THE ROLE OF THE OUTER FUNCTIONS IN THE FUNCTIONAL CALCULUS *

YONG CHAN KIM

1. Introduction.

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology (\mathcal{A}_T is called a dual algebra generated by T). Moreover, let \mathcal{Q}_T denote the quotient space $(\tau c)/^{\perp}\mathcal{A}_T$, where (τc) is the trace-class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and $^{\perp}\mathcal{A}_T$ denotes the preannihilator of \mathcal{A}_T in (τc) .

One knows (cf. [3]) that A_T is the dual space of Q_T and that the duality is given by

$$< A, [L] > = \operatorname{tr}(AL), \quad A \in \mathcal{A}_T, \quad [L] \in \mathcal{Q}_T$$

where [L] is the image in \mathcal{Q}_T of the operator L in (τc) .

If x and y are vectors in \mathcal{H} and we write, as usual, $x \otimes y$ for the rank—one operator in (τc) defined by $(x \otimes y)(u) = (u, y)x$, $u \in \mathcal{H}$, then $[x \otimes y] \in \mathcal{Q}_T$ and an easy claculation shows that for any A in A_T we have

$$< A, [x \otimes y] > = \operatorname{tr}(A(x \otimes y)) = (Ax, y).$$

It is well known that every element of Q_T has the form $\sum_{i=1}^{\infty} [x_i \otimes y_i]$.

A dual algebra \mathcal{A}_T is said to have property (A_1) if every element [L] of \mathcal{Q}_T can be written in the form $[L] = [x \otimes y]$ for certain vectors x, y in \mathcal{H} .

Received Feb. 7, 1989. Revised April 30, 1989.

^{*}이는문은 1988년도 문교부지원 한국학술진홍재단의 자유공모과제 학술연구조성비에 의하여 연구되였음.

If T is a contraction in $\mathcal{L}(\mathcal{H})$, then T can be written as a direct sum $T = T_1 \oplus T_2$ where T_1 is a completely nonunitary contraction (i.e. T_1 has no nontrivial invariant subspace on which it acts as a unitary operator) and T_2 is a unitary operator. If T_2 is absolutely continuous or acts on the space (0), T will be called an absolutely continuous contraction. For absolutely continuous contraction T, one knows (cf. [2], Theorem 4.1) that there is a functional calculus $\Phi_T: H^{\infty} \to \mathcal{A}_T$ defined by

$$\Phi(u) = u(T) \ (= \lim_{r \to 1} a_n r^n T^n) \text{ for every } u(z) = \sum_{n=0}^{\infty} a_n z^n \in H^{\infty}.$$
 In

this paper, using the property that a minimal unitary dilation of an absolutely continuous contraction is absolutely continuous, we study the image of Sz.-Nagy and Foias functional u(T).

2. Preliminaries.

Let H^p $(0 be the Hardy class of functions holomorpic on <math>U = \{z \mid |z| < 1\}$ such that the corresponding norm

$$||f||_{p} = \begin{cases} \sup_{0 \le r < 1} \left[\frac{1}{2\pi} \int_{0}^{2^{\pi}} |f(re^{i\theta})|^{p} d\theta \right]^{1/p} & (0 < p < \infty) \\ \sup_{z \in U} |f(z)| & (p = \infty) \end{cases}$$

is finite.

We call a function u defined on U an outer function if it admits a representation of the form

$$u(z) = c \exp \left[\frac{1}{2\pi} \int_0^{2^{\pi}} \frac{e^{it} + z}{e^{it} - z} \log k(t) dt \right] \quad (z \in U)$$

where $k(t) \geq 0$, log $k(t) \in L^1$, and c is a complex number of modulus 1. The class of the outer functions belongs to H^p will be denoted by E^p . If $D = \{z \mid |z| = 1\}$, we call a function $u \in H^{\infty}$ an inner function if u satisfies the condition

$$|u(e^{it})| = 1$$
 a.e. on D .

Then it is well known that every function $u \in H^p$ $(0 such that <math>u \not\equiv 0$ has a canonical factorization

$$u = u_i u_e$$

into the product of an inner function u_i and an outer function u_e , which are determined up to constant factor of modulus 1.

For two operators, \mathcal{A} on the Hilbert space \mathcal{H}_1 , and \mathcal{B} on the Hilbert space \mathcal{H}_2 , we shall denote by

$$A = prB$$

the following relation:

- (i) \mathcal{H}_1 is a subspace of \mathcal{H}_2 , and
- (ii) $Aa = P_{\mathcal{H}_1}Ba$ for all $a \in \mathcal{H}_1$, where $P_{\mathcal{H}_1}$ denotes the orthogonal projection from \mathcal{H}_2 into \mathcal{H}_1 .

Then we call \mathcal{B} a dilation of \mathcal{A} if

$$\mathcal{A}^n = pr\mathcal{B}^n$$
 for $n = 1, 2, \dots$

3. Some results of the functional calculus.

THEOREM 3.1. Suppose T is an absolutely continuous contraction on \mathcal{H} . Then its minimal unitary dilation is absolutely continuous.

Proof. It is well known that there exist unitary T_0 on \mathcal{H}_0 and completely nonunitary T_1 on \mathcal{H}_1 such that $T = T_0 \oplus T_1$ and $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$, where

$$\mathcal{H}_0 = \{h \mid \|T^n h\| = \|h\| = \|T^{*n} h\|\}$$

Since T is absolutely continuous, T_0 is absolutely continuous. Let $U_1 \in \mathcal{L}(\mathcal{K}_1)$ be the minimal unitary dilation of T_1 , where $\mathcal{K}_1 = \bigvee_{-\infty}^{\infty} U_1^n \mathcal{H}_1$, then U_1 is absolutely continuous. Let $U = T_0 \oplus U_1$ and $\mathcal{K} = \mathcal{H}_0 \oplus \mathcal{K}_1$. Then

$$U^*U = (T_0 \oplus U_1)^* (T_0 \oplus U_1)$$

$$= (T_0^* \oplus U_1^*) (T_0 \oplus U_1)$$

$$= T_0^* T_0 \oplus U_1^* U_1$$

$$= 1_{\mathcal{K}_0} \oplus 1_{\mathcal{K}_1}$$

$$= 1_{\mathcal{K}} = UU^*.$$

Hence U is unitary. Since

$$P_{\mathcal{H}}U^{n}h = P_{\mathcal{H}}(T_{0}^{n} \oplus U_{1}^{n})(h_{0} \oplus k)$$

$$= P_{\mathcal{H}}(T_{0}^{n}h_{0} \oplus U_{1}^{n}k)$$

$$= T_{0}^{n}h_{0} \oplus P_{\mathcal{H}_{1}}U_{1}^{n}k$$

$$= T_{0}^{n}h_{0} \oplus T_{1}^{n}k$$

$$= (T_{0}^{n} \oplus T_{1}^{n})(h_{0} \oplus k)$$

$$= T^{n}h, \quad \text{for } h = h_{0} \oplus k, \ h_{0} \in \mathcal{H}_{0}, \text{ and } k \in \mathcal{K}_{1},$$

U is a dilation of T. Also

$$(*) U^n \mathcal{H} = U^n (\mathcal{H}_0 \oplus \mathcal{H}_1)$$

$$= (T_0^n \oplus U_1^n)(\mathcal{H}_0 \oplus \mathcal{H}_1)$$

$$= T_0^n \mathcal{H}_0 \oplus U_1^n \mathcal{H}_1.$$

The equation (*) implies that $\mathcal{K} = \bigvee_{-\infty}^{\infty} U^n \mathcal{H}$.

Then $U \in \mathcal{L}(\mathcal{K})$ is a minimal unitary dilation and absolutely continuous, since T_0 and U_1 are absolutely continuous.

COROLLARY 3.2. For every absolutely continuous contraction T on \mathcal{H} , and for every outer function $u \in H^{\infty}$ (i.e. $u \in E^{\infty}$), the operator u(T) has an inverse with domain dense in \mathcal{H} .

Proof. Proposition 3.1 ([5], p.118) and Theorem 3.1.

COROLLARY 3.3. Suppose T is an absolutely continuous contraction on \mathcal{H} . Then $\Phi_T(E^{\infty})$ is contained in the set of one-to-one operators on \mathcal{H} .

THEOREM 3.4. For every nonzero non-outer function $u \in H^{\infty}$ there exists a contraction T on a space $\mathcal{H} \neq (0)$ such that \mathcal{A}_T has property (A_1) and u(T) = 0.

Proof. Let $u = u_i u_e$ be the canonical factorization of u, where u_i is an inner function and u_e is an outer function. Then $u_i H^2$ is a subspace

of H^2 . Setting

$$\mathcal{H} = H^2 \cap (u_i H^2)^{\perp}$$

we have $\mathcal{H} \neq (0)$.

Let V denote multiplication of H^2 by the variable λ , then V is a unilateral shift on H^2 , and consequently $V^{*n} \to 0$ as $n \to \infty$. Since u_iH^2 is invariant for V, its orthogonal complement in \mathcal{H} is invariant for V^* . Setting

$$T = (V^* \mid \mathcal{H})^*$$

we obtain thus a contraction on \mathcal{H} such that

$$T^* = V^* \mid_{\mathcal{H}} = V_{\mathcal{H}}^*$$

If dim $\mathcal{H} < \infty$, by [2, Theorem 2.06.], \mathcal{A}_T has property (A_1) . If dim $\mathcal{H} = \infty$, by [1, Theorem 3.2] and $A_1(\mathcal{H})$ is self-adjoint, $T^* = V_{\mathcal{H}}^* \in A_1(\mathcal{H})$. Hence $T \in A_1(\mathcal{H})$. (See [2] for $A_1(\mathcal{H})$.) Therefore \mathcal{A}_T has property (A_1) . Next since $T^n = PV^n|_{\mathcal{H}}$ (n = 0, 1, 2, ...), where P denotes the orthogonal projection of H^2 onto \mathcal{H} . Hence $u_i(T)h = Pu_i(V)h = Pu_ih$ for all $h \in \mathcal{H}$.

Since $u_i h \in u_i H^2$ and hence $u_i h \perp \mathcal{H}$ for every $h \in H^2$, we obtain that $u_i(T) = 0$. Therefore $u(T) = u_i(T)u_e(T) = 0$.

References

- 1. H. Bercovici, C. Foias, and C. Pearcy, Dilation theory and systems of simultaneous equation in the predual of an operator algebra, Michigan Math. J., 30(1983), 335-354.
- 2. H. Bercovici, C. Foias, and C. Pearcy, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math., No.56, Amer. Math. Soc., Providence, R.I., 1985.
- 3. S. Brown, B. Chevreau, and C. Pearcy, Contractions with rich spectrum have invariant subspaces, J. Operator Theory 1(1979), 123-136.
- 4. P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.

5. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.

Department of Mathematics Yeungnam University Gyongsan 713–749, Korea