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OPERATOR VALUED FUNCTION SPACE INTEGRALS
AND NONCOMMUTATIVE OPERATIONS *

YEON HEE PARK

1. Introduction

In 1968, Cameron and Storvick· introduced a very general operator
valued function space integral and they have established the existence of
this integral as a bounded linear operator on L 2 for certain functionals
[1] and set up corresponding operator-valued integrals on Yeh-Wiener
space [2]. Recently, Johnson and Lapidus introduced noncommutative
operations * and +on Wiener functionals and could provide a precise
and rigorous interpretation of certain aspects of Feynman's operational
calculus for noncommuting operators [8]. In this paper, we introduce
concepts of noncommutative operations * and +defined on functionals
on a class containing Yeh-Wiener space and study some results related
to the noncommutative operations and the operator valued functional
integrals.

2. Preliminaries

Let C denotes the complex numbers. Let Qa,b = [a, b]x[a,.8). C;[Qa,b]
= {x(·,·) Ix is continuous on Qa,b and x(·, a) = O} and C2 [Qa,b) =
{x("')lx is continuous on Qa,b and x(a,o) = x(·,a) = O}. ma,b will
denote Yeh-Wiener measure on C2 [Qa,b]' Frequently we will have a = 0
and then we will write Qb, C;[Qb], C2 [Qb] and mb rather than Qo,b,
C;fQo,b], C2 [Qo,b) and mo,b, respectively.

We begin by considering two restriction maps and a translation map
all of which will be involved in the definition of the operations * and +.
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Suppose that a < s < b and let R t : Ci[Qa,b] --+ C2[Qa,s] be the map of
restriction such that

(2.1) [Rt(x)](u,v)=x(u,v), a~u~s, a~v~{3.

Similarly, let R 2 : C2'[Qa,b] --+ C;[Qs,b] be the map of restriction such
that

(2.2) [R2 (x)](U, v) = x(U, v), s~u~b, a~v~{3.

Let T: C;[Qa,b] --+ C2'[Qb-a] be the translation map,

(2.3) [T(x)](u, v) = x(u. + a, v), 0 ~ u ~ b - a, a ~ v ~ {3.

The restriction To of T to C2 [Qa,b] has range C2 [Qb-a]'

The following lemmas are well known results. We will state them
without proofs [2,6].

LEMMA 2.1.

T,-lma,b 0'0 = mb-a'

There are three bijections Pt, P2 , P3 onto product spaces which we
will find usefulness. Given s in (a, b), Pt : C2 [Qa,b] --+ C2 [Qa,s] X C2 [Qs,b]
is defined by

(2.4)

LEMMA 2.2.
P-Im a b0 I = ma s X ms b·, "

We will often regard Pt, P2 and P3 as identifying the spaces involved.
For example, given x E C2 [Qa,b], we will often write (y, z) in place of
x where y = Rt x and z = R 2x - x(s, .). It is then natural to write
m a b = m a s X m s b rather than the formular in Lemma 2.2., , ,

(2.5) P2 x = (x(a, '), x(".) - x(a, .».
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We will frequently think of C 1[a,,8] x C2 [Qa,s] or, under the "identifica­
tion" P2, Ci[Qa,s], as equipped with the measure ml X ma,s where ml
is Wiener measure on C1[a,,8].

Finally, given s with a < s < b, P3 : C;[Qa,b] ---+ CtIo:,,8] x C 2 [Qa,s] x
C2 [Qs,b] is defined by

(2.6) P3 (x) = (x(a,·), R1x-x(a,·), R 2 x-x(s,·».

We will sometimes think of C1[o:,,8] x C2 [Qa,s] X C2 [Qs,b] or, under the
"identification" P3 , C;[Qa,b], as equipped with the measure ml X ma,s X

ms,b' Given (.,."y,z) in C1[a,,8] x C2 [Qa,s] x C2 [Qs,b], we will often
write x = (.,." y, z) rather than the more precisely correct equality x =
p3-

1(.,."y,z). Similarly, given ('1,y) in C1 [o:,,8] x C2 [Qa,s], we will often
write x = (.,." y) rather than x = P2-

1
(.,." y).

The spaces of continuous functions above are equipped with the sup
norm topology. Under these topologies, RI and R 2 are continuous maps
and T, PI, P2 and P3 are all homeomorphisms.

DEFINITION 2.1. A subset E ofC1 [o:,,8] is said to be scale-invariant
measurable provided pE is Wiener measurable for eve.zy p > o. A scale
invariant measurable set N is said to be scale-invariant null ifml (pN) =
ofor eve.zy p > o. A property that holds except on a scale invariant null
set is said to hold scale-invariant almost eve.zywhere (s-a.e~).

DEFINITION 2.2. Let F and F1 be C-valued Bore1 measurable func­
tions on C;[Qa,s]' We will say that F is equivalent to Ft, and write
F '" F1, provided that, for eve.zy p > 0, F(px + .,.,) = F1(px + .,.,) (or
F(.,."px) = F1(.,."px») for ml X ma,s - a.e.(.,."x) in C1[a,,B] X C2 [Qa,s].
We will say that F is s-equivalent to F1 and write F ~ F1 if for any
p,p. > 0, F(px + p..,.,) = F1(px + p..,.,) forml xma,s-a.e. (.,."x) in
CI[o:,,8] x C2 [Qa,s]' We note that is F ~ F1, then F '" F1.

PROPOSITION 2.3. Let a < s < b. Suppose that F, F1 : C;[Qa,s] ---+ C
are Bore1 measurable and that F '" F1- Then FoRI, F1oR1 : C;[Qa,b] ---+

C are Bore1 measurable and FoRI'" FI 0 RI.

Proof. The proposition is easily obtained.
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PROPOSITION 2.4. (1) Suppose H, HI : C2[Qs,b] -+ C are Bore1 mea­
surable functions and H :.- HI. Then Ho R2, HI 0 R2 : Ci[Qa,b] -+ C
are Bore1 measurable and Ho R2 rv HI 0 R2.

(2) Suppose G, GI : Ci[Qb-s] -+ C are Bore1 measurable and that
G ~ GI . Then GoT 0 R2 and Gt, oT 0 R2 are Bore1 measurable and
CHQa,b] -+ C and GoT 0 R2 '" GI 0 To R2.

Proof. (1) Clearly Ho R 2, HI 0 R2 are Borel measurable. Given x =
(.",y,z) in Ci[Qa,b] = Cl [a,p] x C2[Qa,s] x C2[s,b], R2x = R2(.",y,z) =
(." + y(S,'),Z) E CI[a,p] x C2[Qs,b]' Let p > 0 be fixed. Let M =
H.",z) E Cda,P] x C2[Qs,b] IH(.",pz) =f HI(.",pz)}. Since H rv Ht, M
is ml x m s b-null set. Since H :.- Ht, for m s b-a.e. z M(z) is scale
invariant n~ll set (s-null set) where M(z) is z~section of M, that is,
there exists m s b-null set N such that M(z) is s-null set for z E NC. Let,

M" = He,y,z) E CI[a,p] x C2[Qa,s] X C2 [Qs,b] !(H oR2)(e,py,pz)

=f (HI 0 R2)(e,py,pz)}

= He, y, z) IH(e + py(s, '), pz) =f HI(e + py(s, '), pz)}

= He, y, z) I(e + py(s, '), z) EM}

and

M"(Z) = He, y) le + py(s,·) E M(z)}

= He, y) leE M(z) - py(s,·)} c [M(z) - py(s, .)] x C2[Qa,s]'

By Corollary 15 of [9], for z E NC, M(z) - py(s,·) is ml-null with the
exception of at most a s-null set of y(s, .)'s, that is, there exists as-null
set NI such that M(z) - py(s,') is ml-null for y(s,·) E Nf. Hence

{ XM" (e, y, z)d(ml x ma,s X ms,b)(e, y, z)
}C1[a,fJ] xC2[Qa,.] xC2[Q.,b]

= (1 XM"(zl(e, y)d(ml X ma,s)(e, y)dms,b(Z)
}C2[Q.,b]/N Cda ,fJ]xC2[Qa,.]
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:$11X[M(Z)-py(s,.)]XC2[Q ..,6](e,y)d(m l X ma,s)(e,y)dms,b(Z)

= { { { ( X[M(zl-py(s,.)]XC2[Q...6)(e, y)dml(e)
}C2[Q6,bl/N }C2[Q...6] }Cl[cx,Pl/Nl

+ 1Nl X[M(Z)-Py(s,.») XC2[Q...6](e, Y)dml(e)} dma,s(y)dms,b(z) = O.

Thus M" is ml X m a s X m s b-null set and so Ho R 2 '" HI 0 R2 •, ,
(2) Clearly GoT 0 R2 and GI 0 T 0 R2 are Bore! measurable. Let

T: CI[a,,B] X C2 [Qs,b] -+ CI [a,,8] x C2 [Qb-s] be given by T(TJ,z) =
(TJ, Toz) = (i 0 TJ, Toz) where i is the identity map on Cl [a, ,8] and To :
C2 [Qs,b] -+ C2 [Qb-s]. Hence

Because of (1), we can establish (2) by showing that GoT ~ GI 0

T. Let p > 0, P. > 0 be fixed and let M = ((TJ,x) E C1[a,,8] x
C2 [Qb-s] IG(p.TJ, px) =f GI(p.TJ, px)}, then M is ml x mb-s-null set since
G ~ G I . Let M' = {(TJ, z) E C1[a,,8] x C2 [Qs,b] I(TJ, Toz) E M}. Note
M t = T-l(M). Moreover

It follows that G(p.TJ,pToz) = GI(p.TJ,pToz) for ml x ms,b-a.e. (TJ,z) in
C1[a,,B] x C2 [Qs,b] as desired.

3. N oncommutative operations * and +
Throughout this section, we will assume, usually without explicit men­

tion, that all functions are Borel measurable. Also as we continue,
t, t 1 , t2 , • " will denote positive real numbers.

DEFINITION 3.1. Let F: Ci[Qtl] -+ C, G: Ci[Qt2] -+ C. We define
F * G and F+G as C-valued functions on Ci[Qt l+t2] by tbe formulas

(3.1) (F *G)(x) = F(Xl)' G(X2)
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and

(3.2)

where

(3.3)
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XI(U, v) = x(u, v), UE [0, tl], v E [a,,8]
X2(U,V) = x(tl +u,v), U E [O,t2], v E [a,,8].

From Section 2, Xl = Rlx and X2 = (T 0 R2)(x). Alternatively, we can
write formulas (3.1) and (3.2) as

(3.4) (F *G)(x) = (F 0 RI)(x)· (G 0 To R2)(x)

(3.5) (F+G)(x) = (F 0 RI)(x) + (G 0 To R2)(x).

THEOREM 3.1. Let F, F I : C;[Qtl] ---+ C and let G, G l : C;[Qt2] ---+

C. Suppose that F rv F I and G ~ G I - Then F * G rv FI * G I and
F+G rv FI+GI .

Proof. Propositions 2.3 and 2.4 assure us that FoRI rv F I 0 RI and
GoT 0 R2 rv Gl 0 To R2 • The result now follows from the compatibility
of", with the usual product and sum, and from the definition of * and
+.

THEOREM 3.2 [ALGEBRAIC PROPERTIES OF *].
(1) Let F, F I : C2[QtJ ---+ C and let G, GI : C;[Qt2] ---+ C; let a,,8 E C.

Then

(3.6)
(aF + I3FI) * G = a(F * G) + ,8(FI * G)

F * (aG + ,8GI ) = a(F * G) + ,8(F *GI).

(2) Let F : C;[Qtl] ---+ C, G : C;[Qt2] ---+ C and H : C;[Qta] ---+ C.
Then (F*G)*H and F*(G*H) are C-vaIued functions on C;[Qtl+t2+ta]
and

(3.7) (F * G) * H = F * (G *H).
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(3) Let 1 : C;[Qo] --+ C with l(x) = 1 where Qo = {O} x [a,,8] and
C;[Qo] = {x Ix(O,v) is continuous on Qo and x(O,a) = O}. Then for all
F: C;[Qt] --+ C,

(3.8)

Proof. The equations (3.6) and (3.8) are easily verified. The key to es­
tablish the "associativity" of * is to show that, for any x E C;[Qtl +t2+ta],
both sides of (3.7), when applied to x, yield F(XI)G(X2)H(xa) where Xl
and X2 are given by (3.3) and xa(u,v) = X(tl +t2+U,V), u E [O,ta], v E
[a,,8]. We carry out the proofthat [(F*G)*H](x) = F(Xl)G(X2)H(xa).
By definition of *, [(F*G)*H](x) = (F*G)(x~)·H(x~) where x~(u, v) =
x(u,v), u E [O,t} +t2], v E [a,,8] and x;(u,v) = x(tl +t2 +u,v),
u E [0, tal, v E [a, ,8]. Note that x; = Xa and so H(x;) = H(xa). Hence
it remains to show that (F * G)(x~) = F(XI)G(X2). But by definition,
(F*G)(x~) = F(x~ G(x~) where x~ (u, v) = xHu, v), u E [0, t l ], V E [a,,8]
and x~ (u, v) x~ (tl + U, v), u E [0, t2 ], V E [a, ,8]. Accordingly it remains
only to show that x~ = Xl and x~ = X2. But tl + u E [tl,tl + t2] and
so X~(tl + u,v) = x(tl + u,v). Therefore x~(u,v) = X~(tl + u,v) =
X(tl +u,v) = X2(U,V), U E [0,t2]: that is, x~ = X2 as desired. Finally
x~(u,v) = x(u,v) since u E [O,tl] and so x~(u,v) = xHu,v) = x(u,v),
u E [0, t l ]. Thus x~ = Xl as desired. Similarly, it can be proved that
[F * (G * H)](x) = F(XI)G(X2)H(xa). \

THEOREM 3.3 [ALGEBRAIC PROPERTIES OF +].
(1) Let F, F l : C;[Qtl] --+ C and let G, G I : Ci[Q t2] --+ C; let a,,8 E C.

Then

(3.9) (aF + ,8Fl )+(aG + ,8Gl ) = a(F+G) + [3(FI +GI ).

(2) Let F : C;[Qtl] --+ C, G : Ci[Qt2] --+ C and H : C;[Qta] --+ C.
Then

(3.10)

(3) Let 0: Ci[Qo} --+ C with O(x) = o. Then for all F: Ci[Qtl --+ c,

(3.11) F+O=O+F=F.
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Proof. The "associativity" of + is obtained just as in the proof of (3.7)
by showing that both sides of (3.10), when applied to x E C2'[Qt l+t2+ta],
yield F(xI) + G(X2) + H(xa). As for the linearity of +, we note that
(3.9), when applied to x E C;[Qtl +t2+ta], is equivalent to the following
equality:

(aF + f3FI)(xI) + (aG + f3G I)(X2)

= a(F(xI) + G(X2» + f3(FI(XI) +GI(X2»'

THEOREM 3.4. Let F : C;[Qtl] ~ C and G : C;[Q t2] -+ c.
(1) F+G, exp(F+G) and exp(F) * exp(G) all map C;[Qt l+t2] to C

~d~ha~ .

(3.12) exp(F +G) = exp(F) *exp(G).

(2) Let n be a positive integer. With the convention indicated in
Remark 3.5(b) below,

(3.13)

REMARK 3.5. (a) By (3.12) we also have exp(G+F) = exp(G) *
exp(F), but due to the noncommutativity involved, these qu~tities are
not equal to exp(F+G). An analogous comment applies to (3.13).

(b) In (3.13) we interpret FO and GO to be I t1 and I t2 , respectively,
where It; : C2[Qt;] -+ C with I t;(x) = 1 for i = 1,2.

Proof of Theorem 3.4. We first establish the exponential formula
(3.12). For x E C;[Qt l+t 2] we have

[exp(F+G)](x) = exp[(F+G)(x)]

= exp[F(xI) + G(X2)]

= exp[F(Xl)] exp[G(X2)]

= (expF)(xI)(expG)(x2)

= [(expF) * (expG)](x).
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e next derive the binomial formula (3.13). Let x E Ci[Qtl+t2] .

.14)

lote that in the last equality of (3.14) we have made use of Remark
;.5(b).

4. The functional integrals Kl and the operations * and +
DEFINITION 4.1. Let the functional F be defined on Ci[Qa,b]. Let

if; be a functional defined on Cl [a,,8], let 1] E Cl [a,,8] and .\ > o. The
operator valued integral K>.(F) == K>',Qa,b(F) _ K~'\F) was defined so
as to take the functional t/J into the functional K>.(F)t/J whose valued at
1] IS

(4.1)

(K>.(F)t/J)(1](.)) =1 F(.\-!x(.,.) +1]('))t/J(.\-!x(b,.) + 1](·))dx
C 2 [Qa,b]

where the integral is the Yeh-Wiener integral on C2 [Qa,b].

DEFINITION 4.2. W(Ctfa,,8]) is the class of strictly Wiener measur­
able functional t/J defined on Ctfa,,8] such that t/Jery + 1]) is Wiener
integrable in y over Cl [a,,8] for each positive 'Y and each 1] E Cl [a, ,8].

It has been shown in [2J that if F is a bounded continuous functional
on C2[Qa,b], then K>.(F) exists as an operator on W(C1 [a,,8]).

THEOREM 4.1. Let .\ > 0 and suppose F : C;[Qtl] --t C and G :
C;[Qt 2] --t Care Bore1 measurable such that Kl1(F) = K>',Qtl (F) and

K12 (IGI) exist. Then K11+t2 (F * G) exists and

(4.2)
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Proof· Let..\ > 0 be given. ~et 'l/J E W(Cl [0:,.8]) and 1] E Ct[o:, .8].
Then

(4.3)
(K~1+t2(F * G)'l/J)(1]('))

Q} [ (F 0 RI)(,\-~x(.,.) + 1](·))(G 0 To R2)(,\-~X("')+ 1]('))
JC2[Qtl +t2]

1

. 'l/J(,\ -"2 x(it + t2, .) + 1](' ))dmtl+t2 (x)

<;) [ (FoRI)(1](')'..\-~y,'\-~z) X

JC2[Qtl] XC2[Qt l.t2+t 2]
1 1 1 1

(G 0 To R2)(1](')'..\-~ y,'\-~ z)'l/J(,\-~ z(tl + t2,') + ,\-~ y(tl,') + 1]('))

. d(mtl X mtlh+t2)(Y' z)

~1 F(1](')' ..\-~y){l (G 0 T)(1](') +,\-!y(t1 , '),'\-! z)
C2[Qtd C2[Qtl.t1 +t2]

1 1

. 'ljJ('\-~z(tl +t2,') + ..\-~y(tl,·) + 1](·))dmtl,tl+t2(z)}dmtl(y)

The first equality in (4.3) above follows from the definition of * and Kl.
The second equality follows from Lemma 2.2 : the fourth results from
the application of the restriction maps given in (2.3) and from Lemma
2.1. The third equality follows from the application of the restriction
maps given in (2.1) and (2.2) and from the Fubini Theorem. The use of
the Fubini Theorem will be justified below. To obtain equalities (5) and
(6) we have made use 01 the definition of Kl given in (4.1). To justify
the use of the Fubini Theorem, it will be convenient to work backwards
beginning with expression (5) above. That expression exists with F, G
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md .,p replaced by IFI, IGI and l.,pl as we next explain. Since we have
assumed that Ki2 (IGI) exists, the function

belongs to W(Cl [a,,8]) as a function of e. Then, since Ki1(F) existes,
we know that for all 7] E Cl [a,,8],

By combining (4.4) and (4.5), we obtain the existence of expression (5)
and (4) with absolute values on F, G and.,p. Finally, to go from (4)
to (3), we use Lemma 2.1 and the change of variables theorem, but,
this time, with IFI, IGI and l.,pl involved. This shows that the Fubini
Theorem can be applied to (3) to yield (2).

DEFINITION 4.3. Let F : C;[Qtl] -+ C and G : C;[Qt2] -+ C. The
commutator [F, G] of F and G is a C-valued function on C;[Qtl+t2]
which is defined by

(4.6)

COROLLARY 4.2. Let F : C2'[Qt l] -+ C and G : C2[Qt 2] -+ C be
given. Fix,\ > O. Suppose that Ki1(IFI) and Ki2 (IGI) exist. Then
Ki1+t2 ([F, G]) exists and

(4.7)

where the bracket on the right hand side of (4.7) denotes the usual
commutator of linear operators on W(Cl [a, ,8]).

Proof. The existence of Ki1+t2 (F*G) and Ki1+t2 (G*F) and, hence, of
Ki1+t2 ([F, G]) is insured by Theorem 4.1. A straight-forward calculation
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now yields (4.7) :
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K~I+t2([F,G]) = K~I+t2(F * G - G * F)

= K~I+t2(F *G) - K11+t2 (G * F)

= K11(F)K~2 (G) - K12(G)Ki1(F)

= [Ki1(F), K~2(G)].

THEOREM 4.3. Let F: Ci[Qtl] --+ C and G : Ci[Qt2] --+ C be given.
Fix ..\ > O. Suppose that K~1 (exp(F)) and K~ (exp(Re G)) exist. Then

t +t .K )..1 2 ( exp(F +G)) exists and

Proof. According to Theorem 4.1, we know that K~I+t2(exp(F)*
exp(G)) exists and equals the right hand side of (4.8). Moreover, by
equation (3.12) of Theorem 3.4, exp(F+G) = exp(F) * exp(G). The
present theorem now follows by combining these facts. '

COROLLARY 4.4. Let F : Ci[Qt l] --+ C and G : Ci[Qt 2] --+ C be
given. Fix..\ > O. Suppose that K11(exp(ReF)) and K12 (exp(ReG))
exist. Then K11+t2 (exp(F +G)) and K11 +h (exp(G+F)) exist and

(4.9) [K11 (exp(F)) , K~2(exp(G))]

= K11+t2 (exp(F+G)) - K11+t2 (exp(G+F)).

Proof. The existence of the expression on the right hand side of (4.9)
is guaranted by Theorem 4.3. Further, by equation (3.12),

(4.10) [exp(F), exp(G)] = exp(F+G) - exp(G+F).

Equation (4.9) now follows by applying K11+t2 to both sides of (4.10)
and using Corollary 4.2.
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