,y,z)=p(x,y,z), .
(iv) (A, 0*) is abelian,
(v) w(~) = p(w* (~), e, w(§.)) for eve.ry term-function w of (A, 0).

Proof· (i). For every f E 0, f*(§.) = p(f(§.), f(§.), e) = e.
(ii). We show this by an induction on the number of operi1tions in­

volved in w. The result is obvious by the definition if w involves only
one operation. Let w = f(Ul, ••. , un) for some term-functions Ul, •.. , Un
and an operation f E o. Suppose the result is true for term-functions
involving less operations than w. Then,

w*(~) = f*(uH~), ,u~(~))

= p(f(ur(~), ,u~(~)), f( ur(§.), ... ,u~(§.)),e) by induction

= p(f(p(Ul (~), Ul ( c:§.), e), . .. ,peUn(~), Un (§.), e)), f( e, ... , e), e)

= p(p(f(Ul (~), ••• , un(~)),j(Ul, (§.),., Un (§.)), f( e, ... , e)), f(§.) , e)

=p(p(w(~), w(§.) , f(§.)) , f (§.), e)
= p(w(~), w(§.), p(f(§.), f(§.), e) by Lemma 3.1

= p(w(~), w(§.), e).

(iii). By (ii), p*(x,y,z) = p(p(x,y,z),p(e,e,e),e) = p(p(x,y,z),e,e)
= p(x,y,z).

(iv). By (iii), we can use p for p*. Since every f* is an algebraic
function of (A, 0) by definition, p(x, y, z) commutes with f*. Thus,
(A, 0*) is abelian by Theorem 2.1.
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(v). For every term function w,

p(w*C;~'), e, wC~» = p(p(w(uxx), w(uee), e),p(e, e, e),p(e, e, w(~))

= p(p(w(~), e, e ),p(w(~), e, e),p(e, e, w(~»

= p(p(w(~), e, e), w(~),w(~»

= p(w(~), e, e)
= w(~).

THEOREM 3.7. Let (A,O) be an algebra in a permutable variety.
Then, (A, 0) is abelian if and only if the set of all algebraic functions of
(A,O) coindides with that of a module over a unitary ring.

Proof. By Lemma 2.4 and (iii) of the preceding lemma, (A,O*) is
an algebra in a permutable variety. Moreover, (A,O*) is abelian with
an idempotent element by (i) and (iv) above. Thus, by Theorem 3.5,
(A,O*) is equivalent to the module (A, +, -, e) over the ring of unary
algebraic functions of (A,O*). Observe that the set of all algebraic
functions of (A, 0*) coincides that of (A, 0) by the preceding lemma. -

COROLLARY. Let (A, 0) be a medial algebra in a permutable variety.
Then, there is a module over a commutative unitary ring such that the
set of all algebraic functions of (A, 0) coincides with that of the module.

The converse of this corollary is not true in generl. In fact, alge­
braic functions of a module over a commutative ring may not commute,
although term-functions do commute over a unitary ring.

As mentioned earlier, every permutable variety is modular. Most of
the story for abelian algebras in permutable varieties can be said also
for abelian algebras in mudular varieties. Before closing this section, we
state a couple of theorems.

LEMMA 3.8. (HERRMANN [13]). H V is a modular variety, then
there is a ternary term-function p(x, y,z) such that p(x,x, z) = x and
p(x, z, z) = z hold for evelY abelian in V. 4

4 Taylor ([23]) later proved a little stronger theorem.
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COROLLARY 1. Abelian algebras in a modular variety are permutable.

COROLLARY 2. Abelian algebras in a modular variety form a subva­
riety.

THEOREM 3.9. (HERRMANN [13], TAYLOR [23]). Let (A,O) be an
abelian algebra in a mudular variety. Then, the set of all algebraic
functions of (A, 0) coincides that of a module over a unitaJY ring.s If,
furthermore, 0 has a nullary operation which form an one-element sub­
algebra then (A, 0) is polynomia11y equivalent to a module over a unitaJY
nng.

All that we need for the above theorem is a Mal'cev polynomial, which
is guaranteed to exist by Lemma 3.8. We do not know whether or not
medial algebras in a modular variety have the similar property as medial
algebras in permutable variety. Since the class of all abelian algebras in
a modular variety is a permutable variety, this question boils down to
whether or not medial algebras in modular varieties are permutable.

4. Algebras polynomially equivalent to Modules.

Besides the materials so far in this paper, there are independent works
on algebras polynomially equivalent to modules. It is worthwhile to
collect what has been done in that area.

Varieties of algebras are said to polynomially equivalent if free alge­
bras of the varieties are polynomially equivalent. The idempotent reduet
of an algebra (A,O) is the algebra (A,O*), where 0* is the set of all
idempotent term-functions of (A,O). An algebra is called regular if
every congruence is uniquely determined by anyone of its congruence
classes.

Various combinations of conditions in List A describe varieties of al­
gebras polynomially equivalent to one of the varieties of modules in List
B, and the correspondence is listed in Table. For most cases, if we add

5 Herrmann used the term 'polynomially equivalent' for this, which is a little bit
misleading.
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the mediality then the ring becomes commutative, and if we impose the
equational completeness on the variety, then the ring becomes a division
ring. Different combinations may give the same variety of modules.

(1) permutable

(2) modular

(3) hamiltonian

(4) regular

(5) idempotent

(6) abelian

(7) medial

(8) every subalgebra is a congruence class of a unique congruence

(9) every subalgebra is a congruence class of a congruence

(10) every congruence has a congruence class which is a subalgebra

(11) every congruence has a unique congruence class which is a sub-
algebra

(12) every congruence class of any congruence is a subalgebra

(13) there is a nullary operation symbol which is idempotent

(14) equationally complete

List A.

(A) modules over a unitary ring

(B) modules over a commutative unitary ring

(C) idempotent reduct of modules over a unitary ring

(D) idempotent reduct of modules over a commutative unitary ring

(E) idempotent reduct of modules over a division ring

(F) idempotent reduct of vector spaces over a field
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List B.

conditions equivalent module references

(1),(6), (13) (A) [10]

(2), (6),(13) (B) [11], [12]

(1), (7), (13) (B) [5]

(8), (12) (C) [6]

(7), (8), (12) (D) [6]

(8), (12), (14) (E) [6]

(7), (8), (12), (14) (F) [6]

(8), (11) (A) [5]

(1), (3), (13) (A) [10]

(3), (4) (C) [6]

(3), (4), (5), (6) (D) [6]

(5), (9), (10), (13) (C) [4]

Table.
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