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THE ROLE OF THE OUTER FUNCTIONS IN THE
FUNCTIONAL CALCULUS *

YoNG CHAN KIM

1. Introduction.

Let H be a separable, infinite dimensional, complex Hilbert space,
and let L(H) denote the algebra of all bounded linear operators on H. If
T € L(H), let Ay denote the smallest subalgebra of £L(H) that contains
T and 14 and is closed in the ultraweak operator topology (Ar is called
a dual algebra generated by T'). Moreover, let Q1 denote the quotient
space (7c)/1 Ar, where (7¢) is the trace—class ideal in L£(H) under the
trace norm, and LAt denotes the preannihilator of Ar in (Tc¢).

One knows (cf. [3]) that Ar is the dual space of Q7 and that the
duality is given by

<A,[Ll>=tr(AL), A€ Ar, [L]€Qr

where [L] is the image in Qr of the operator L in (7¢).

I = and y are vectors in H and we write, as usual, £ @ y for the
rank-one operator in (7c¢) defined by (z ® y)(u) = (u,y)z, u € H, then
[z ® y] € Qr and an easy claculation shows that for any A in Ar we
have

<A, [z ®y]>= tr(A(z ® ) = (Az,y).

It is well known that every element of Qr has the form Z[x, ® yi].

1
A dual algebra Ar is said to have property (A4,) if every element [L] of
Qr can be written in the form [L] = [z ® y] for certain vectors z, y in

H.
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I T is a contraction in L(H), then T can be written as a direct sum
T =T, @T; where T is a completely nonunitary contraction (i.e. T} has
no nontrivial invariant subspace on which it acts as a unitary operator)
and T) is a unitary operator. If T is absolutely continuous or acts on
the space (0), T will be called an absolutely continuous contraction.

For absolutely continuous contraction T, one knows (<f. [2], Theorem
4.1) that there is a functional calculus &7 : H® — Agr defined by

®(u) = w(T) (= lin} a,r"T") for every u(z) = Zanz" € H*®. In

0
this paper, using the property that a minimal unitary dilation of an
absolutely continuous contraction is absolutely continuous, we study the
image of Sz.-Nagy and Foias functional u(T).

2. Preliminaries.

Let H? (0 < p < 00) be the Hardy class of functions holomorpic on
U = {z | |2| < 1} such that the corresponding norm

sup [£ [ |f(re®)P d8]!/P (0 <p < o)

e =1 suptsc2) (p = o)
z€U

is finite.
We call a function u defined on U an outer function if it admits a
representation of the form

et — »

27 it
u(z) = cexp [%,/o elt +e log k(t)dtj! (z€U)

where k(t) > 0, log k(t) € L', and ¢ is a complex number of modulus 1.

The class of the outer functions belongs to H? will be denoted by EP.
K D = {z| |z| =1}, we call a function u € H* an inner function if u
satisfies the condition

lu(e*)] =1 a.e. on D.

Then it is well known that every function u € H? (0 < p < o) such
that u # 0 has a canonical factorization

U = UilUe
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into the product of an inner function u; and an outer function u., which
are determined up to constant factor of modulus 1.

For two operators, A on the Hilbert space H;, and B on the Hilbert
space Hz, we shall denote by

A=prB

the following relation:

(1) H, is a subspace of H,, and
(ii) Aa = Py, Ba for all a € H,, where Py, denotes the orthogonal
projection from H; into H;.

Then we call B a dilation of A4 if

A" =prB™ forn=1,2,....

3. Some results of the functional calculus.

THEOREM 3.1. Suppose T is an absolutely continuous contraction on
‘H. Then its minimal unitary dilation is absolutely continuous.

Proof. It is well known that there exist unitary Ty on Hp and com-
pletely nonunitary T; on Hj such that T =To & Ty and H = He & H;,
where

Ho = {h | [T"R|| = |iR|} = {|T™"A[]}
Since T is absolutely continuous, Tp is absolutely continuous. Let U; €

L(K1) be the minimal unitary dilation of Ty, where K1 = \/ UM,

then U, is absolutely continuous. Let U = Ty @ Uy and K = Ho & K.
Then

U'U = (To o U)"(To®U1)
= (T e U)(To e th)
=Ty To ®UTU,
= lﬂo @l)cl
=1x =UU".
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Hence U is unitary. Since
PyuU™h = Py(Tg @ UT)(ho @ K)
= Py(Tg ho ® UT'k)
= Tonho & P‘HlUlnk
=Tg ho ®T7'k
=(Tg' @ I7')(ho © k)
=T"h, for h=ho®k, hg € Ho, and k € K,,
U is a dilation of T. Also

(%) U™H = U™(Ho & Ha)
= (TP @ UT)(Ho ®H1)
=T Ho ® UMH,.

oo
The equation (*) implies that X = \/ U™H.
Then U € £(K) is a minimal unitary dilation and absolutely continu-
ous, since Ty and U; are absolutely continuous.

COROLLARY 3.2. For every absolutely continuous contraction T on
‘H, and for every outer function u € H*® (i.e. u € E*), the operator
u(T') has an inverse with domain dense in H.

Proof. Proposition 3.1 ([5], p.118) and Theorem 3.1.

COROLLARY 3.3. Suppose T is an absolutely continuous contraction
on H. Then ®7(E*) is contained in the set of one-to-one operators on

H.

THEOREM 3.4. For every nonzero non—outer function u € H* there
exists a contraction T on a space H # (0) such that At has property
(A1) and u(T) = 0.

Proof. Let u = u;u, be the canonical factorization of u, where u; is
an inner function and u. is an outer function. Then u;H 2 is a subspace
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of H2. Setting
H=H?nN (u;H?)*

we have H # (0).

Let V denote multiplication of H? by the variable A, then V is a uni-
lateral shift on H2, and consequently V*® — 0 as n — co. Since u;H?
is invariant for V, its orthogonal complement in H is invariant for V*.
Setting

T=(V*|n)"

we obtain thus a contraction on H such that
T =V*|y=Vy.

I dim M < oo, by [2, Theorem 2.06.], A7 has property (4,).  dim H =
0o, by [1, Theorem 3.2] and A;(H) is self~adjoint, T* = V3; € A,(H).
Hence T € A1(H). (See [2] for A1(H).) Therefore Ar has property
(A1). Next since T* = PV*|y» (n = 0,1,2,...), where P denotes the
orthogonal projection of H? onto H. Hence ui(T)h = Pui(V)h = Pu;h
for all h € H.

Since u;h € u;H? and hence u;h 1 H for every h € H?, we obtain that
u;i(T) = 0. Therefore u(T) = u;(T)u.(T) = 0.
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