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A CHARACTERIZATION OF SUBSPACES WITH
PROPERTY (It) IN THE ORDER NORMED SPACE

OF HERMITIAN MATRICES

BVUNG 800 MOON

1. Introduction

The ordered normed space of all n x n Hennitian matrices with the
usual operator norm and with the positive cone K = {P E Elx*Px ~ 0
for all x E en}, will be denoted by E or En. We will always assume E
to be a real vector space.

If A is an arbitrary m X n complex matrix, then A* will denote AT, i.e.
the transpose of the complex conjugate of A. When m < n, an element
A E Em is assumed to be an element of En with aij = 0 for i > m or
j > m. Thus, Em is considered as a subspace of En.

We denote Eij for the n x n matrix of all zero entries except the one
at (i,j) with value of 1. Note taht E ij E En only when i = j. We will
be using the fact that every Hermitian matrix A is diagonalizable, i.e.,
there exists a unitary matrix U such that U*AU is diagonal. IT D is a
diagonal matrix, then we can rearrange the diagonal entries in any order
that we please by a unitary transformation.

DEFINITION 1.1. A subspace J of E is said to have Property (11 ) if
for eve.ty A E J and P E E with A, 0::; P, there exists Q E J such that
A, 0 ::; Q ::; P.

Note that if J is a subspace with Property (11 ) and if U is a uni
tary matrix, then U* JU has Property (11 ). The order Property (11 ) is
equivalent to the sublattice order property in a lattice.
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DEFINITION 1.2. A positive element P of E is said to generate an
extreme ray in the positive cone K if whenever 0 ::; Q < P with Q E K
then Q = >.P for some>. 2: O.

LEMMA 1.3. Let P be an element of E with P =

PI E Em, P2 E En-m·
(a) If P 2: 0 then PI, P2 2: O.
(b) If P 2: 0 and P2 = 0, then Pa = o.
Proof. Proof for part (a) is omitted. For part (b), let x* = (y*,z*)

with Y E cm, z E en-m, then x*Px = y* PlY + y*Paz + z* PaY 2: o.
In particular, if we take z = >.P;y with>. real, then x*Px = y* PlY +
2>'IP;y/2 which is nonnegative for all >. E Rand Y E cm. Thus, we must
have PaY = 0 for all y E cm, i.e., P; = O.

In view of Lemma 1.3, we see that if P is positive and if all diagonal
entries of P are zero, then P = O.

LEMMA 1.4. Let D = (dj) be a diagonal matrix in E where dj is
the jth diagonal entry of D and let D+ be the diagonal matrix with
max{dj,O} as the jth entry. If D, 0 ::; Q ::; D+ for some Q E E, then
Q=D+.

Proof. When di 2: 0 for all i = 1,2, , n then D = D+ and hence
Q = D+. When di ::; 0 for all i = 1,2, n then D+ = 0 and therefore
Q = O. Thus, we assume that dk > 0, d, < 0 for some k and 1. Since
we have 0, di ::; qii ::; (D+)ii for all i = 1,2, ... n, we must have qii =
(D+)ii = di in case di > 0 and qii = (D+)ii = 0 when di < O. Therefore,
Q = D+ by Lemma 1.3.

2. A Characterization of Subspaces with Property (11 )

LEMMA 2.1. Let J be a subspace of E with Property (Il) and let

D be a diagonal matrix in J with D = [~l ;J where D l E E 2 ,

D2 E E n - 2 , and D l is neither positive nor negative. Assume that there

exists P = [~l ~2] E E with P2 = Dt and D, 0::; P. If both PI and
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PI - D 1 generate extreme rays in the positive cone of E z , then P E J.

Proof. By Property (11 ), we find Q E J with D, 0 ~ Q ~ P and let

Q = [~; ~: ] , then we have 0, D z ~ Qz ~ Pz = Di. Therefore, by

Lemma 1.4, we have Qz = Di. Now we apply Lemma 1.3 for P - Q ~ 0
to obtain Q3 = O. Since 0 ~ Ql ~ PI and PI generates an extreme ray,
Ql = >'P1 for some >. ~ O. Note that>' f. 0 since Ql cannot be zero due
to the fact that D 1 is neither positive nor negative. Similarly, we obtain
Ql - D1 = p(P1 - DJ) from 0 ~ Ql - D 1 ~ PI - D1 with p > O. Thus,
we have

>'P1 - D1 = Ql - D1 = p(PI - D 1 )

and hence (p - >')P1 = (p - 1)D1 • Now, if P f. >. then (p - >')P1 E
KU( -K) and hence (p-1)DI E KU( -K). But D I is neither positive nor
negative and hence p - 1 = 0, from which we obtain QI - D I = PI - D I ,

i.e., PI = QI. Therefore, we have Q = P E J.

LEMMA 2.2. Let J be a subspace of E with Property (11 ). If there
exists a diagonal matrix D = (d i ) E J such that d1 > 0, dz < 0 then
E z ~ J.

Proof. Let Do = D - dl Ell - dzE 22 then Do is the diagonal matrix
with first two elements of value 0 and the others are identical to those
of D. We define a set of positive elements of E as follows.

Po = Dt + dIEII

PI = Dt + 2dI E ll - dzEzz + a(EIZ + EzJ), a = J-2d1dz

Pz = Dt + 3dl Ell - 2dzEhz + ~(E12 + E ZI ),

P3 = Dt + 4d1E ll - 3dzEzz + J6(i(E1Z + EzJ),

QI = Dt + 2dIell - dzEzz + ia(El2 - E21 ),

Q2 = Dt + 3dI E ll - 2d2Ez2 +i~(EIZ - E21 ),

Q3 = Dt + 4dIE ll - 3dzEzz +i~(EIZ - EZI ).

we can easily check that Pj - Dt = XjXi, Qi - Dt = Yiyi for i = 1,2,3
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and j = 0,1,2,3 where Xo = Vi[;el,

Xl =...;u; el + J -d2 e2,

X2 = .j3d; el + J-2d2 e2,

X3 = y'4d; el + J -3d2 e2,

YI =...;u; el - iJ-d2 e2,

Y2 = .j3d; el - iJ-2d2 e2,

Y3 = y'4d; el - iJ-3d2 e2'

and hence Pj - Dt, Qi - Dt all generate extreme rays in the positive
cone of E2 • Now, let

Q. _ [Qil 0]
s - 0 Qi2

where D I , Pil , Qil E E2· Then Pi2 = Qi2 = Dt and Pjl - DI = Ujuj,
Qil - D I = ViVi' where Uo = J-d2 e2,

UI = .jd; el + J-2d2 e2,

U2 =...;u; el + J -3d2 ez,

U3 = .j3d; el + J -4d2 ez,

VI = .jd; el - iJ-2dz ez,

v2 =...;u; el-iJ-3dz ez,

v3 = .j3d; el - iJ-4d2 ez·

Hence, Pj, Qi all satisfy the conditions described in Lemma 2.1 for
j = 0,1,2,3 and i = 1,2,3. Therefore, Pj, Qi E J. Now, note that

2Pz - P3 - PI = (2V3 - J6 -l)a(E12 + E21 ) E J

2Qz - Q3 - Q1 ~ (2V3 - J6 -l)ai(E12 - E Z1 ) E J

where a = J-2dIdz =f 0 and hence E 12 +E21 E J, iE12 -iE21 E J. Also
from 2PO-PI = Dt+dzE22-a(E12+E:n) E J, we have Dt+dzEzz E J.
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-(Dt + d2E22 ),

to obtain P E J satisfying

IT nt = 0, then we have E22 E J. In case Dt =f 0, we apply Property
(11 ) to

Since E22 generates an extreme ray, we must have P = >"~2 where>.. = 1
from the above relation and hence ~2 E J. Finally, from

PI - Po = dIEll - d2E 22 - a(EI2 + ~I) E J

and from ~2 E J, E I2 + E21 E J, we obtain Ell E J. Therefore, we
conclude E2 ~ J.

In Lemma 2.2 above, if we had dk > 0 and d, < 0 instead of d I > 0
and d2 < 0, then we should have Ekk, Ell, E kl + E,k, iEkl - iE'k E J.
This follows from the fact that J has Property (II) if and only if U* JU
has Property (11 ) for any unitary matrix U.

THEOREM 2.3. Let J be a subspace of E with Property (11 ). If there
exists a diagonal matrix D = (di ) in Em with dI > 0, d2 < 0, d i =f 0 for
all i = 3,4, ... m such that D E J then Em ~ J.

Proof. By Lemma 2.2, we have E2 ~ J and hence if Do = D-dIEII 
d2~2 then Do E J. And for every A E ~, we have A + Do E J. By
replacing Do by -Do when necessary, we may assume that da < O. Let
D I = E22 + Do then d2 = 1 > 0 and da < 0 with DI E J. Here
d2 , da are the second and the third diagonal elements of D I • From the
above remark, we have Ea3 ,E2a +Ea2, iE2a -iEa2 are all elements of J.
Now, we define D2 = Ell + Po and repeat the same process to obtain
E 13 + Ea}, iE13 - iE31 E J. Therefore, Ea ~ J. H m > 3 then we
can apply the mathematical induction to finish the proof. We omit the
routine proof which is a generalization of the above process.

LEMMA 2.4. Let J be a subspace of E with Property (11 ). Ifdim J >
2, then there exists A E J with A (j K U (-K).

Proof. Since a subspace with Property (11) is positively generated,
we can choose a basis {Pi Ii = 1,2, ... a} for J with Pi E K for all
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i = 1,2, ... , a. Let D = U*PI U be diagonal with a unitary matrix U
and let Q = U*P2 U. We define two vectors x = (di ), Y = (qii) where di
and qii are the diagonal entries of D and Q respectively. Due to Lemma
1.3, neither x nor Y can be a zero vector since both D and Q are positive.

First, consider the case when {x,y} is linearly dependent, i.e., y = ax
for some a =f O. Then Q - aD ~ K U ( - K) since all of the diagonal
entries are zero and therefore P2 - aPI = U(Q - aD)U* E J with the
desired property.

Now, assume that {x,y} is linearly independent. We can multiply
ex ex

x, y by scalar factors so that we have L Xi = L Yi = 1. Since {x, y}
i=I i=I

is linearly independent, Xk =f Yk for some k. IT Xk > Yk then we must
also have Xl < Yl for some 1 and if Xk < Yk then Xl > Yl for some 1.
Thus, X - Y ~ C u (-C) where C is the positive cone of Rn, the set of
all real n-tuples. Therefore, D - Q ~ K U ( - K) where D and Q have
been multiplied by same scalar factors as we did for X and y. Thus,
P2 - PI = U(Q - D)U* ~ K U (-K).

THEOREM 2.5. Let J be a subspace of E witb dimJ 2': 2. H J bas
Property (II), tben tbere exist 1 < m :::; n and a unitary matrix U such
that U* JU = Em.

Proof. Since J is positively generated, we can take a basis {Pi Ii =
k

1,2, ... k} consisting of positive elements Pi. Let P = L Pi and let
i=I

D = U*PU where D = (di ) is a diagonal matrix and U is a unitary
matrix. We may assume di > 0 for i = 1,2, ... m and di = 0 for
i > m. Since Em is an order ideal in E due to Lemma 1.3, and since
o:::; U*PiU:::; D, we must have U*PiU E Em for all i = 1,2, ... k. Thus,
we have U* JU ~ Em.

To prove Em ~ U* JU, it is enough to find A E J with A fI. K U (- i()
m m

due to Theorem 2.3. Let Q = U*PI U, a = L di, (3 = L qii, where
i=I i=I

qiis and the diagonal entries of Q E Em. For A = ~D - ~Q, we claim
that A ~ K U (-K). Note that if aii is the ith diagonal element of
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m

A, then L aii = O. IT aii = 0 for all i = 1,2, ... , rn, it is clear that
i=1

A ~ K U ( - K). Hence, we assume akk > 0 for some k. Then we also
have all < 0 for some 1and hence Aft K U(-K).

LEMMA 2.6. Let P be an element of E with P = [:: :] where

PI E En-I, q E en-I, 0 < a E R. Then P is positive if and only if
PI ;:::: !;qq*.

Proof. Let z* = (x*, 1) be an arbitrary n-vector with x E en-I,
A E e and let w = q*x. Then

z* pz = x* Plx + alAI2 + AX*q + 1q*x

= x* Plx + alAI2 + AW +Xw
1 r::.- 1 1 2

=x*PIx+(va A + c;w)(yaA+ c;w)--Iwl
ya ya a

* r::. 1 2 1 2= X Plx + Iya A+ c; wl - -Iwl
ya a

Hence if z* pz > 0 for all z E en then x* Plx ~ ~lq*xI2 for all x E

en-I with A = -!;w. Also, if x*Plx ~ !;lq*xI2 for all x E en-I, then
x*Plx - ~lwl2 + I~A + )aw12 ;:::: 0 for all AE e and x E en-I. Hence

z* pz ;:::: 0 for all z E en. Therefore, P ~ 0 if and only if PI ~ ~qq*

since Iq*xl2 = (q*x)*(q*x) = x*qq*x = x*(qq*)x.

LEMMA 2.7. Let D = (di ) be a diagonal matrix with dn = O. If
D, 0 ~ P for some P E E then there exists Q E En-I such that
D, O~Q~P.

Proof. Let P = [:: :] where PI E En-I, q E en-I. IT a = 0

then q = 0 by Lemma 1.3 and we take Q = P. Assume a =1= 0 and let
Q = PI - ~qq*. Then by Lemma 2.6, Q ~ O. Also, applying Lemma 2.6,
again to P-D;:::: 0, we obtain (PI-D)-~qq*= Q-D ~ O. Therefore,
Q satisfies D, 0 ~ Q ~ P and Q E En-I.
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THEOREM 2.8. Let DEEm be a diagonal matrix with m < n and
let D, 0 :S P for some P E E. Then there exists Q E Em such that
D, O:S Q:S P.

Proof. IT· n - m = 1, then the theorem follows from Lemma 2.7.
When n - m > 1, we apply Lemma 2.7, to find P1 E E n - 1 such that
D, 0 :S P1 :S P and apply again to D, 0 :S P1 to find P2 E E n - 2 with
D, 0 :S P2 :S P1 • IT n - m = 2 then we are done since P2 E Em with the
desired property. Otherwise, we use mathematical induction to produce
{P1 , P2 ••• Pd such that Pk E En-k and D, O:S Pk :S Pk - 1 • We take
Q = Pk where k = n - m.

THEOREM 2.9. Let J be a subspace of E with dimJ ;:::: 2. Then J
has Property (I1 ) if and only if there exist m with 1 < m :S n and a
unitary matrix U such that U* JU = Em.

Proof. By Theorem 2.8, Em with 1 < m :S n has Property (I1 ) and
hence the only if part is clear. IT part of this theorem is just what we
had in Theorem 2.5.

It is trivial to verify that a subspace J with dim J = 1 has Property
(I1) if and only if J = {,\PI,\ E R} for some PE K. Hence, Theorem 2.9
provides a complete characterization of a subspace with Property (I1 ).

We also note that a subspace with Property (I1 ) must have dimension
k2 for some positive integer k since dimeEk) = k2 •
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