ON THE CONSTRUCTION OF QUATERNION FIELDS *

In-Ho Cho, Sun--Hi Kwon and Jong-In Lim

Let N be a normal algebraic number field whose Galois group $\operatorname{Gal}(N / Q)$ over the field Q of rational numbers is the quaternion group of order 8. Such a number field is called quaternion field. In this paper we shall construct all quaternion fields of discriminant $\leq 10^{16}$. There are exactly 33 totally real fields and 37 totally imaginary fields.

1. Discriminant

If F is a number field, d_{F} denotes the discriminant of the extension F / Q and $N_{F / Q}$ denotes the norm from F to Q. Let p be a prime number. If p^{n} divides d_{F} and if p^{n+1} does not divide d_{F}; the integer n is called the exponent of p in d_{F} and is denoted $v_{p}\left(d_{F}\right)$.

Let N be a quaternion field, K the biquadratic subfield of N and let k_{1}, k_{2}, k_{3} be three quadratic subfields of K.

Proposition 1. Let p be an odd prime number, ramified in the extension N / Q. Then

$$
\begin{aligned}
& v_{p}\left(d_{N}\right)=6 \text { if } p \text { is ramified in the extension } K / Q \\
& v_{p}\left(d_{N}\right)=4 \text { if not. }
\end{aligned}
$$

Proof. Let us denote by $\delta_{N / K}$ the discriminant of the extension N / K. If p is an odd prime number, ramified in N / Q, then p is tamely ramified. The exponent of p in d_{N} follows immediately from the fact that

$$
\left.d_{N}=d_{K}^{2} \cdot N_{K / Q}\left(\delta_{N / K}\right) \quad \text { (cf. Prop. } 8 \mathrm{Ch} . \mathrm{III}[\mathrm{~S} 1]\right)
$$

[^0]Write $N=K(\sqrt{\alpha})$ for square $\alpha \in K$. We shall say that 2 is partially ramified in the extension K / Q if 2 is ramified in K / Q and if 2 is not totally ramified in K / Q.

Proposition 2.
i) If 2 is totally ramified in K / Q, then $v_{2}\left(d_{N}\right)=24$.
ii) If 2 is partially ramified in K / Q, then $v_{2}\left(d_{N}\right)=22$.
iii) When 2 is not ramified in K / Q, we choose α an integral over Q, not divisible by 4 in K such that $N=K(\sqrt{\alpha})$. Then we have :

$$
\begin{aligned}
& v_{2}\left(d_{N}\right)=12 \text { if } 2 \text { divides } \alpha, \\
& v_{2}\left(d_{N}\right)=8 \text { if } 2 \text { does not divide } \alpha \text { and }
\end{aligned}
$$

if the congruence $\alpha \equiv x^{2}$ can not be solved in K,
and $\quad v_{2}\left(d_{N}\right)=0$ if 2 does not divide α and if the congruence $\alpha \equiv x^{2}$ can be solved in K.

Proof. In prop. 1. [M1], the jumps in the filtration of ramification groups are determined. i) and ii) follow from prop. 4 Ch.IV.[S1]. We can easily deduce iii) from the Kummer theory (cf. Th. $119[\mathrm{H}]$).

2. Construction of Quaternion Fields

Proposition 3. Let K be a biquadratic field. Write $K=Q\left(\sqrt{m_{1}}, \sqrt{m_{2}}\right)$, $k_{i}=Q\left(\sqrt{m_{i}}\right)$ with m_{i} square free integers. The field K is a subfield of a quaternion field if and only if

$$
\left(-1, m_{1}\right)_{p} \cdot\left(-1, m_{2}\right)_{p} \cdot\left(m_{1}, m_{2}\right)_{p}=1
$$

for all rational places p (including the infinite prime).
A proof of this proposition is given in $[F]$.
By Th.1. Ch.III [S2], we obtain easily
Proposition 4. A necessary and sufficient condition for $K=$ $Q\left(\sqrt{m_{1}}, \sqrt{m_{2}}\right)$ to be a subfield of a quaternion field is that the following conditions hold:
i) m_{1} and m_{2} are >0,
ii) for every odd prime divisor p of d_{K}, we have

$$
\left(\frac{-1}{p}\right)=\left(\frac{m_{i}}{p}\right)
$$

where i is such that p is not ramified in the extension $Q\left(\sqrt{m_{i}}\right) / Q$.
iii) if 2 is partially ramified in K / Q, then

$$
m_{1} \equiv 1(\bmod 8) \text { and } m_{2} \equiv 2(\bmod 8)
$$

or

$$
m_{1} \equiv 5(\bmod 8) \text { and } m_{2} \equiv-2(\bmod 8)
$$

iv) if 2 is totally ramified in K / Q, then

$$
m_{1} \equiv 3(\bmod 8) \text { and } m_{2} \equiv \pm 2(\bmod 8)
$$

Let K be a biquadratic field satisfying the conditions in the proposition 4. Let α be an element of K. The field $K(\sqrt{\alpha})$ is a quaternion field if and only if $N_{K / k_{i}}(\alpha)$ are of the form $m_{j} \lambda_{i}^{2}$, with $j \neq i$ and $\lambda_{i} \in k_{i}$. In this case, $K(\sqrt{\alpha})$ is a normal extension over Q and $K(\sqrt{\alpha})$ is cyclic over k_{1}, k_{2} and k_{3} respectively.

We determine the biquadratic fields K which can be imbedded in a quaternion field of discriminant $\leq 10^{16}$. Using the proposition 4 we find at first the fields K such that $d_{K}^{2} \leq 10^{16}$. Then we compute the discriminant d_{N} of a pure quaternion field. If $K(\sqrt{M})$ denotes a pure quaternion field, then every quaternion field containing K is of the form $N_{m}=K(\sqrt{m M})$ for some integer m (cf. 2 [M2]).

Using proposition 1 and 2 we find finally all fields N_{m} of discriminant $\leq 10^{16}$. At the end of this paper we will give the lists of all quaternion fields of discriminant $\leq 10^{16}$,

Table 1 : all fields N with $v_{2}\left(d_{N}\right)=24$
Table 2: all fields N with $v_{2}\left(d_{N}\right)=22$
Table 3 : all fields N with $v_{2}\left(d_{N}\right)=0.8$ or 12

In particular, we prove
Proposition 5. The smallest discriminant of quaternion field is $2^{24} \cdot 3^{6}=12,230,590,464$. There are, up to isomorphism, one real field and one imaginary field ; they are the fields $Q(\sqrt{ \pm(2+\sqrt{2})(3+\sqrt{3})})$.

Table 1

K	$\sqrt{d_{k}}$	M	α	$d_{\text {N }}$
$\mathrm{Q}(\sqrt{2}, \sqrt{3})$	48	$(2+\sqrt{2})(3+\sqrt{3})$	$\pm \mathrm{M}$	$2^{24} \cdot 3^{6}\left(\doteqdot\right.$ ¢ 1.223×10^{10})
			$\pm 5 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 5^{4}\left(\doteqdot 7.644 \times 10^{12}\right)$
			$\pm 7 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 7^{4}\left(\doteqdot 2.936 \times 10^{13}\right)$
			$\pm 11 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 11^{4}\left(\doteqdot 1.790 \times 10^{14}\right)$
			$\pm 13 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 13^{4}\left(\doteqdot\right.$ ¢ $\left.3.493 \times 10^{14}\right)$
			$\pm 17 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 17^{4}\left(\doteqdot\right.$ ¢ $\left.1.021 \times 10^{15}\right)$
			$\pm 19 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 19^{4}\left(\bar{\doteqdot} 1.593 \times 10^{15}\right)$
			$\pm 23 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 23^{4}\left(\underset{\doteqdot}{\dagger} 3.422 \times 10^{15}\right)$
			$\pm 29 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 29^{4}\left(\doteqdot\right.$ ¢ $\left.8.650 \times 10^{15}\right)$
$\mathrm{Q}(\sqrt{3}, \sqrt{14})$	336	$(3+\sqrt{3})(4+\sqrt{14})(7+\sqrt{42})$	$\pm \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 7^{6}\left(\doteqdot 1.438 \times 10^{15}\right)$
			$\pm 2 \mathrm{M}$	$2^{24} \cdot 3^{6} \cdot 7^{6}\left(\doteq 1.438 \times 10^{15}\right)$
$\mathrm{Q}(\sqrt{2}, \sqrt{12})$	176	$(2+\sqrt{2})(11+3 \sqrt{11})$	$\pm \mathrm{M}$	$2^{24} \cdot 11^{6}\left(\doteqdot 2.972 \times 10^{13}\right)$
			$\pm 3 \mathrm{M}$	$2^{24} \cdot 11^{6} \cdot 3^{4}\left(\doteqdot 2.407 \times 10^{15}\right)$
$\mathrm{Q}(\sqrt{2}, \sqrt{19})$	304	$(2+\sqrt{2})(19+\sqrt{19})$	$\pm \mathrm{M}$	$2^{24} \cdot 19^{6}\left(\doteqdot 7.892 \times 10^{14}\right)$

Table 2

K	$\sqrt{d_{k}}$	M	α	$d_{\text {N }}$
$Q(\sqrt{5}, \sqrt{6})$	120	$(5+\sqrt{5})(6+\sqrt{6})$	$\pm \mathrm{M}$	$2^{22} \cdot 5^{6} \cdot 3^{6}\left(\doteq 4.777 \times 10^{13}\right)$
			$\pm 2 \mathrm{M}$	$2^{22} \cdot 5^{6} \cdot 3^{6}\left(\doteqdot 4.777 \times 10^{13}\right)$
$\mathrm{Q}(\sqrt{5}, \sqrt{14})$	280	$(5+\sqrt{5})(14+3 \sqrt{14})$	$\pm \mathrm{M}$	$2^{22} \cdot 5^{6} \cdot 7^{6}\left(\doteqdot 7.710 \times 10^{15}\right)$
			$\pm 2 \mathrm{M}$	$2^{22} \cdot 5^{6} \cdot 7^{6}\left(\doteqdot 7.710 \times 10^{15}\right)$
$Q(\sqrt{21}, \sqrt{6})$	168	$(3+\sqrt{6})(4+\sqrt{14})(7+\sqrt{21})$	$\pm \mathrm{M}$	$2^{22} \cdot 3^{6} \cdot 7^{6}\left(\div 3.597 \times 10^{14}\right)$
			$\pm 2 \mathrm{M}$	$2^{22} \cdot 3^{6} \cdot 7^{6}\left(\doteqdot 3.597 \times 10^{14}\right)$
$\mathrm{Q}(\sqrt{17}, \sqrt{2})$	136	$(2+\sqrt{2})(17+3 \sqrt{17})$	$\pm \mathrm{M}$	$2^{22} \cdot 17^{6}\left(\doteqdot\right.$ ($\left.1.012 \times 10^{14}\right)$
			$\pm 3 \mathrm{M}$	$2^{22} \cdot 17^{6} \cdot 3^{4}\left(\doteqdot\right.$ ¢ $\left.8.200 \times 10^{15}\right)$
$\mathrm{Q}(\sqrt{33}, \sqrt{2})$	264	$(2+\sqrt{2})(33+\sqrt{33})$	$\pm \mathrm{M}$	$2^{22} \cdot 3^{6} \cdot 11^{6}\left(\doteqdot 5.417 \times 10^{15}\right)$

		WE－＇W	$\frac{\eta}{\varepsilon \varepsilon \wedge \varepsilon+\mathrm{II}-} \cdot \frac{\frac{\tau}{2 L \hat{l}^{+L}}}{\frac{1}{I Z \Lambda+\varepsilon}}$	18%	
	$\left({ }_{9 L} 01 \times 020 \sim Z \div\right)_{9} \varepsilon \cdot{ }_{9} L \cdot{ }_{9} L \mathrm{I}$	WE－＇W	$\frac{\frac{\tau}{12 \lambda} 1 i+\varepsilon 9}{12} \cdot \frac{z}{2 I \lambda+L i}$	298	$\left(\underline{L Z} \sim^{\prime} \underline{L I} \sim\right) O$
	$\left({ }_{¢ T} 01 \times[L 8 \cdot Z \doteqdot)_{96} 67 \cdot{ }_{9} \varepsilon I\right.$	W－		LLE	$\left(\underline{6 z}{ }^{\prime} \underline{\underline{\varepsilon}} \text { 人 }\right)^{\prime} 0$
		$\begin{aligned} & \mathrm{WE}- \\ & \mathrm{W} \end{aligned}$		IZ\％	$\left(\underline{L} \mathcal{N}^{\prime} \underline{L I} /\right)^{\circ}$
	$\left({ }_{¢ 1} 01 \times 992 \cdot L \doteq\right)_{9} 68 \cdot{ }_{9} \mathrm{G}$	W－	$\frac{\tau}{68 \wedge \varepsilon+68} \cdot \frac{\tau}{9 \wedge+9}$	9研	（68＾＇g ）$^{\text {O }}$
$\begin{gathered} z\left(\frac{\tau}{69 \lambda+1}\right)-\equiv \frac{z}{69+69} \\ z\left(\frac{\sigma}{9 \lambda-I}\right)-\equiv \frac{z}{9 \lambda+9} \end{gathered}$	$\left({ }_{\text {¢ }} 0 \mathrm{I} \times 989^{\circ} \mathrm{T} \div\right)_{9} \mathrm{E} Z \cdot{ }_{9} \mathrm{E} \cdot{ }_{9} \mathrm{~S}$	W8－＇W	$\frac{\tau}{69 \wedge<69} \cdot \frac{z}{\varsigma \wedge+9}$	978	$\left(\underline{69}{ }^{\prime} \underline{9} \wedge\right) 0$
		W－	$\frac{\tau}{19 \lambda \angle+\varepsilon 8 \tau} \cdot \frac{\tau}{\xi \lambda+\Phi}$	908	
		$\begin{aligned} & \text { NE- } \\ & \text { W } \end{aligned}$		907	（It／＇g人）${ }^{\text {a }}$
		$\begin{aligned} & \text { WE- } \\ & \mathrm{W}- \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\frac{\tau}{6 乙 \wedge \varepsilon+6 Z} \cdot \frac{\tau}{9 \wedge+9}$	9it	
		W9干＇WZ干 WE＇W－ WE－＇W	$\frac{i}{12 \lambda+1 z} \cdot \frac{i}{3 \lambda+9}$	901	
\square pour seวuənsiuos	Np	0	－W	＊p	Y

References

[F] A.Fröhlich, Artin root numbers and normal integral bases for quaternion fields, Invent. Math. 17 (1972), 143-166.
[H] E.Hecke, Lectures on the theory of Algebraic Numbers, Springer-Verlag, 1981.
[M1] J.Martinet, Sur les extensions à groupe de Galois quaternion, C.R.A.S. Paries, t.274, N 12(1972),933-935
[M2] J.Martinet. H8, durharm Symposium, Algebraic Number Fields, Ed. by A. Fröhlich p.525-558. Academic Press, 1977
[S1] J.-P. Serre. Local Fields, Springer-Verlag, 1979
[S2] J.-P. Serre. Cours d'arithmétique, Press Universitaires de France, 1977.

Korea University
Seoul 136-701, Korea

[^0]: Received January 4, 1989.
 *This research is supported in part by the Basic Science Research Institute Program, Ministry of education, 1988-1989.

