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THE ROLE OF THE OUTER FUNCTIONS IN THE
FUNCTIONAL CALCULUS *

YONG CHAN KIM

1. Introduction.

Let 1-£ be a separable, infinite dimensional, complex Hilbert space,
and let £(1-£) denote the algebra of all bounded linear operators on 1-£. If
T E £(1-£), let AT denote the smallest subalgebra of £(1-£) that contains
T and 11£ and is closed in the ultraweak operator topology (AT is called
a dual algebra generated by T). Moreover, let QT denote the quotient
space (rc)jJ...AT' where (rc) is the trace-class ideal in £(1i) under the
trace norm, and J...AT denotes the preannihilator of AT in (rc).

One knows (cf. [3]) that AT is the dual space of QT and that the
duality is given by

<A, [L] >= tr(AL), A EAT, [L] E QT

where [L] is the image in QT of the operator L in (rc).
If x and y are vectors in 1i and we write, as usual, x 0 y for the

rank-one operator in (rc) defined by (x 0 y)(u) = (u, y)x, u E 1i, then
[x 0 y] E QT and an easy claculation shows that for any A in AT we
have

< A, [x 0 y] >= tr(A(x 0 y)) = (Ax, y).
00

It is well known that every element of QT has the form I)Xi 0 Yi].
I

A dual algebra AT is said to have property (AI) if every element [L] of
QT can be written in the form [L] = [x 0 y] for certain vectors x, y in
H.
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IT T is a contraction in £(11.), then T can be written as a direct sum
T = T1 Ef) T2 where T1 is a completely nonunitary contraction (i.e. T1 has
no nontrivial invariant subspace on which it acts as a unitary operator)
and T2 is a unitary operator. IT T2 is absolutely continuous or acts on
the space (0), T will be called an absolutely continuous contraction.
For absolutely continuous contraction T, one knows (cf. [2], Theorem
4.1) that there is a functional calculus ~T : HIX) ~ AT defined byIX)
~(u) = u(T) (= limanrnTn) for every u(z) = "'anzn E HIX). In

r-+l L...J
o

this paper, using the property that a minimal unitary dilation of an
absolutely continuous contraction is absolutely continuous, we study the
image of Sz.-Nagy and Foias functional u(T).

2. Preliminaries.

Let HP (0 < p S; 00) be the Hardy class of functions holomorpic on
U = {z I Izl < I} such that the corresponding norm

{

sup [2~ It If(rei8 )IP dOjl/p (0 < p < 00)

Ilfllp
= o::;I~(z)1 (p = 00)

zEU

is finite.
We call a function u defined on U an outer function if it admits a

representation of the form

u(z) = cexp [~ {2
1r

e~: + Z log k(t)dt] (z E U)
27r 10 e l

- z

where k(t) ~ 0, log k(t) E £1, and c is a complex number of modulus l.
The class of the outer functions belongs to HP will be denoted by EP.

IT D = {z I Izl = I}, we call a function u E HIX) an inner function if U

satisfies the condition

lu( eit)1 = 1 a.e. on D.

Then it is well known that every function u E HP (0 < p :::; 00) such
that u =t 0 has a canonical factorization

u =UiUe



The Role of the Outer Funcions 299

into the product of an inner function Uj and an outer function U e , which
are determined up to constant factor of modulus 1.

For two operators, A on the Hilbert space 'HI, and B on the Hilbert
space 'H2, we shall denote by

A=prB

the following relation:

(i) 'HI is a subspace of 'H2 , and
(ii) Aa = P1l1Ba for all a E 'HI, where P 1l1 denotes the orthogonal

projection from 'H2 into 'HI.

Then we call B a dilation of A if

An = prBn for n = 1,2, ....

3. Some results of the functional calculus.

THEOREM 3.1. Suppose T is an absolutely continuous contraction on
'H. Then its minimal unitary dilation is absolutely continuous.

Proof. It is well known that there exist unitary To on 'Ho and com­
pletely nonunitary T1 on 'HI such that T = To EEl T1 and 'H = 'Ho EEl 'HI,
where

Since T is absolutely continuous, To is absolutely continuous. Let U1 E
00

£(K1) be the minimal unitary dilation of TI, where K1 = VUf'H1 ,

-00

then U1 is absolutely continuous. Let U = To EEl U1 and K = 'Ho EEl K1 •

Then

U*U = (To EEl UI)*(To EB U1 )

= (T; EEl U;)(To EB U1 )

= T;To EEl U;U1

= 11lo EEl lX:1

= Ix: = UU*.
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Hence U is unitary. Since
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P1f.unh = P1f.(T; 61 U;")(ho Ef) k)

= P1f.(To
nho 61 U;"k)

=T;ho 61 P1f.l U;"k

=T;ho 61Tt k

=(T; 61 Tt)(ho 61 k)

=Tnh, for h = ho 61 k, ho E 1to, and k E A-l,

U is a dilation of T. Also

Un1t = Un (1to Ef) 1tl )

= (T; 61 U;-)(1to 611tt)

= T;1to 61 Uj1t I .

00

The equation (*) implies that A- = VU n 1t.
-00

Then U E £(A:) is a minimal unitary dilation and absolutely continu-
ous, since To and Ul are absolutely continuous.

COROLLARY 3.2. For every absolutely continuous contraction T on
1t, and for every outer function U E H oo (i.e. u E EOO), the operator
u(T) has an inverse with domain dense in 11..

Proof. Proposition 3.1 ([5], p.1l8) and Theorem 3.l.

COROLLARY 3.3. Suppose T is an absolutely continuous contraction
on 1t. Then ~T(Eoo) is contained in the set of one-to-one operators on
11..

THEOREM 3.4. For every nonzero non-outer function u E Hoo there
exists a contraction T on a space 1t =1= (0) such that AT has property
(AI) and u(T) = o.

Proof. Let u = UiUe be the canonical factorization of u, where Ui is
an inner function and Ue is an outer function. Then uiH2 is a subspace



of H 2 • Setting
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we have 1i =f (0).
Let V denote multiplication of H2 by the variable ..x, then Y is a uni­
lateral shift on H2, and consequently y*n -+ 0 as n -+ 00. Since uiH2
is invariant for V, its orthogonal complement in 11. is invariant for V*.
Setting

we obtain thus a contraction on 1i such that

H dim 1i < 00, by [2, Theorem 2.06.], AT has property (Ad. IT dim 1i =
00, by [1, Theorem 3.2] and Al(1i) is self-adjoint, T* = V1i E Al(1i).
Hence T E Al(1i). (See [2] for Al(1i).) Therefore AT has property
(AI)' Next since T n = PVnln (n = 0,1,2, ... ), where P denotes the
orthogonal projection of H2 onto 1i. Hence ui(T)h = PUi(V)h = PUih
for all h E 1i.
Since Uih E uiH2 and hence uih.l..1i for every h E H 2, we obtain that
ui(T) = O. Therefore u(T) = ui(T)ue(T) = O.
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