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CONVERGENCE OF GALERKIN APPROXIMATION
FOR A HEAT EQUATION

WITH A RANDOM INITIAL CONDITION *

U JIN CHOI AND Do Y. KWAK

1. Introduction

The purpose of this paper is to present some analyses of prob;tbilis­
tic convergence of Galerkin approximations for a heat equation with a
random initial condition which has been studied in [7, 8] by S. Tasaka.

We consider the problem:

(1.1)
fJu fJ2u
fJt = fJx2 in D x (0, T] x n
u(x,O,w) = uo(t,w) at t =°
u(x,t,w) = °in fJD x [O,T] x n,

where D == (0,1) C R with boundary fJD,O < T < oo,(n,E,p) is
a complete probability space and uo(t,w) a random initial condition
on (n, E, P). For each wEn, the problem (1.1) is an ordinary heat
equation. If for each wEn, we have the explicit formula for the sample
path uo(',w) then one can solve the equation (1.1) for u(',w) for each w
in the ordinary way. However in general one has information only about
the statistical data of u(x, 0, w), i.e. the mean and variance etc.; one
does not know the sample path Uo (x, 0, w) explicitly. In this case one
can get random approximate solutions and investigate their probabilisdc
convergent properties. The methods followed here are similar to the
ones in [2] [4]' [6] and [7] except repeated application of the Markov's
inequality and the Borel-Cantelli's lemma.

2. Notations
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Let (n, 'E, P) be independent of time t. We denote by L 2 (0,1) =
L2, Hm(o, 1) = H m and Hr:(O, 1) = Hr:, m = 1,2, ... , the usual

Lebesgue and Sobolev spaces on (0,1) respectively and by (', '), 11 .

110 and 11 . IIm their natural inner product and norms respectively. For
a sequence of discretization parameter hi E (0, !],j = 1,2,·'· , with
hj ! 0, let Shj C HJ be finite dimensional subspaces such that for all
v E HJ nHq,q E {1,2},

(2.1) inf \Iv - 4Jhj lip ~ ChJ-Pllvllq, pE {D, I}, 4Jhj E Shj, P < q,

where the constant C does not depend on h or v.

3. Almost surely (a.s.) convergence of continuous time
Galerkin approximations

The variational formulation of (1.1) is

(3.1) (Ut(t,w), 4J) + (\7u(t,w), '\74J) = 0, \f 4J E H6 a.s. and

u(O,w)=uo(w) a.s..

h - 8u d 'r7 _ 8uwere Ut - at an vU - 8x·

DEFINITION. A random function u : D x [0, T] x n --+ R is a random
weak solution of (1.1) iff

(i) u(x, t,w) is measurable for every (x, t) E D x [0, T]
(ii) u(', ',w) E C 1 ([0, T] : HJ) for a.s. and

(iii) u(x, t,w) satisfies (3.1) a.s.

For each w E !1, (3.1) is a deterministic problem which has a unique
weak solution u(w) : [0, T) --t HJ [3]. By the same reason there exists
a unique continuous time Galerkin approximation uhj (w) : [0, T] --+ Shj
to u(w) defined by

(3.2) (u~j (t,w), 4Jhj ) + (\7uhj (t,w), \74Jhj ) = °\f4Jhj E Shi , t > 0,

uhj (0) = Lhj uo(w), wE !1,

where Lhj uo(w) is the L2-projection of uo(w) into Shj . One way to
show the measurability of the solution (3.1) is to make use of the Fadeo­
Galerkin procedure in (3.2), but it is lengthy. So it is omitted. See [3].
We shall use the Ritz projection Rhj defined by

(3.3) ('\7Rhj u(t,w), \74Jhj ) = ('\7u(t,w), '\74Jhj ), \f4Jhj E Shj
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Note that Rhj commutes with time derivative. We write

ehj (t,w) = uhj (t,w) - u(t,w)
= uhj (t,w) - Rhj u(t,w) + Rhj u(t,w) - u(t,w)

= (Jhj (t,w) + phi (t,w),

where

and

Throughout, C > 0 is a generic constant and

(v(t») = Lv(t,w)dP(w).

THEOREM 3.1. Suppose E;"l h1-p < 00, pE (0,1],.8 E {I, 2},p < .8

and uo(w) E HJ n HP a.s.. If (Iluoll~) < 00 and (IIutll~) < 00, tben
lIuhj (t,w) - u(t,w)lIo converges a.s. to zero witb tbe rate O(h}).

PROOF: Observe first that IIv - Rhj vlip :::; Ch1-Pllvllp, v E HJ n HP.
Differentiate (3.3) with respect to t and use the above approximability
property to obtain

It follow then that for each w E il,

T

(3.5) lI ehj (t,w)lIo :::;Ch1{lIuo(w)11.8+lIu(t,w)!IP+ il1us(w)IIp ds}.

Thus taking expectation on both sides of (3.5) yields

(3.6) (lIehj (t)II~) :::; Ch~P {(lIuo II~) + (llu(t)II~)

+ T iT (IlUsll~)ds} :::; Ch~P.
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According to the Markov's inequality and (3.6), we have

(3.7) P(llehj (t w)11 > hi'.) < (lI ehj
(t)1I5) < Ch~(f~-p)

, 0 - J - h~P - J '
J

which leads by the hypothesis to

00 00

(3.8) LP(lIehj(t,w)lIo ~ h~):S; CLh~(,8-p) < 00.
j=l ~1

Now let Ahj and B be the events

and

B = {w: lIehj(t,w)lIo ~ hIj, infinitely often}.

Note that B = .lim supAh .. Thus finally the Borel-Cantelli's lemma to
J-+OO 1

(3.7) yields P(B) = °which implies the assertion.
Let {hj",}~=l be a random finite subsequence of {hj}~l with

E}:l h:-P < 00, pE {O, I},.8 E {I, 2} and hj", 's are not necessary differ­

ent but not infinitely many same hj", 's when N --+ 00. We call {hj", }~=1
the sample meshes of size N from {hj}~l.

DEFINITION. Define the Galerkin sample mean UN by

(3.9)

where uhj"'(t,w) is the solution of (3.2).

THEOREM 3.2. Let p E {O, I}, .8 E {I,2} and p < .8, and {hj", }~=1

be a random finite subsequence as above. If (lIuolI~), (lIu(t)II~) and

(lIutll~) are finite, then the Galerkin sample mean UN converges m

probability to (-t(t)) in 11 . lip-norm.
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PROOF: We write

II UN(t,w) - (u(t») 11;

= ~211 ~{(uh•• (t,w) - Rh;. u(t,w)) + (Rh;. u(t,w) - u(t,w))

+ (u(t,w) - (U(t»))}11:

~~ {~[1I9h;. (t,w)lI~ + IIph;·(t,w)lI~l + lIu(t,w) - (u(t» 11; },

and take the expectation to get

(3.10) (lIuN(t) - (u(t») 11;)

::; ~ {(lIuoll~) + (lIu(t)II~) + T iT (IIUtll~) dt}

00

x L h~(f3-p) --t 0 as N --t 00,
j=l

which completes the proof.

COROLLARY. Let Nj's be the sample size corresponding to hj's with

I:~l h1-o <00, O<a<{3. H L:~l N j-
1h j 20 <00 , then lIuN(t,w)

- (u(t») lip = O(hj) a.s..

PROOF: We start with

L P(lIuN(t,w) - (u(t») lip ~ hi)
j=l

::; f (lI uN(t) ~~iu(t») 11;)
j=l J

00::; CL N j-
1 hj 20 < 00,

j=l
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which leads by the previous arguments to the result.

REMARK 1. Given a sequence of meshes {hj}~l with E hf-p < 00,
j=lOO

P E {0,1}, {J E {1,2}, p < (J, one can choose Nj by Nj ~ [hj 2
p

] + 1,
where [x] denotes the largest integer less than or equal to x. Thus by
the corollary one can expect that the Galerkin sample mean will be close
to the expectation (u(t)) of the exact solution u in an appropriate norm
with a high probability as much as desired, that is, for every E > 0 and
6> 0, there exists a number N such that

p( max lIuN(t,w) - (u(t)) lip < E) ~ 1- 6.N>No

It is only by the strong law of large numbers that the existence of such
N is indeed guaranteed. This means that the continuous time Galerkin
sample mean is better estimator for (u(t)) than the solution UA of the
averaged equation when (u(t)) 1= UA which occurs in many general situ­
ations.
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