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THE HYPOELLIPTICITY OF CONVOLUTION
EQUATIONS IN THE GENERALIZED DISTRIBUTION
SPACES OF BEURLING TYPE

YOUNG SIK PARk!, DAE HYEON Pank? AND BYUNG KEUN SouN?

1. Introduction

In [4] Ehrenpreis studied the following equation which is called the
hypoelliptic convolution equation in the distribution space D'(R"):

S+u=v, ueD'R")

implies u € £(R™) whenever v does, where the convolution operator S
is given in £'(R™). He have shown that S is hypoelliptic in D’ iff there
exist constants B and M such that

1S(&)] > €78 for |¢] > M £ € R”

and

{Im ¢|/log|¢| — oo if |¢| = 00 in C™ and S(¢) = 0.

Later Chou [3] studied the same problem in the ultradistribution space
of Roumieu type.

In this paper we have studied the same proble in the generalized distri-
bution spaces of Beurling type. For this we briefly review the generalized
distribution spaces and their properties which we need in this paper. Fur-
ther details are given in [2]. We denote by M, the set of all continuous
real valued functions w on R" satisfying the following conditions:

(e) 0 = w(0) <w(é+7) < w(€) +w(n), &7 € R
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@ o
®) o (1) <

) w(€) > a+ b log(1 + [€]) for some constant a and b > 0.

(6) w(&) = o(J€]) for an increasing concave function o on [0, 00).

For example, w(£) = log(1 + |¢|) and w(¢) = |¢|2, d > 1 satisfy all the
conditions. Throughout this paper w represents an element in M, and
) is an open set in R™.

Let D,(Q) be the set of all ¢ in L*(R™) such that ¢ has compact
support in  and

l8llx = / |J’(§)|3M(E)d§ < oo for every A > 0.
Rﬂ

The topology on this space is given by the inductive limit topology of
Frechet space D, (K) induced by the above semi-norms where K is a
compact set in 2. We denote by £,(€) the set of all complex valued
functions in  such that ¢ is in D, () for every ¢ € D.(Q), equipped
the topology generated by semi-norms [|¢t||x for every ¢ € D,(2) and
A > 0. The dual space of D,(2) is denoted by D!,(£2) whose elements
are called the generalized distributions on 2. Also the dual space £/,(£2)
of £,(Q) can be identified the set of all elements of D, () is equal to
D' when w(€) = log(1 + [£]) and &,(R) is related to the Gevrey class
when w(€) = |€]7, d > 1. Almost all results in the distribution theory
can be extended to the generalized distribution spaces. For instance,
&, *x D, C D, and the Paley~Wiener-Schwartz theorem in this spaces
can be shown as follows :

Let K be a compact convex set in R™ with support function H. The
Fourier-Laplace transform of ¢ € D, (K) is the entire function <$(< ) in
C™ such that for each A > 0 and each £ > 0, there exists a constant
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C\,- satisfying |$(§+zn)| < C,\,EeH(")*‘EI"l"“"(f) and also the converse is
true. On the other hand, the Fourier-Laplace transform of u € £, with
supp © C K is the entire function 4(() in C™ such that for each ¢ > 0,
there exist A > 0 and C satisfying |@(¢)] < C efl(MW+eln2(9) and also
true for the converse.

2. Hypoelliptic Convolution Equations

We consider the convolution equation of the form
(1) S*xu=uv

where S € &, and u,v € D,,. We define the convolution equation (1)
or the convolutor S is hypoelliptic in D/, if all solution u of (1) are in
£, whenever v does. Of course, this definition coincides with that in
D' when w(€) = log(1 + |{]). We obtain the necessary and sufficient
condition of hypoellipticity of (1) in D,,. Our main result is

THEOREM. S is hypoelliptic in D!, if and only if there is B > 0 such
that for every positive m there exists C,, such that

(2) |'§(C)|_1 < eBw(ReCH—H(—Im ¢)

if {Im¢| < mw(Re() and |(| > Cn. Here H is the supporting function
for supp(S).

We remark that, in view of Hormander’s result [5], our result is equiv-
alent to the Ehrenpreis’ one when w(¢) = log(1 + |¢|) and to the Chou’s
one in the ultradistributions of Beurling type when w(§) = |¢ |7.d > 1.

Before proving the theorem we define that F € S, is a w-parametrix

of S is there exist a compact set K and a function ¥ in &, such that
Fel,(K)Yand SxF+ ¢ =6.

LEMMA. If S has a w—parametrix F, then S is hypoelliptic in D.,.

Proof. Let the compact set K and 3 € &, be given in the definition
of w—parametrix F. Take ¢ in D, with ¢ = 1 in a neighborhood of K
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and let F = ¢F. Then F € &,. Using the fact that £ * £, C &,
S+F=8+«F+8+(F-F)

=6—p+S*(F-F)
=8+

WhereJJ=S*(F—F)—¢=S*F~’——6€D‘,. Then

u=6+xu={(S+*F)—¢}+u
=S*F~‘*u—zZ*u
=F’*v—¢~*u.

In view of D, * D, C &, the last terms are in &,, which shows our
result.

The proof of the theorem: (sufficiency). By the lemma it suffices to
show that S has a w—parametrix F. Let m be a sufficiently large integer
which will be chosen later. Denote

567  ifEeR"and|¢]>Cn

0 otherwise.

#) - {
Then F € S!,. In fact, for ¢ € S,

\B(g)] < / B(E)] 16(6)1de
< / 15(&)16(E)1de
{€|2Cm

<[ Bl
[£12Cm
(B+2§2)w(8) -2 w@) g
< zp (4oreroso) | oo

< C sup {B+ ()}

(v) ¢&€Rr
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From the identity (S F) = SF =1= X{l€1<Cm}>» We have

SxF=6-(20)" «/m<c <P dE = § — f(2).

where #(z) is an analytic function in R"™.

It remains to show that F € £,(K) for K = {z : || £ Cin} D supp S
for sufficiently large C,,, which is equivalent to show that for every z, ¢
K, there exists a neighborhood U, of zy such that F € &,(U,,). Since
~zo ¢ K, we can find a non-zero n € R" so that < —z¢,n>> Hg(n),
where Hg is the supporting function of K. Multiplying 5 by a constant,
we may assume that Hi(n)+ < zo,7>< —2. In what follows, we keep
n fixed.

Take a neighbourhood of z¢ by Uz, = {z € R" : H(n)+ <z,np>< —2
and |z| > Crn}. We have to show that ¢F € D, for every ¢ € D, (Us,,),
that is, sup |[¢F(7)]e(™) < oo for every A > 0.

TER"

$F(7) = (pF)(e =)
= F(¢(z)e™ ")
— (2w)—nﬁv((¢e—i<t,r> )')

= (27)"" Qz('—f +T)
=n) /lazcm @ ©

To evaluate this integral, for every £ € R™ with |¢| > C,,. We denote
(&) = mw(€)/In|l and vy = {( € C™ : ( = &~ i (€)y, [€] = Crn}. Using

Cauchy theorem we can wirte

$(—€ +7)
® /lslzcm 5(8) “

_ $(—€ + 7 +ity) . &t $(—¢ +7) e
~/|e|=cm S(€ ~ itn) (im)dt + /vm 5(0) ¢
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In fact, for {( = £ —itn and £ fixed with |¢| > Cy,

O d—¢+7)
1/ 5@) AT Gyar

<c / {Be(@+Hs (tn)} g Ae(—e+7)+ Hy(enyeltnl} ) gy

o e]
S, ¢l exp{(—A + BJw(£) + H(Hs(n) + ¢ln|}dt
Since Hs(n) + Hy(n) < Hk(n) +sup,ey,, <%, >< —2, we can take
€ > 0 so small that Hg(n) + Hg(n) + €|n] < —1. Hence above integral is
finite for each fixed £ with |¢{| > C,, and converges to zero as |{| — oo by
the Lebesque dominate convergence theorem for A > B, which implies
that the change of the contour in (3) is legitimate.
We now estimate the integral (3).

- H=t+1)
407 fene, "

_ mw(f)/l’ll I¢( E +74 Zt"?l
2x)7 "
e [ B -y M

[ 1BCHDI
R Rt

©1 .
<C / O =)+ o) belinl Butey Hs (m) gy
{€l=Cm
10 [ eI H HODHOH Bugert Hs (O} | 4|

Ym

maw(@)/lnl
< Ce M / " AOHBYWO)+(Hs () + Holn)+elnD) gy

+ / e{()«+B)m(€)+-"'—|“ﬁ9(Hs(1'1)+H¢(77)+€|7)|)} |d<|]

Since Hs(n)+ Hg(n)+€ln| < —1 for sufficiently small e > 0 and A > 0
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is given, taking m so large that
m

A+ B+
Inl

(Hs(n) + Hg(n) +¢lnl) < -1,

we show that the last integral in bracket is finite. Therefore we have
shown that sup |$F(7)[e*(” < oo for every ¢ € D,(Uy,) and X > 0,
TER®

which gives F € £,(K°).

(Necessity) Suppose that the condition (2) is false. Then for every
1 > 0, there exists a positive number my, independent of I, and a sequence
G = & +inj € C" with nj < mew(¢;) and 3|§i| > 151 2 2%, j =
1,2,... such that
IS(CJ-)I'I > elwl§)+HH (=)

It suffices to show that there exists a u € D[, such that S*u € £, and
u ¢ €, 1.e., S is not hypoelliptic in D,,. We will show that

oo
u(z) = Z et <E (k>

k=1

satisfies all the requirements. ]
Using the fact that ¢; — 0 in D, is equivalent to

6illa = sup |$;(¢)|e*E)—HM=Inl _, 0 a5 j — oo,
cecn

for every A > 0, we have
lu(é;)] < Z 165 (—C)l
k
s Z |85(—Cx )| €)~ He; (me)=lnel g =Aw(Er)+ Ho; () + il
k
< “¢J"AZ e~ 2w (&) H(CH)mow(és)

k
< C|\¢jlix — asj — oo, for large A > 0,

which implies v € D,,.
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To show § *u € &,, it is enough to show that ¢(S *u) € D, or
equivalently

sup l¢(§:u)(()le«\w(f)—H¢(n)—lnl < o0
¢ecn

for every A > D,,. From the equality

H(S * u)(C) = (S * u)a(d(z)e =)
= Sz(z: " VG (x4 y)e YO
J

=Y #(¢ - )5,
J
we have

sup [$(S * u)(¢)[e< &)~ H(m~lnl

¢eECn
< Y sup S(GHB(C — )l @~ H il

J ¢ecn
< Cl Z sup {e—l“’(fi)_H(_'lj)e—x“’(f—fj)+H¢(n—i)j)+e(1,—1lj)}

j cecn

x e (&) —H(n)—=|n|

< Cr ) exp{—Lo(&) + Ao(€;) + |n;] — H(=n;) + Hy(n;)}

7

< C Y exp{(—1+ A+ (1+ C)mo)w(£5)} < o0

for sufficiently large I, which shows S *u € &,,. R
It remains to show that u ¢ £,. Take ¢o € D, with ¢o(0) =1 and let

'zk(o = k‘io(( — Ck). Then
[8(O)) = ko (¢ — i)l

< Oy kel " 2E—8)+HHyg (n—me)Feln—me|}
< O kel AR H(CHe)mow(e)+Aw(€)+ Hoo () +elnl)}

< Cf\’ee{‘\“’(ﬁHH‘“ (n)+6lnl},
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which gives, from the Paley-Wiener-Schwertz theorem in 7., that ¢x €
&l for each k =1,2,...,. Moreover we can show that the set {13}7° is

bounded in &],. In fact, since supp(%x) C supp(¢), we may consider the
value of ¥i(9) for each ¢ € D, instead of ¢ € £,,. For ¢ € D,,,,

[¥r(9)] = (27) " |$w(S)|
= (2m) K| / Bo(€ — C)HE)dE]

< Ch.k / el =M€= 80+ H(me ) +elme | -22w(O)) g

< Cy eke{—Aw(Ek)+(Co+e)mow(€t)} /C—Aw(g)df

Gy kel —Nwe)
k
(1 + [N

k
S CA,e (_1 + 22,;),\:5

< C’A,e < 0

IN

56’
G2}

forall k =1,2,..., which shows our claim. Finally we have to show that
{u(¥x)}$° is not bounded. We can write

[u(e)] = IZ(e‘“"P, ()|

|2¢k(c,)| > [¢h(Ce)l = D Ih(¢H)

J#k
=k—2|¢k(Cj)|—’°°ask—+°0,
J#k
provided that . I'(,Zk(CJ)l is uniformly bounded on k.
Therefore it suffices to show that 3., [$x((;)| is bounded uniformly
for k =1,2,.... Dividing the sum into two pieces for j < k and j > k,

o(k—3) _
€3] < 2(k—J) sty 6k and €5 — &l > €] — 151 > ”_2(7_'—])‘—|§k'
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when j < k.
With the notation §; = (1 - 2(k—;))§k and f = 3= sy €k, We have, from

Injl < mow(¢;) and &} > ¢,

> e (G)

i<k
gcis 2 kexp{—Xw(§; — &) + (C + €)mo(w(ék) + w(§5))}
<Che ; kexp{—w(&}) + (C + e)mo(w(é) +w(¢;))}
| <Ci. Jzk kexp{(—A + (C + &)mo)w(£}) +2(Co + e)mow(é O}
<Che g:k kexp{(—A + 3(C + e)mo ) (£;)}
j

k
2( +|§"|){ A+3(C+e)molb
¥

<oy, Y KB e
=M (2("“1)+22"){—’\+3(C+e)mo}b
i<k

which is uniformly bounded on %k for sufficiently large A. In the case
when j > k, using the notation

. 1 " 1
6 =01 -55mm% & = sgm 't

1 1
Igj - §k| 2 |EJI - lfkl 2 (1 ) 61' 2 9G—%) I£J|

and

1
‘§k| < WKJI,

we have the following estimation in the same way :
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> 1e(G)

>k
SO ) kexp{—Mw(&; — &) +(C + e)mo(w(§;) +w(ék))}
>k
<Che Z k exp{(—X + 3(C + &)mo)w(£])}
>k

k

k(z(g—k)){-~z\+3)(c+e)mo}b
<Ci. Z (2G-B) t 227) (- X¥3(CHe)mo}b
i>k

which is uniformly bounded on k for sufficiently large A > 0. Hence
2 [¥x(€;)| is uniformly bounded on k.
ik
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