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THE HYPERBOLIC METRIC IN CONVEX REGIONS *

TAl SUNG SONG AND Boo YOON KIM

1. Introduction

Let X be a hyperbolic region in the complex plane and Ax the density
of the hyperbolic metric on X. Set c5x (z) = dist(z, oX) ; this is the
distance from z to the boundary of X. There are few results that deal
with the size of the hyperbolic density. The upper bound AX(Z) ~

2/c5x (z) is a direct consequence of Schwarz' Lemma [5, pA5]. For an
arbitrary hyperbolic region X there does not exist a positive number
c = c(X) such that c/c5x :::; Ax. For instance, if X = {z : 0 < Izl < I},
then

1
AX(Z) = Izllog(l/Izl)

and c5x(z) = Izl for 0 < Izl :::; 4so that AX(z)c5x (z) -. 0 as z -+ O.
Minda [8] proved that if X is a proper convex region in the complex
plane, then for z E X

(1) l/c5x(z) :::; AX(Z)

with equality if and only if X is a half-plane.
Osgood [10] gave an estimate for the gradient of the logarithm of the

hyperbolic metric of a simply connected region in terms of the hyperbolic
density:

IVlogAx(z)1 :::; 2Ax(z).

Minda [9] obtained a refinement of this inequality for proper convex
regions. Namely,

(2) IV log Ax(z)l :::; AX(Z)
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with equality if and only if X is a half-plane.
In this paper we show that each of the inequalities (1) and (2) actually

characterizes convex regions.

2. The hyperbolic metric

We begin this section with a short introduction to the hyperbolic met­
ric. A general discussion of this subject can be found in (7]. Suppose X
is a hyperbolic region in the complex plane C ; that is, X is a region in
C such that C - X contains at least two points. Then by the General
Riemann Mapping Theorem [1, p.142], there exists a holomorphic uni­
versal covering projection f of the open unit disk D onto X. The set
of all such covering projections is given by f 0 T, where T ranges over
all conformal automorphisms of D. The hyperbolic metric on D is the
Riemannian metric

21dz l
Av(z)ldzl = 1-lzI2·

The density AX of the hyperbolic metric is determined from

where f : D --+ X is any covering. This is independent of the choice of
the covering since

2IT'(z)1 2

1 - IT(z)12 1 - Izl2

for any conformal automorphism T of D. Also, the hyperbolic metric is
invariant under conformal mappings; if 9 : X --+ Y is a conformal map­
ping, then Ay(g(z))lg'(z)1 = AX(Z). We will make use of the following
property for the hyperbolic metric.

Principle of the Hyperbolic Metric. Suppose X and Y are hyperbolic
regions. If f is holomorphic on X and f(X) c Y, then Ay(f(z))lf'(z)1 ~
AX(Z) for each point z in X. Equality occurs at some point if and only
if f is a holomorphic covering map.

Keogh [4] proved that if a region X is not convex, then there exists a
holomorphic function fez) = ao + alz + a2z2 + ... such that feD) c X
but af(D) - X 1= 4>, where af(z) = ao + ~alz. We now show that
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the inequality (1) is a sufficient condition for a hyperbolic region to be
convex.

THEOREM 1. H X is a hyperbolic region in the complex plane such
that 1/6x(z) ~ AX(Z) for all Z in X, then X is convex.

Proof. It will be shown that X is convex by an application of Keogh's
theorem. Suppose fez) = aO+alz+a2z2+ ... is a holomorphic function
such that feD) eX. Then, by the Principle of the Hyperbolic Metric,
we have Ax(ao)lall ~ 2. Set 0'l(z) = ao + lalz. Then

1 1
IOf(z) - aol = "2lalllzl < "2la11

< 1
- Ax(ao)

~ 6x (ao)

for all z in D. This yields Of(D) C X, since 6x(ao) is the radius of the
largest disk in X with center ao. Therefore, Keogh's theorem gives that
X is convex.

Minda [9] used some properties of euclidean and hyperbolic curvature
to establish the inequality (2) for convex regions. Here we obtain the
same result, but our method of proof is different.

THEOREM 2. H X is a proper convex region in the complex plane,
then

IVlog-Xx(z)1 ~ -Xx(z)

for all z in X.

Proof. Fix a E X and let z = f(w) be a holomorphic universal covering
, projection of (D, 0) onto (X, a). Then

Ax(f(w»If'(w)1 = 1 _ ~w12

In particular, Ax(a) = 2/lf'(0)1. Also

1 , 1--
log-Xx(f(w» + '2 logf (w) + "2logf'(w) = log 2 -log(l- ww).
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(3)

We apply the operator 8/8w to both sides of this identity and obtain

8 log ),;z(f(w)) f'(w) + ~ ~:f;; = 1_
w
ww.

For w = 0 this gives

8Iog,\x(a) 1'(0) = _!f"(O)
8z 2 f'(O) ,

so that

/Vlog,\x(a)1 = 2/ 8Io
g
a:

x (a)I
_ 1 If"(O)1
- If'(O)1 If'(O)1 .

1 If"(O) 1
= 2 If'(O)1 ),x(a).

Since X is convex, it follows that the function

fez) - f(O) 2
f'(O) = z +a2 z + ...

is a normalized convex univalent function in D, so la21 $ 1, or
If"(O)/I'(O)1 $ 2. This inequality in conjunction with (3) yields the
desired result.

3. Euclidean and hyperbolic curvature

In this section we prove the converse of Theorem 2 by making use
of euclidean and hyperbolic curvature. We begin with a discussion of
euclidean curvature. Let,: z = z(t), t E [a, b], be a C 2 curve in the
complex plane with z'(t) =j:. 0 for t E [a, b]. The euclidean curvature
K e (z, ,) of the curve , at the point z = z(t) is the rate of change of the
angle fJ that the tangent vector makes with the positive real axis with
respect to arc length:

dfJ dfJ dt
Ke(z,,) = ds = dt ds

1 z"(t)
= Iz'(t)IIm{ z'(t)}·.
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The value of the curvature is independent of the parametrization of ,"
This is the signed curvature; its value is negated if the path is traversed
in the oppositve direction. IT 1 is holomorphic and locally univalent in
a neighborhood of '"'{, then 10 '"'{ is also a C2 curve with nonvanishing
tangent. The formula for the change of euclidean curvature under 1 is
given by [3]

, I"(z) z'(t)
Ke(f(z),J 0 ,)\1 (z)1 = Ke(z, ,) +Im{ f'(z) Iz'(t)I}' '

Next, we consider hyperbolic curvature. A discussion of hyperbolic
curvature is given in [2] and [10]. Suppose X is a hyperbolic region in
the complex plane and, is a 0 2 curve in X with nonvanishing tangent.
The hyperbolic curvature of, at z = z(t) is given by

1 [ olog'\x(z) z'(t) ]
Kx(z,,) = '\x(z) Ke(z,,) +2Im{ oz Iz'(t)!}

= 1 [K ( )_olog ,\x(z)]
'\x(z) e z" on '

where n = n(z) is the unit normal to, at z.

Example. Let us determine the hyperbolic curvature of the positively
oriented circle, in D with center 0 and radius r E (0,1). We note that

1 [ Z Z'(t)]
Kv(z, ,) = '\v(z) Ke(z,,) + 2Im{ 1 -lz l2 Iz'(t)l}

1 - Izl2 zZ'(t)
= 2 Ke(z,,) + Im{ Iz'(t)I}'

A parametrization of, is z = z(t) = reit , 0 ~ t ~ 271". Then

1 Zll(t) 1
Ke(z, ,) = \z'(t)IIm{ Zl(t) } = ;.

Also z(t)z'(t)/lz'(t)1 = ir so that

1 - r 2 1 1 1
Kv(z,'"'{) = -2-; + r = 2(r + ;J.
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(4)

Note that r + ~ > 2, so any circle in D with center 0 has hyperbolic
curvature strictly larger than l.

Now, we show that hyperbolic curvature is invariant under conformal
mappings.

LEMMA 3. Suppose X and Y are hyperbolic regions and 1 : X ~ Y
is a confonnal mapping of X onto Y. Then Kx(z,,) = Ky(f(z),j 0,)
for any path, in X.

Proof. Let w = I{z) and 8 = 10,. The transformation law for
euclidean curvature gives

_ , I"(z) z'(t)
Ke{z,,) - Ke(w,8)11 (z) - Im I'(z) Iz'(t)1"

From ..\x(z) = ..\y(f(z))I/'{z)l, we obtain

1 I--
log ..\x(z) = log..\y(f(z)) + 2 log !'{z) + 2logj'(z).

Then

8log..\x(z) = 8log..\y(f(z)) I'{z) + ~/"(z)
8z 8w 2/'(z)

so that

2Im {8log ..\x(z) z'(t) }
8z Iz'(t)1

= 2Im{8l0g ,,\y{w)/'( ) z'{t)} Im{/"(Z) z'{t) }.
8w z Iz'(t)1 + f'(z) Iz'(t)1

Next, w'(t) = f'(z)z'(t) gives Iw'(t)1 = 1/'{z)llz'(t)1 and

, z'(t) , w'(t)
1 (z) Iz'(t)1 = II (z)/Iw'(t)'·

Hence
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(5) 2Im {810g AX(Z) z'(t) }
oz Iz'(t)1

=2If'( )IIm{810g AY(W) W'(t)} Im{f"(Z) Z'(t)}
Z 8w Iw'(t)1 + f'(z) Iz'(t)l .

From (4) and (5), we obtain

Kx(z,,)

=_1_ [K ( ) 2Im{ologAX(z) z'(t) }]
.\x(z) e Z" + oz Iz'(t)1

1 [ , , {Olog>.y(W) w'(t) }]
.\y(w)lf'(z)1 Ke(w, o)lf (z)1 + 21f (z)IIm ow Iw'(t)1

=Ky(f(z), f 0 I)·
Finally, we establish the converse of Theorem 2. It is well known [6,

p.29] that if X is a region in the complex plane bounded by a simple
closed curve, oX, of class C2 , then X is convex if and only if the eu­
clidean curvature of oX, with respect to a fixed orientation, is always
nonnegative.

THEOREM 4. If X is a byperbolic region in the complex plane sum
that IVlog>'x(z)1 ::; >'x(z) for all z in X, then X is convex.

Proof. Let f be a holomorphic universal covering projection of D onto
X, and let, be the circle w = w(t) = reit , 0 ::; t < 211",0 < r < 1. Then
Lemma 3 implies that

Kx(f(w), J 0"Y) = KD(w,"Y).

The previous Example gives KD(W,'Y) > 1. Let z = f(w). Then, by
hypothesis, we have

ologAx(z) z'(t)
Ke(z,j 0 'Y) = Kx(z,f °"Y)>'xS.z) - 2Im{ oz Iz'(t)l}

~ Kx(z,J °"Yhx(z) - 2\ 8Iog~x(z)I
> AX(Z) -IVlogAx(z)1

~ o.
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Thus, f( {w : Iwl < r}) is convex. This holds for all r E (0,1), so
f(D) = X is convex.
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