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A CHARACTERIZATION OF SUBSPACES WITH
PROPERTY (I;) IN THE ORDER NORMED SPACE
OF HERMITIAN MATRICES

BYUNG S0O0 MOON

1. Introduction

The ordered normed space of all n X n Hermitian matrices with the
usual operator norm and with the positive cone K = {P € E|z*Pz > 0
for all z € C™}, will be denoted by F or E,,. We will always assume E
to be a real vector space.

If A is an arbitrary m x n complex matrix, then A* will denote ZT, ie.
the transpose of the complex conjugate of A. When m < n, an element
A € E,, is assumed to be an element of E,, with a;; = 0 for z > m or
7 > m. Thus, E,, is considered as a subspace of E,.

We denote E;; for the n x n matrix of all zero entries except the one
at (¢,7) with value of 1. Note taht E;; € E, only when i = 5. We will
be using the fact that every Hermitian matrix A is diagonalizable, i.e.,
there exists a unitary matrix U such that U*AU is diagonal. If D is a
diagonal matrix, then we can rearrange the diagonal entries in any order
that we please by a unitary transformation.

DEFINITION 1.1. A subspace J of E is said to have Property (I1) if
for every A€ J and P € E with A, 0 < P, there exists Q € J such that
A, 0ZQ<LP

Note that if J is a subspace with Property (I;) and if U is a uni-
tary matrix, then U*JU has Property (I3). The order Property (1) is
equivalent to the sublattice order property in a lattice.
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DEFINITION 1.2. A positive element P of E is said to generate an
extreme ray in the positive cone K if whenever 0 < Q < P withQ € K
then Q = AP for some A > 0.

LEMMA 1.3. Let P be an element of E with P = [Pi Ps
Pl € Em, P2 € En—m-
(a) f P >0 then P, P, > 0.

(b) If P> 0 and P, =0, then P; = 0.

] where

Proof. Proof for part (a) is omitted. For part (b), let z* = (y*,2*)
with y € C™, z € C*™™, then z*Pz = y*Pyy + y*P3z + z* Py > 0.
In particular, if we take z = AP;y with X real, then z*Pz = y* Py +
2)|P3y|? which is nonnegative for all A € R and y € C™. Thus, we must
have Py =0 for all y € C™, i.e., Py =0.

In view of Lemma 1.3, we see that if P is positive and if all diagonal
entries of P are zero, then P = 0.

LEMMA 1.4. Let D = (d;) be a diagonal matrix in E where d; is
the jth diagonal entry of D and let D be the diagonal matrix with
max{d;,0} as the jth entry. If D, 0 < Q < D% for some Q € E, then
Q = D+,

Proof. When d; > 0 for all i = 1,2,...,n then D = D% and hence
Q =D%*. When d; <O0for all i =1,2,...n then D = 0 and therefore
Q@ = 0. Thus, we assume that dy > 0, di < 0 for some k and I. Since
we have 0, d; < qi; < (D%);; for all ¢ = 1,2,...n, we must have ¢;; =
(D*)ii = d; in case d; > 0 and ¢;; = (D1);; = 0 when d; < 0. Therefore,
Q = D* by Lemma 1.3.

2. A Characterization of Subspaces with Property (I;)

LEMMA 2.1. Let J be a subspace of E with Property (I1) and let

D be a diagonal matrix in J with D = | 2}
0 D,

D, € E,_,, and D, is neither positive nor negative. Assume that there

exists P = [1;1 12] € E with P, = Df and D, 0 < P. If both P, and
2

where Dy € Ej,
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P, — D, generate extreme rays in the positive cone of E;, then P € J.

Proof. By Property (1), we find @ € J with D, 0 < @ < P and let

Q= [gi 8;], then we have 0, Dy < Qy < P, = D . Therefore, by
3

Lemma 1.4, we have Q; = DF. Now we apply Lemma 1.3 for P—Q >0
to obtain @3 = 0. Since 0 < @; < P; and P; generates an extreme ray,
@, = AP, for some A > 0. Note that A # 0 since 1 cannot be zero due
to the fact that D; is neither positive nor negative. Similarly, we obtain
@1 — D1 = p(Py — Dy) from 0 £ Qy — Dy < Py — Dy with y > 0. Thus,
we have

/\Pl—D1=Q1—D1 =}1,(P1—'D1)

and hence (g — A)Py = (p — 1)D;. Now, if g # A then (g — X)P, €
KU(—K) and hence (u—1)D; € KU(—K). But D, is neither positive nor
negative and hence p —1 = 0, from which we obtain @, — D, = P, — D;,
i.e., P = ;. Therefore, we have Q@ = P € J.

LEMMA 2.2. Let J be a subspace of E with Property (I;). If there
exists a diagonal matrix D = (d;) € J such that d; > 0, do < 0 then
E,CJ.

Proof. Let Dy = D — dy E;; — daEs2 then Dy is the diagonal matrix
with first two elements of value 0 and the others are identical to those
of D. We define a set of positive elements of E as follows.

Py = Df + d 1 Eyy

Py = D§ +2d1Eyy — dyEye + a(Erz + E2), a=+/—2d1d,
Py = D} + 3d1E11 — 2d2Ez2 + V3a(E12 + En),

Py = D} +4d1Eyy — 3da By + \/@(En + E3),

Q1 = Df + 2dye1; — dp Egy + ia( By — En1),

Q2 = Df +3d1Ey; — 2d2 Bz + i\/?’_a(Eu ~ Eg),

Qs = Df)'" +4d1Eq; — 3d2E32 + Z'\/56_1(1‘712 — Eg1).

we can easily check that P; -Df = z;77, Qi — D;)* =y;yf fori =1,2,3
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and 7 = 0,1,2,3 where z¢ = v/diey,

3 =+/2d; €3 + \/—'-—d; €2,

22 = /3dy €1 +/—2d; eq,
T3 = /4d; e; + \/-—?dz €2,
y1 = /2d; €1 —i\/—dy e,
y2 = /3d1 &1 —iy/—2d; €2,
V4d; e; —i\/—3d; es.

and hence P; — DY, Q; — D all generate extreme rays in the positive
cone of F;. Now, let

_|D1 0 _|(Pa O _{Qa O
D‘[o Dz]’ P’"[o P,-]’ Q"[o Qi
where Dy, P, Qi € E;. Then P,-2=Qi2=D3' and Pj; — Dy = ujuj,

Qi1 — Dy = viv] where uqg = /—dz e,

U1=\/d_181+\/:27262,

U2=M61+\/;3_(b62,
u3=\/3'7161+m62,
v =+/d; 61—i\/j2_£e2,
Uz=\/2_€1;61*i\/—:3_dz€21
’U3=\/37161—-i\/:a:l;62.

Hence, P;, @, all satisfy the conditions described in Lemma 2.1 for
7=0,1,2,3 and 7 = 1,2, 3. Therefore, P;, Q; € J. Now, note that

Ys

2P, — Py — P, = (2V3 - V6—1)a(Er2 + En) € J
2Q2 — Q3 — @1 = (23 — V6 —1)ai(E1a — En) €J

where a = \/—2d;d; # 0 and hence Ey3+E2; € J,1E13—1Ey € J. Also
from 2Py~ Py = D} +dyE2s—a(E12+ E3 ) € J, we have Df +-dyEzq € J.
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If Df = 0, then we have E2 € J. In case D} +# 0, we apply Property
(Il) to
—(Df +d2E22), 0< —d2Ep

to obtain P € J satisfying
~(Df +dzEz), 0<P<—dEp.

Since E; generates an extreme ray, we must have P = AEy; where A =1
from the above relation and hence Fpz € J. Finally, from

P, — Py =d1Ey; —dyE22 —a(Ey2 + Ey) €J

and from Ez; € J, Ey2 + E2; € J, we obtain Ey; € J. Therefore, we
conclude E> C J.

In Lemma 2.2 above, if we had d; > 0 and d; < 0 instead of d; > 0
and d; < 0, then we should have Exx, Ey, Ex;+ Ep, iEy — tEy € J.
This follows from the fact that J has Property (I;) if and only if U*JU
has Property (I;) for any unitary matrix U.

THEOREM 2.3. Let J be a subspace of E with Property (I). If there
exists a diagonal matrix D = (d;) in E,, withd, > 0, d> <0, d; # 0 for
alli = 3,4,...m such that D € J then E,, C J.

Proof. By Lemma 2.2, we have E; C J and hence if Dy = D—d, Ey; —
dsE2y then Dy € J. And for every A € E;, we have A+ Dy € J. By
replacing Dy by —D, when necessary, we may assume that ds < 0. Let
Dy = E33+ Dy thend, =1 > 0 and d3 < 0 with D; € J. Here
d,, d; are the second and the third diagonal elements of D;. From the
above remark, we have E33, Ey3 + E35, 1E93 —1FE3, are all elements of J.
Now, we define Dy = Ej; + Dy and repeat the same process to obtain
Ey3 + E31, tEy3 —tE3 € J. Therefore, E3 C J. ¥ m > 3 then we
can apply the mathematical induction to finish the proof. We omit the
routine proof which is a generalization of the above process.

LEMMA 2.4. Let J be a subspace of E with Property (I,). If dim J >
2, then there exists A € J with A ¢ K U (—K).

Proof. Since a subspace with Property (I) is positively generated,
we can choose a basis {P;|i = 1,2,...a} for J with P; € K for all
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t=1,2,...,a. Let D = U*P,U be diagonal with a unitary matrix U
and let Q@ = U*P,U. We define two vectors z = (d;), y = (¢:i) where d;
and g¢;; are the diagonal entries of D and @ respectively. Due to Lemma
1.3, neither z nor y can be a zero vector since both D and @ are positive.

First, consider the case when {z,y} is linearly dependent, i.e., y = az
for some a # 0. Then Q — aD ¢ K U (—K) since all of the diagonal
entries are zero and therefore P, — aP, = U(Q — aD)U* € J with the
desired property.

Now, assume that {z,y} is linearly independent. We can multiply

o o
z, y by scalar factors so that we have Z ;= Zy,- = 1. Since {z, y}
=1 i=1
is linearly independent, rr # yi for some k. ¥ zx > yi then we must
also have z; < y; for some ! and if zx < yg then z; > y; for some L.
Thus, z —y ¢ C U (—C) where C is the positive cone of R, the set of
all real n—tuples. Therefore, D — Q ¢ K U(—K) where D and @ have
been multiplied by same scalar factors as we did for z and y. Thus,
P,-P =U(Q—-D)U*¢ KU(-K).

THEOREM 2.5. Let J be a subspace of E with dimJ > 2. If J has
Property (I ), then there exist 1 < m < n and a unitary matrix U such
that U*JU = E,,.

Proof. Since J is positively generated, we can take a basis {P; |7 =
k

1,2,...k} consisting of positive elements P;. Let P = ZP; and let
=1

D = U*PU where D = (d;) is a diagonal matrix and U is a unitary

matrix. We may assume d; > 0 for : = 1,2,...m and d; = 0 for

t > m. Since E,, is an order ideal in E due to Lemma 1.3, and since

0 LU*R,U < D, we must have U*P;U € E,, forall: =1,2,... k. Thus,

we have U*JU C E,,.

To prove E,, C U*JU, it is enough to find A € J with A ¢ K U(—K)
m m
due to Theorem 2.3. Let @ = U*PAU, a = Zd;, B = Zqii, where

=1 =1
g:;s and the diagonal entries of Q € E,,. For A = %‘-D - %Q, we claim
that A ¢ K U (—K). Note that if a;; is the ith diagonal element of
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A, then Za;g =0. fa;; =0forall : =1,2,...,m, it is clear that
i=1

A ¢ K U(—K). Hence, we assume ax; > 0 for some k. Then we also

have a;; < 0 for some ! and hence A ¢ K U (—K).

LEMMA 2.6. Let P be an element of F with P = [? Z] where

P, € E, 1,€C™ 0 < ac R Then P is positive if and only if
Py > L4q*.

Proof. Let z* = (z*, X) be an arbitrary n—vector with z € C™~1,
A € C and let w = ¢g*z. Then

2*Pz =z*Piz + o|A? + Az*q + N\¢*z
=z*Pyjz+ (1|x\|2 + 2@ + w

* 1 -~ 1 _ 1
=z P1x+(\/a)\+:/—aw)(\/&_/\+_\/_a_w)_zlwlz
. 1 o, 1. .,

Hence if 2*Pz > 0 for all z € C™” then z*Piz > %|q*m|2 for all z €
C™! with A = —1&. Also, if z*Pyz > Llg*z|? for all z € C™~, then
*Piz — L|wf + Ve + ‘/Lawl2 >0forall A\ € C and z € C™}. Hence
z*Pz > 0 for all z € C™. Therefore, P > 0 if and only if P, > %qq*
since |¢*z|* = (¢*2)*(¢"z) = 2*q¢*z = =*(¢q")z.

LEMMA 2.7. Let D = (d;) be a diagonal matrix with d, = 0. K
D, 0 < P for some P € E then there exists Q € E,_; such that
D, 0<Q<LP.

Proof. Let P = P: Z{] where P, € Ep,—y, g€ C™l. Fa=0
then ¢ = 0 by Lemma 1.3 and we take @ = P. Assume a # 0 and let
Q=P - %qq*. Then by Lemma 2.6, @ > 0. Also, applying Lemma 2.6,
again to P—D > 0, we obtain (P; —D)— %qq* = Q—D > 0. Therefore,
Q satisfies D, 0 < Q< Pand Q € E,_;.
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THEOREM 2.8. Let D € E,, be a diagonal matrix with m < n and
let D, 0 < P for some P € E. Then there exists Q € E,, such that
D, 0L<Q<LP

Proof. If-n — m = 1, then the theorem follows from Lemma 2.7.
When n — m > 1, we apply Lemma 2.7, to find P, € E,_; such that
D, 0 £ P, £ P and apply again to D, 0 < P, to find P, € E,_» with
D, 0< P, < P,. f n—m = 2 then we are done since P, € E,, with the
desired property. Otherwise, we use mathematical induction to produce
{P],Pz Pk} such that P, € E,_; and D, 0 < P; < Pr_;. We take
Q = Py where k =n —m.

THEOREM 2.8. Let J be a subspace of E with dimJ > 2. Then J
has Property (I) if and only if there exist m with1 < m < n and a
unitary matrix U such that U*JU = E,,.

Proof. By Theorem 2.8, E,, with 1 < m < n has Property (I;) and
hence the only if part is clear. If part of this theorem is just what we
had in Theorem 2.5.

It is trivial to verify that a subspace J with dim J = 1 has Property
(I1) if and only if J = {A\P|X € R} for some P € K. Hence, Theorem 2.9
provides a complete characterization of a subspace with Property (I).
We also note that a subspace with Property (I;) must have dimension
k? for some positive integer k since dim(Ey) = k2.
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