Comm. Korean Math. Soc. 4 (1989), No. 2, pp. 273~277

REMARKS ON TIGHT CLOSURE OVER COHEN-MACAULAY LOCAL RING

YONG SU SHIN AND YOUNG HYUN CHO

0. Introduction

Recently M.Hochster and C.Huneke developed the theory about tight closure to explore other related topics such as invariant theory, monomial conjecture and the syzygy theorem. (ref. [1], [2], [3], [4]).

In this paper, using the notion of tight closure we prove that the homomorphic image of the Cohen-Macaulay (C-M) local ring is C-M under certain condition in Theorem 2.1.

1. Preliminaries

Throughout this paper, all rings are noetherian and commutative with 1. We introduce the notion of the tight closure of an ideal I in R, when $\operatorname{Char} R = p$, p is a positive prime number. Let $R^0 = R - \bigcup \{P : P \text{ is a minimal prime of } R\}$.

DEFINITION 1.1. Let $I \subseteq R$ be an ideal. If Char R = p > 0, we say that $x \in R$ is in the tight closure, I^* , of I, if there exists $c \in R^0$ such that for all $e \gg 0$, $cx^{p^e} \in I^{[p^e]}$, where $I^{[q]} = (i^q : i \in I)$ when $q = p^e$. If $I = I^*$, we say that I is tightly closed.

REMARKS 1.2. (1) If R is regular, then $I = I^*$ for all I. (ref. [1], [2], [3], [4]). (2) A Gorenstein local ring has the property that $I = I^*$ for all I if and only if the ideal generated by a single system of parameters is tightly closed. (ref. [1].)

THEOREM 1.3 ([5]). Let P_1, \dots, P_n be prime ideals in a commutative ring R, let I be an ideal in R, and x an element of R such that $(x, I) \not\subset$

Received April 13, 1989.

 $P_1 \cup \cdots \cup P_n$. Then there exists an element $i \in I$ such that $x + i \notin P_1 \cup \cdots \cup P_n$.

DEFINITION 1.4. Let P_1, \dots, P_n be all minimal prime ideals in R. If dim $R/P_i = \dim R/P_j$ for every $i, j = 1, \dots, n$, we say that R is equidimensional.

LEMMA 1.5. Let R = S/I where S is a C-M local ring and assume R is equidimensional. Let $\{Q_1, \dots, Q_n\}$ be the minimal primes over I. Assume that x_1, \dots, x_d are parameters of R. Then there exist elements z_1, \dots, z_h in I and y_1, \dots, y_d such that the y_i lift x_i , the z's and y's together form a regular sequence, and there exists a $c \notin \bigcup_{i=1}^n Q_i$ and an integer $q = p^e$ such that $cI^{[q]} \subset (z_1, \dots, z_h)$, where htI = h.

Proof. First lift the elements $x_i \in R$ to elements y_i in S inductively in such a way that for every $i, 0 \le i \le d-1, y_{i+1}$ is not in any minimal prime of an ideal generated by a subset of $\{y_1, \dots, y_i\}$. Choose $y \in S$ such that $y + I = \overline{y} = x_{i+1}$ in R.

If there is no lifting of x_{i+1} satisfying the previous condition, Sy + I is contained in a minimal prime P of $(y_1, \dots, y_m)S$, where $m \leq i$ by Theorem 1.3. Since $\overline{y_1} = x_1, \dots, \overline{y_m} = x_m, \overline{y} = x_{i+1}$, where $\overline{y_j}$ are the images of y_j in R for $j = 1, \dots, m$, and S is C-M, $htP \geq m+1$. But P is a minimal prime ideal over $(y_1, \dots, y_m)S$, and so htP = m, a contradiction.

Second, choose $z_1, \dots, z_h \in I$ inductively such that for every $j, 0 \leq j \leq h-1, z_{j+1} \in I - \cup P$, P is the minimal prime ideals of the ideal generated by $(z_1, \dots, z_j)S$ and a subset of the $y'_i s$. If this were impossible, for some subset of the $y'_i s$, say, $\{y_1, \dots, y_t\}, t \leq d$, it would follow that there exists a minimal prime ideal P of $(z_1, \dots, z_j)S + (y_1, \dots, y_t)S$ that contains I by Theorem 1.3. Working in S_p , $ht(I + (y_1, \dots, y_t) \geq htI + t = h + t$ since S_p is also C-M, and $\overline{y_1} = x_1, \dots, \overline{y_t} = x_t$. But htP = j + t < h + t since P is a minimal prime of $(z_1, \dots, z_j)S + (y_1, \dots, y_t)S$ and S is C-M, a contradiction.

Third, choose c and $q = p^e$ by the induction on htI. Assume htI = 0. Then every Q_i is a minimal prime ideal since R is equidimensional and S is C-M.

274

Let N be the nilradical of S. If $\{Q_i\}$ is the family of all minimal prime ideals of S, then $\cap Q_i = N$. Since Char S = p > 0 is a positive prime number and N is finitely generated, there is an integer $q = p^e$ such that $N^{[q]} = 0$. So $I^{[q]} = 0$ since $I^{[q]} \subset N^{[q]} = 0$. Hence we can choose c = 1, and $cI^{[q]} = I^{[q]} = 0$. If there is a minimal prime ideal P with $P \not\supset I$, say, P_1, \cdots, P_m , then we can choose a $c' \in \bigcap_{j=1}^m P_j - \bigcup_{i=1}^n Q_i$. But $c'I \subset N$ and so $(c')^q I^{[q]} \subseteq N^{[q]} = 0$ for some $q = p^e$. Hence we can also choose $c = (c')^q \notin \bigcup_{i=1}^n Q_i$ and $cI^{[q]} = (c')^q I^{[q]} = 0$. Thus we may assume that $htI \ge 1$. Let $\overline{S} = S/z_1S$, $\overline{I} = I/z_1S$, $\overline{Q_j} = Q_j/z_1S$ and $\overline{z}_2, \cdots, \overline{z}_h$ be the images of z_2, \cdots, z_h in \overline{S} . Then $\overline{S}/\overline{I} = S/I = R$ and $ht\overline{I} < htI$. Since \overline{S} is also C-M, there is an element $\overline{c} \notin \bigcup_{i=1}^n \overline{Q_i}$, where \overline{c} is the image of c in S and an integer $q = p^e$ such that $\overline{c}(\overline{I})^{[q]} \subset (\overline{z}_2, \cdots, \overline{z}_h)$. Therefore, $cI^{[q]} \subset (z_1, \cdots, z_h)S$, as desired.

THEOREM 1.6. Let R = S/I be equidimensional where S is a C-M local ring. Assume that $\operatorname{Char}(R) = p > 0$. Let x_1, \dots, x_n be elements of R which are parts of a system of parameters. Let $J = (x_1, \dots, x_{n-1})R$. Then $J : {}_{R}x_n \subset J^*$.

Proof. Let $a' \in J : {}_{R}x_{n}$. Let c, z_{i}, y_{j} , and q' be as in Lemma 1.5, and let a be a lifting of a' to S. Since $a'x_{n} \in J$, $ay_{n} \in (y_{1}, \dots, y_{n-1}) + I$. Then for all $q = p^{e} \geq q'$, we obtain that $a^{q}y_{n}^{q} \in (y_{1}, \dots, y_{n-1})^{[q]} + I^{[q]}$. Multiply by c and use Lemma 1.5 to get $ca^{q}y_{n}^{q} \in (y_{1}^{q}, \dots, y_{n-1}^{q}, z_{1}, \dots, z_{h})$. As the z's and y's together form a regular sequence in S, this forces $ca^{q} \in (y_{1}^{q}, \dots, y_{n-1}^{q}, z_{1}, \dots, z_{h})$. Reading modulo I gives that $c'a'^{q} \in J^{[q]}$ where c' is the image of c in R and is in R^{0} by Lemma 1.5. Hence $a' \in J^{*}$.

2. Main Results

THEOREM 2.1. If R is a one dimensional local ring which is the homomorphic image of a C-M ring, and there exists a system of parameter $x \in R$ such that (x) is tightly closed, then R is C-M.

Proof. Let R = S/I where S is a C-M local ring and I be an ideal in S.

The proof is by induction on ht(I) = h. It suffices to show that if ht(I) = 0, then R is C-M. In fact, if ht(I) = h is positive, then there

exists an element $z \in I$ which is not a zero divisor, since S is C-M. Let $\overline{S} = S/zS$ and $\overline{I} = I/zS$. Then $\overline{S}/\overline{I} = S/I = R$. Since z is not a zero divisor in S, \overline{S} is also C-M and $ht(\overline{I}) = ht(I) - 1 < ht(I)$. Hence R is C-M by induction hypothesis.

Assume that ht(I) = 0. Let c, y and q' be as in Lemma 1.5, i.e., $cI^{[q']} = 0$ and y + I = x in R. Suppose $x_1x = 0$. Choose $y_1 \in S$ such that $x_1 = y_1 + I$ in R. Then $yy_1 \in I$ and $c(yy_1)^q \in cI^{[q]} = 0$ for all $q \ge q'$. Hence $cy_1^q = 0$ since y is not a zero divisor in S and hence $\overline{cx_1^q} = 0 \in (x)^{[q]}$ for all $q \ge q'$, where \overline{c} is the image of c in R, in fact, $\overline{c} \in R^0$. It follows that $x_1 \in (x)^* = (x)$, where $(x)^*$ is the tight closure of (x). Thus $x_1 = xx_2$ for some $x_2 \in R$. By the similar method, we can see that x_1 is divided by x infinitely many times. This means that x_1 is 0 by a Krull intersection theorem and the Nakayama's Lemma. Therefore, x is not a zero divisor and R is C-M.

COROLLARY 2.2. If R is an equidimensional local ring with dim R = 2 which is the homomorphic image of a C-M local ring and if x and y are a system of parameters of R which satisfies (x) is tightly closed. Then R is C-M.

Proof. By the similar method of the above proof, we see that x is not a zero divisor since (x) is tightly closed and R is equidimensional. On the other hand, $(y): (x) \subset (x)^* = (x)$ by Theorem 1.6. Hence y is not a zero divisor of R/xR. Thus x and y are a regular sequence in R and so R is C-M.

References

- 1. M. Hochster and C. Huneke, Tight Closure, in preparation.
- 2. M. Hochster and C. Huneke, Tight Closure, Invariant Theory, and The Briancon-Skoda Theorem 1, in preparation.
- 3. M. Hochster and C. Huneke, Tight Closure and Strongly F-regularity, in preparation.
- 4. M. Hochster and C. Huneke, *Tightly Closed Ideals*, Bull. Amer. Math. Soc. Vol.13, No.1 (1988).

,

5. I. Kaplansky, Commutative Rings, The University of Chicago Press, (1974).

Department of Mathematics Seoul National University Seoul 151-742, Korea