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AN ALGORITHM FOR BIVARIATE
GAUSSIAN QUADRATURE

HA-JINE KIMN

1. Introduction

To evaluate an univariate definite integral by numerical method, var­
ious methods can be available, for example, trapezoidal rule, Simpson's
rule and Gaussian quadrature, etc. Generally Simpson's rule requires
much more computing time, since it needs more function evaluations
than those of Gaussian quadrature. One reason why there are many
formulas for numerical integration is that there are so many ways for
selecting the space of base points and the degree of interpolating poly­
nomials. These formulas can be classified into two groups : those of
equally spaced points and those for which the spacing is unequal but not
arbitrary. Gaussian quadrature formulas are the latter. The numerical
integration with equally spaced base points is valid only under the con­
dition that interval [a, b] is finite and the integrand f( x) is sufficiently
differenciable.

Univariate Gaussian quadrature has been developed by many authors.
[2], [3], [4] However, bivariate quadrature, specially, bivariate Gaussian
quadrature has not yet been clearly searched. The bivariate quadrature
is strongly demended for various numerical computations.

The object of this note is to establish an algorithm for bivariate Gaus­
sian quadrature by dealing with an expansion of the univariate definite
integral to the bivariate integral of general form :

l b ld(X)
f(x, y)dy dx.

a c(x)
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2. On the univariate Gaussian quadrature

In the case of non equally spaced points, the definite integral can be
written as

(2.1) 1b
f(x)dx =1b

g(x)w(x)dx ~ Aog(xo) + ... + Akg(Xk)

where Ao,'" ,Ak do not depend upon g(x). [4] We need to calculate
these Ao, . .. ,Ak • Since Formula (2.1) has 2k+2 parameters x 0, . .. ,xk,

Ao, ... ,Ak , it is helpful to derive a formula which is exact for all poly­
nomials of degree 2k + 1. [1]

Let f( x) = g(x )w(x) and g(x) be an approximation of Pk(x) which is
a polynomial of degree not exceeding k and which interpolates g(x) at
Xo,'" ,Xk on (a, b). Then we have the Newton form

g(x) = Pk(x) + 9[x0, . .. ,xk, x] . (x - xo) ... (x - xk)

where g[xo,'" ,Xk,X] is the (k + l)th divided difference of g(x). Inte­
grating f( x) on [a, b],

1b
f(x)dx =1b

g(x)w(x)dx

b

=1Pk(x)w(x)dx

b

+1g[xo,··· ,Xk,X]·(X-xo)···(X-Xk)W(x)dx.

By Lagrange form, Pk ( x) is to be of the form

Pk(x) = g(xo)lo(x) + ... + g(xk)lk(x)

where liex) (i = 0, ... , k) is the (i + 1)th Lagrange basis. Thus

(2.2) 1b
Pk(x)w(x)dx

= g(xo)1b
lo(x)w(x)dx + ... + g(Xk)1b

h(x)w(x)dx

= Aog(xo) + ... + Akg(Xk).
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where Ai = l b
li(x)w(x)dx.

To estimate the error term of integration, we consider :
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(2.3) l bg
(x)W(X)dX -lb

Pk(x)w(x)dx

= l b
.g[xo," . ,Xk, x]tPk(x)w(x)dx

with tPk(X) = (x - xo)'" (x - Xk). Let Pk+l(X) be an orthogonal poly­
nomial of degree k + 1 with respect to w(x) on (a, b). Then by the
properties of orthogonal polynomial, we have

Pk+l(X) = a(x - eo)(x - 6)'" (x - ek)

with the (k +1) distinct points eo,'" ,ek in (a, b) and a constant a, and

b1Pk+l(x)w(x)dx = O.

Thus, from (2.3), we have the error term:

b

(2.4) 19 [Xo,'" ,X2k+l, x] tP2k+l(x)w(x)dx

b

=1g[xo,··· ,X2k+l,X]tPk(X)(X-Xk+I)"'(X-X2k+l)W(x)dx

_g(2k+2)«() lb 1 2
- (2k+2)! a a2«x-eO)'''(X-ek» w(x)dx, (E(a,b).

by the differentiation property of divided difference.
For the concrete computation of (2.1), let w(x) be a positive integrable

function on (a, b), and let {Po (x ), . .. ,Pk+1( x )} be a sequence of orthog­
onal polynomals with respect to w(x) on (a, b). Furthermore, suppose
that Pk+l(X) has k+ 1 distinct real roots eo,'" ,ek in (a, b). Then

b b k

(2.5) 1f(x)dx =1g(x)w(x)dx ~ t;Ai9(ei)
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where
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16rrk (x - ~j)
Ai= ( ._~.)w(x)dx.

a j=O XI )

j=li

Equation (2.4) shows that if we substitue any polynomial of degree
not exceeding (2k + 1) for g(x) of (2.5), then g(2k+2)(() becomes zero.
The above formula (2.5) is referred to as n-point univariate Gaussian
quadrature formula and the ~~s are called Gaussian base points on [a, b],
and Ais their Gaussian weights.

Various Gaussian type quadrature rule can be derived according to
their orthogonal polynomial, for example, Gauss-Legendre, Gauss-Cheby­
shev, Gauss-Laguerre and Gauss-Hermite quadrature rule. Especially,
we know that the Legendre polynomial L i ( x) is orthogonal with respect
to w(x) = 1 on [-1, 1]. Whose recurrence relation is

2i + 1 i
Li+1(t) = i + 1 t· Li(t) - i + 1 Li- 1(t)

with Lo(t) = 1 and L1(t) = t.
By the linear change of variable:

2x - (a + b)
t = b '-a

our definite integral becomes as follow:

16

f(x)dx = [11 F(t)dt

with F(t) = f(x(t))x'(t). Thus the k+ 1 points Gauss-Legendre formula
·18

(2.6)
6 1 k1f(x)dx = i1 F(t)dt = t;AiF(ti )

where to,··· ,tk are the zeros of Legendre polynomial of degree k + 1
and

1 k

Ai = r rr (t - t j) dt.
1-1 j=O (ti - tj)

j=Fi
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In general, Gauss-Legendre quardrature (2.6) is called the (k +1) point.'J

Gauss quadrature.

3. An algorithm for hivariate Gaussian quadrature

An expansion of above univariate Gaussian quadrature can make an
algorithm for bivariate Gaussian quadrature as follow.

The most general form of bivariate integral is

I
b ld(Z)

1= f(x,y)dydx.
a c(z)

Let Xi (i = 1,··· ,N) and Yk (k = 1,··· ,M) be the base points with
respect to x-coordinates and y-coordinates respectively, and let Wi (i =
1,· .. , N) and Wk (k = 1,··· , M) be the corresponding weights.

1°) We evaluate N inner integrals with respect to x-coordinates.

Thus

(3.1)
N

b-a",
I ~ -2- L..Jg(Xi)Wi

i=l

l
d(Zi)

where g(xd = f(Xi, y)dy.
c(Zj)

2°) .We evaluate g(Xi) using Yk and its weight Wi,k (k = 1,··· ,M).
That is,

(3.2)
M

d( Xi) - C(Xi) '"
g(Xi) = 2 L..Jf(Xi,Yk)Wi,k

k=l
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(3.3)
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Substituting (3.2) into (3.1), we have

b d(x)1=11 f(x, y)dydx
a c(x)

N M
b-aI:{d(Xi)-C(Xi)Lf( ) }

~ -- X· Yk W· kW·.2 2 I, I, 1

i=l k=l

REMARKS. The proof of (3.3) is not necessary because of its clear­
ness. The error analysis of (3.3) will be worked soon or late.
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