A CHARACTERIZATION OF SUBSPACES WITH PROPERTY $\left(I_{1}\right)$ IN THE ORDER NORMED SPACE OF HERMITIAN MATRICES

Byung Soo Moon

1. Introduction

The ordered normed space of all $n \times n$ Hermitian matrices with the usual operator norm and with the positive cone $K=\left\{P \in E \mid x^{*} P_{x} \geq 0\right.$ for all $\left.x \in C^{\boldsymbol{n}}\right\}$, will be denoted by E or E_{n}. We will always assume E to be a real vector space.

If A is an arbitrary $m \times n$ complex matrix, then A^{*} will denote \bar{A}^{T}, i.e. the transpose of the complex conjugate of A. When $m<n$, an element $A \in E_{m}$ is assumed to be an element of E_{n} with $a_{i j}=0$ for $i>m$ or $j>m$. Thus, E_{m} is considered as a subspace of E_{n}.

We denote $E_{i j}$ for the $n \times n$ matrix of all zero entries except the one at (i, j) with value of 1 . Note taht $E_{i j} \in E_{n}$ only when $i=j$. We will be using the fact that every Hermitian matrix A is diagonalizable, i.e., there exists a unitary matrix U such that $U^{*} A U$ is diagonal. If D is a diagonal matrix, then we can rearrange the diagonal entries in any order that we please by a unitary transformation.

Definition 1.1. A subspace J of E is said to have Property $\left(I_{1}\right)$ if for every $A \in J$ and $P \in E$ with $A, 0 \leq P$, there exists $Q \in J$ such that $A, 0 \leq Q \leq P$.

Note that if J is a subspace with Property $\left(I_{1}\right)$ and if U is a unitary matrix, then $U^{*} J U$ has Property $\left(I_{1}\right)$. The order Property $\left(I_{1}\right)$ is equivalent to the sublattice order property in a lattice.

Received April 29, 1988.

Definition 1.2. A positive element P of E is said to generate an extreme ray in the positive cone K if whenever $0 \leq Q \leq P$ with $Q \in K$ then $Q=\lambda P$ for some $\lambda \geq 0$.

Lemma 1.3. Let P be an element of E with $P=\left[\begin{array}{ll}P_{1} & P_{3} \\ P_{3}^{*} & P_{2}\end{array}\right]$ where $P_{1} \in E_{m}, P_{2} \in E_{n-m}$.
(a) If $P \geq 0$ then $P_{1}, P_{2} \geq 0$.
(b) If $P \geq 0$ and $P_{2}=0$, then $P_{3}=0$.

Proof. Proof for part (a) is omitted. For part (b), let $x^{*}=\left(y^{*}, z^{*}\right)$ with $y \in C^{m}, z \in C^{n-m}$, then $x^{*} P x=y^{*} P_{1} y+y^{*} P_{3} z+z^{*} P_{3}^{*} y \geq 0$. In particular, if we take $z=\lambda P_{3}^{*} y$ with λ real, then $x^{*} P x=y^{*} P_{1} y+$ $2 \lambda\left|P_{3}^{*} y\right|^{2}$ which is nonnegative for all $\lambda \in R$ and $y \in C^{m}$. Thus, we must have $P_{3}^{*} y=0$ for all $y \in C^{m}$, i.e., $P_{3}^{*}=0$.

In view of Lemma 1.3, we see that if P is positive and if all diagonal entries of P are zero, then $P=0$.

Lemma 1.4. Let $D=\left(d_{j}\right)$ be a diagonal matrix in E where d_{j} is the j th diagonal entry of D and let D^{+}be the diagonal matrix with $\max \left\{d_{j}, 0\right\}$ as the j th entry. If $D, 0 \leq Q \leq D^{+}$for some $Q \in E$, then $Q=D^{+}$.

Proof. When $d_{i} \geq 0$ for all $i=1,2, \ldots, n$ then $D=D^{+}$and hence $Q=D^{+}$. When $d_{i} \leq 0$ for all $i=1,2, \ldots n$ then $D^{+}=0$ and therefore $Q=0$. Thus, we assume that $d_{k}>0, d_{l}<0$ for some k and l. Since we have $0, d_{i} \leq q_{i i} \leq\left(D^{+}\right)_{i i}$ for all $i=1,2, \ldots n$, we must have $q_{i i}=$ $\left(D^{+}\right)_{i i}=d_{i}$ in case $d_{i}>0$ and $q_{i i}=\left(D^{+}\right)_{i i}=0$ when $d_{i}<0$. Therefore, $Q=D^{+}$by Lemma 1.3.

2. A Characterization of Subspaces with Property (I_{1})

Lemma 2.1. Let J be a subspace of E with Property $\left(I_{1}\right)$ and let D be a diagonal matrix in J with $D=\left[\begin{array}{cc}D_{1} & 0 \\ 0 & D_{2}\end{array}\right]$ where $D_{1} \in E_{2}$, $D_{2} \in E_{n-2}$, and D_{1} is neither positive nor negative. Assume that there exists $P=\left[\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right] \in E$ with $P_{2}=D_{2}^{+}$and $D, 0 \leq P$. If both P_{1} and
$P_{1}-D_{1}$ generate extreme rays in the positive cone of E_{2}, then $P \in J$.
Proof. By Property (I_{1}), we find $Q \in J$ with $D, 0 \leq Q \leq P$ and let $Q=\left[\begin{array}{ll}Q_{1} & Q_{3} \\ Q_{3}^{*} & Q_{2}\end{array}\right]$, then we have $0, D_{2} \leq Q_{2} \leq P_{2}=D_{2}^{+}$. Therefore, by Lemma 1.4, we have $Q_{2}=D_{2}^{+}$. Now we apply Lemma 1.3 for $P-Q \geq 0$ to obtain $Q_{3}=0$. Since $0 \leq Q_{1} \leq P_{1}$ and P_{1} generates an extreme ray, $Q_{1}=\lambda P_{1}$ for some $\lambda \geq 0$. Note that $\lambda \neq 0$ since Q_{1} cannot be zero due to the fact that D_{1} is neither positive nor negative. Similarly, we obtain $Q_{1}-D_{1}=\mu\left(P_{1}-D_{1}\right)$ from $0 \leq Q_{1}-D_{1} \leq P_{1}-D_{1}$ with $\mu>0$. Thus, we have

$$
\lambda P_{1}-D_{1}=Q_{1}-D_{1}=\mu\left(P_{1}-D_{1}\right)
$$

and hence $(\mu-\lambda) P_{1}=(\mu-1) D_{1}$. Now, if $\mu \neq \lambda$ then $(\mu-\lambda) P_{1} \in$ $K \cup(-K)$ and hence $(\mu-1) D_{1} \in K \cup(-K)$. But D_{1} is neither positive nor negative and hence $\mu-1=0$, from which we obtain $Q_{1}-D_{1}=P_{1}-D_{1}$, i.e., $P_{1}=Q_{1}$. Therefore, we have $Q=P \in J$.

Lemma 2.2. Let J be a subspace of E with Property $\left(I_{1}\right)$. If there exists a diagonal matrix $D=\left(d_{i}\right) \in J$ such that $d_{1}>0, d_{2}<0$ then $E_{2} \subseteq J$.

Proof. Let $D_{0}=D-d_{1} E_{11}-d_{2} E_{22}$ then D_{0} is the diagonal matrix with first two elements of value 0 and the others are identical to those of D. We define a set of positive elements of E as follows.

$$
\begin{aligned}
& P_{0}=D_{0}^{+}+d_{1} E_{11} \\
& P_{1}=D_{0}^{+}+2 d_{1} E_{11}-d_{2} E_{22}+a\left(E_{12}+E_{21}\right), \quad a=\sqrt{-2 d_{1} d_{2}} \\
& P_{2}=D_{0}^{+}+3 d_{1} E_{11}-2 d_{2} E_{22}+\sqrt{3 a}\left(E_{12}+E_{21}\right), \\
& P_{3}=D_{0}^{+}+4 d_{1} E_{11}-3 d_{2} E_{22}+\sqrt{6 a}\left(E_{12}+E_{21}\right), \\
& Q_{1}=D_{0}^{+}+2 d_{1} e_{11}-d_{2} E_{22}+i a\left(E_{12}-E_{21}\right), \\
& Q_{2}=D_{0}^{+}+3 d_{1} E_{11}-2 d_{2} E_{22}+i \sqrt{3 a}\left(E_{12}-E_{21}\right), \\
& Q_{3}=D_{0}^{+}+4 d_{1} E_{11}-3 d_{2} E_{22}+i \sqrt{6 a}\left(E_{12}-E_{21}\right) .
\end{aligned}
$$

we can easily check that $P_{j}-D_{0}^{+}=x_{j} x_{j}^{*}, Q_{i}-D_{0}^{+}=y_{i} y_{i}^{*}$ for $i=1,2,3$
and $j=0,1,2,3$ where $x_{0}=\sqrt{d_{1}} e_{1}$,

$$
\begin{aligned}
& x_{1}=\sqrt{2 d_{1}} e_{1}+\sqrt{-d_{2}} e_{2} \\
& x_{2}=\sqrt{3 d_{1}} e_{1}+\sqrt{-2 d_{2}} e_{2} \\
& x_{3}=\sqrt{4 d_{1}} e_{1}+\sqrt{-3 d_{2}} e_{2} \\
& y_{1}=\sqrt{2 d_{1}} e_{1}-i \sqrt{-d_{2}} e_{2} \\
& y_{2}=\sqrt{3 d_{1}} e_{1}-i \sqrt{-2 d_{2}} e_{2} \\
& y_{3}=\sqrt{4 d_{1}} e_{1}-i \sqrt{-3 d_{2}} e_{2}
\end{aligned}
$$

and hence $P_{j}-D_{0}^{+}, Q_{i}-D_{0}^{+}$all generate extreme rays in the positive cone of E_{2}. Now, let

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], \quad P_{i}=\left[\begin{array}{cc}
P_{i 1} & 0 \\
0 & P_{i 2}
\end{array}\right], \quad Q_{i}=\left[\begin{array}{cc}
Q_{i 1} & 0 \\
0 & Q_{i 2}
\end{array}\right]
$$

where $D_{1}, P_{i 1}, Q_{i 1} \in E_{2}$. Then $P_{i 2}=Q_{i 2}=D_{0}^{+}$and $P_{j 1}-D_{1}=u_{j} u_{j}^{*}$, $Q_{i 1}-D_{1}=v_{i} v_{i}^{*}$ where $u_{0}=\sqrt{-d_{2}} e_{2}$,

$$
\begin{aligned}
& u_{1}=\sqrt{d_{1}} e_{1}+\sqrt{-2 d_{2}} e_{2} \\
& u_{2}=\sqrt{2 d_{1}} e_{1}+\sqrt{-3 d_{2}} e_{2} \\
& u_{3}=\sqrt{3 d_{1}} e_{1}+\sqrt{-4 d_{2}} e_{2} \\
& v_{1}=\sqrt{d_{1}} e_{1}-i \sqrt{-2 d_{2}} e_{2} \\
& v_{2}=\sqrt{2 d_{1}} e_{1}-i \sqrt{-3 d_{2}} e_{2} \\
& v_{3}=\sqrt{3 d_{1}} e_{1}-i \sqrt{-4 d_{2}} e_{2}
\end{aligned}
$$

Hence, P_{j}, Q_{i} all satisfy the conditions described in Lemma 2.1 for $j=0,1,2,3$ and $i=1,2,3$. Therefore, $P_{j}, Q_{i} \in J$. Now, note that

$$
\begin{aligned}
2 P_{2}-P_{3}-P_{1} & =(2 \sqrt{3}-\sqrt{6}-1) a\left(E_{12}+E_{21}\right) \in J \\
2 Q_{2}-Q_{3}-Q_{1} & =(2 \sqrt{3}-\sqrt{6}-1) a i\left(E_{12}-E_{21}\right) \in J
\end{aligned}
$$

where $a=\sqrt{-2 d_{1} d_{2}} \neq 0$ and hence $E_{12}+E_{21} \in J, i E_{12}-i E_{21} \in J$. Also from $2 P_{0}-P_{1}=D_{0}^{+}+d_{2} E_{22}-a\left(E_{12}+E_{21}\right) \in J$, we have $D_{0}^{+}+d_{2} E_{22} \in J$.

If $D_{0}^{+}=0$, then we have $E_{22} \in J$. In case $D_{0}^{+} \neq 0$, we apply Property $\left(I_{1}\right)$ to

$$
-\left(D_{0}^{+}+d_{2} E_{22}\right), \quad 0 \leq-d_{2} E_{22}
$$

to obtain $P \in J$ satisfying

$$
-\left(D_{0}^{+}+d_{2} E_{22}\right), \quad 0 \leq P \leq-d_{2} E_{22}
$$

Since E_{22} generates an extreme ray, we must have $P=\lambda E_{22}$ where $\lambda=1$ from the above relation and hence $E_{22} \in J$. Finally, from

$$
P_{1}-P_{0}=d_{1} E_{11}-d_{2} E_{22}-a\left(E_{12}+E_{21}\right) \in J
$$

and from $E_{22} \in J, E_{12}+E_{21} \in J$, we obtain $E_{11} \in J$. Therefore, we conclude $E_{2} \subseteq J$.

In Lemma 2.2 above, if we had $d_{k}>0$ and $d_{l}<0$ instead of $d_{1}>0$ and $d_{2}<0$, then we should have $E_{k k}, E_{l l}, E_{k l}+E_{l k}, i E_{k l}-i E_{l k} \in J$. This follows from the fact that J has Property $\left(I_{1}\right)$ if and only if $U^{*} J U$ has Property (I_{1}) for any unitary matrix U.

Theorem 2.3. Let J be a subspace of E with Property (I_{1}). If there exists a diagonal matrix $D=\left(d_{i}\right)$ in E_{m} with $d_{1}>0, d_{2}<0, d_{i} \neq 0$ for all $i=3,4, \ldots m$ such that $D \in J$ then $E_{m} \subseteq J$.

Proof. By Lemma 2.2, we have $E_{2} \subseteq J$ and hence if $D_{0}=D-d_{1} E_{11}-$ $d_{2} E_{22}$ then $D_{0} \in J$. And for every $A \in E_{2}$, we have $A+D_{0} \in J$. By replacing D_{0} by $-D_{0}$ when necessary, we may assume that $d_{3}<0$. Let $D_{1}=E_{22}+D_{0}$ then $d_{2}=1>0$ and $d_{3}<0$ with $D_{1} \in J$. Here d_{2}, d_{3} are the second and the third diagonal elements of D_{1}. From the above remark, we have $E_{33}, E_{23}+E_{32}, i E_{23}-i E_{32}$ are all elements of J. Now, we define $D_{2}=E_{11}+D_{0}$ and repeat the same process to obtain $E_{13}+E_{31}, i E_{13}-i E_{31} \in J$. Therefore, $E_{3} \subseteq J$. If $m>3$ then we can apply the mathematical induction to finish the proof. We omit the routine proof which is a generalization of the above process.

Lemma 2.4. Let J be a subspace of E with Property $\left(I_{1}\right)$. If $\operatorname{dim} J \geq$ 2, then there exists $A \in J$ with $A \notin K \cup(-K)$.

Proof. Since a subspace with Property (I_{1}) is positively generated, we can choose a basis $\left\{P_{i} \mid i=1,2, \ldots \alpha\right\}$ for J with $P_{i} \in K$ for all
$i=1,2, \ldots, \alpha$. Let $D=U^{*} P_{1} U$ be diagonal with a unitary matrix U and let $Q=U^{*} P_{2} U$. We define two vectors $x=\left(d_{i}\right), y=\left(q_{i i}\right)$ where d_{i} and $q_{i i}$ are the diagonal entries of D and Q respectively. Due to Lemma 1.3, neither x nor y can be a zero vector since both D and Q are positive.

First, consider the case when $\{x, y\}$ is linearly dependent, i.e., $y=\alpha x$ for some $\alpha \neq 0$. Then $Q-\alpha D \notin K \cup(-K)$ since all of the diagonal entries are zero and therefore $P_{2}-\alpha P_{1}=U(Q-\alpha D) U^{*} \in J$ with the desired property.

Now, assume that $\{x, y\}$ is linearly independent. We can multiply x, y by scalar factors so that we have $\sum_{i=1}^{\alpha} x_{i}=\sum_{i=1}^{\alpha} y_{i}=1$. Since $\{x, y\}$ is linearly independent, $x_{k} \neq y_{k}$ for some k. If $x_{k}>y_{k}$ then we must also have $x_{l}<y_{l}$ for some l and if $x_{k}<y_{k}$ then $x_{l}>y_{l}$ for some l. Thus, $x-y \notin C \cup(-C)$ where C is the positive cone of R^{n}, the set of all real n-tuples. Therefore, $D-Q \notin K \cup(-K)$ where D and Q have been multiplied by same scalar factors as we did for x and y. Thus, $P_{2}-P_{1}=U(Q-D) U^{*} \notin K \cup(-K)$.

Theorem 2.5. Let J be a subspace of E with $\operatorname{dim} J \geq 2$. If J has Property $\left(I_{1}\right)$, then there exist $1<m \leq n$ and a unitary matrix U such that $U^{*} J U=E_{m}$.

Proof. Since J is positively generated, we can take a basis $\left\{P_{i} \mid i=\right.$ $1,2, \ldots k\}$ consisting of positive elements P_{i}. Let $P=\sum_{i=1}^{k} P_{i}$ and let $D=U^{*} P U$ where $D=\left(d_{i}\right)$ is a diagonal matrix and U is a unitary matrix. We may assume $d_{i}>0$ for $i=1,2, \ldots m$ and $d_{i}=0$ for $i>m$. Since E_{m} is an order ideal in E due to Lemma 1.3, and since $0 \leq U^{*} P_{i} U \leq D$, we must have $U^{*} P_{i} U \in E_{m}$ for all $i=1,2, \ldots k$. Thus, we have $U^{*} J U \subseteq E_{m}$.

To prove $E_{m} \subseteq U^{*} J U$, it is enough to find $A \in J$ with $A \notin K \cup(-\dot{K})$ due to Theorem 2.3. Let $Q=U^{*} P_{1} U, \alpha=\sum_{i=1}^{m} d_{i}, \beta=\sum_{i=1}^{m} q_{i i}$, where $q_{i i}^{\prime} s$ and the diagonal entries of $Q \in E_{m}$. For $A=\frac{1}{\alpha} D-\frac{1}{\beta} Q$, we claim that $A \notin K \cup(-K)$. Note that if $a_{i i}$ is the ith diagonal element of
A, then $\sum_{i=1}^{m} a_{i i}=0$. If $a_{i i}=0$ for all $i=1,2, \ldots, m$, it is clear that $A \notin K \cup(-K)$. Hence, we assume $a_{k k}>0$ for some k. Then we also have $a_{l l}<0$ for some l and hence $A \notin K \cup(-K)$.

Lemma 2.6. Let P be an element of E with $P=\left[\begin{array}{cc}P_{1} & q \\ q^{*} & \alpha\end{array}\right]$ where $P_{1} \in E_{n-1}, q \in C^{n-1}, 0<\alpha \in R$. Then P is positive if and only if $P_{1} \geq \frac{1}{\alpha} q q^{*}$.

Proof. Let $z^{*}=\left(x^{*}, \bar{\lambda}\right)$ be an arbitrary n-vector with $x \in C^{n-1}$, $\lambda \in C$ and let $\omega=q^{*} x$. Then

$$
\begin{aligned}
z^{*} P z & =x^{*} P_{1} x+\alpha|\lambda|^{2}+\lambda x^{*} q+\bar{\lambda} q^{*} x \\
& =x^{*} P_{1} x+\alpha|\lambda|^{2}+\lambda \bar{\omega}+\bar{\lambda} \omega \\
& =x^{*} P_{1} x+\left(\sqrt{\alpha} \lambda+\frac{1}{\sqrt{\alpha}} \omega\right)\left(\sqrt{\alpha} \bar{\lambda}+\frac{1}{\sqrt{\alpha}} \bar{\omega}\right)-\frac{1}{\alpha}|\omega|^{2} \\
& =x^{*} P_{1} x+\left|\sqrt{\alpha} \lambda+\frac{1}{\sqrt{\alpha}} \omega\right|^{2}-\frac{1}{\alpha}|\omega|^{2}
\end{aligned}
$$

Hence if $z^{*} P z \geq 0$ for all $z \in C^{n}$ then $x^{*} P_{1} x \geq \frac{1}{\alpha}\left|q^{*} x\right|^{2}$ for all $x \in$ C^{n-1} with $\lambda=-\frac{1}{\alpha} \bar{\omega}$. Also, if $x^{*} P_{1} x \geq \frac{1}{\alpha}\left|q^{*} x\right|^{2}$ for all $x \in C^{n-1}$, then $x^{*} P_{1} x-\frac{1}{\alpha}|\omega|^{2}+\left|\sqrt{\alpha} \lambda+\frac{1}{\sqrt{\alpha}} \omega\right|^{2} \geq 0$ for all $\lambda \in C$ and $x \in C^{n-1}$. Hence $z^{*} P z \geq 0$ for all $z \in C^{n}$. Therefore, $P \geq 0$ if and only if $P_{1} \geq \frac{1}{\alpha} q q^{*}$ since $\left|q^{*} x\right|^{2}=\left(q^{*} x\right)^{*}\left(q^{*} x\right)=x^{*} q q^{*} x=x^{*}\left(q q^{*}\right) x$.

Lemma 2.7. Let $D=\left(d_{i}\right)$ be a diagonal matrix with $d_{n}=0$. If $D, 0 \leq P$ for some $P \in E$ then there exists $Q \in E_{n-1}$ such that $D, 0 \leq Q \leq P$.

Proof. Let $P=\left[\begin{array}{cc}P_{1} & q \\ q^{*} & \alpha\end{array}\right]$ where $P_{1} \in E_{n-1}, q \in C^{n-1}$. If $\alpha=0$ then $q=0$ by Lemma 1.3 and we take $Q=P$. Assume $\alpha \neq 0$ and let $Q=P_{1}-\frac{1}{\alpha} q q^{*}$. Then by Lemma 2.6, $Q \geq 0$. Also, applying Lemma 2.6, again to $P-D \geq 0$, we obtain $\left(P_{1}-D\right)-\frac{1}{\alpha} q q^{*}=Q-D \geq 0$. Therefore, Q satisfies $D, 0 \leq Q \leq P$ and $Q \in E_{n-1}$.

Theorem 2.8. Let $D \in E_{m}$ be a diagonal matrix with $m<n$ and let $D, 0 \leq P$ for some $P \in E$. Then there exists $Q \in E_{m}$ such that $D, 0 \leq Q \leq P$.

Proof. If $n-m=1$, then the theorem follows from Lemma 2.7. When $n-m>1$, we apply Lemma 2.7 , to find $P_{1} \in E_{n-1}$ such that $D, 0 \leq P_{1} \leq P$ and apply again to $D, 0 \leq P_{1}$ to find $P_{2} \in E_{n-2}$ with $D, 0 \leq P_{2} \leq P_{1}$. If $n-m=2$ then we are done since $P_{2} \in E_{m}$ with the desired property. Otherwise, we use mathematical induction to produce $\left\{P_{1}, P_{2} \cdots P_{k}\right\}$ such that $P_{k} \in E_{n-k}$ and $D, 0 \leq P_{k} \leq P_{k-1}$. We take $Q=P_{k}$ where $k=n-m$.

Theorem 2.9. Let J be a subspace of E with $\operatorname{dim} J \geq 2$. Then J has Property (I_{1}) if and only if there exist m with $1<m \leq n$ and a unitary matrix U such that $U^{*} J U=E_{m}$.

Proof. By Theorem 2.8, E_{m} with $1<m \leq n$ has Property $\left(I_{1}\right)$ and hence the only if part is clear. If part of this theorem is just what we had in Theorem 2.5.

It is trivial to verify that a subspace J with $\operatorname{dim} J=1$ has Property $\left(I_{1}\right)$ if and only if $J=\{\lambda P \mid \lambda \in R\}$ for some $P \in K$. Hence, Theorem 2.9 provides a complete characterization of a subspace with Property (I_{1}). We also note that a subspace with Property (I_{1}) must have dimension k^{2} for some positive integer k since $\operatorname{dim}\left(E_{k}\right)=k^{2}$.

References

1. Combes, F. and Perdrizet, F., Certains idéaux dans les espaces vectoriels ordonnés, Trans. Amer. Math. Soc. 131(1968).
2. Moon, B.S., Ideal Theory of Ordered Locally Convex Spaces, J. Korean Math. Soc., Vol.15, No. 2 (1979), 81-99.

Korea Advanced Energy Research Institute
Daejeon 302-340, Korea

