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PETTIS MEAN CONVERGENCE OF MARTINGALES

WI CHONG AHN* AND BONG DAE CHOI

o. Introduction

Convergence of Bochner integrable martingales has been studied by
many authors [1,4,6,10]. For a Banach space with Radon-Nikodym psop­
erty, the basic theory of convergence of Bochner integrable martingales
is very similar to the theory of convergence of scalar valued martingales.
J.J.Uhl, Jr. [9] studied the Pettis mean convergence of Pettis integrable
martingales and the stated that in the case of Pettis integrable martin­
gales there seems to be no nontrivial conditions one can place on Banach
space to obtain a simple theory of convergence (see [9] p.374). As a. re­
lated problem, in this paper, we characterize the Banach space with
Radon-Nikodym property in terms of Pettis mean convergence of Pettis
integrable martingales.

The first section is concerned with preliminaries which establish the
setting for the work which follows. The second section is devoted to
the characterization of Banach space with Radon-Nikodym property in
terms of Pettis mean convergence of martingale.

1. Preliminaries

Throughout this paper (n,~, Jl) is a fixed probability space. E is
a Banach space with continuous dual E*. A function X : n -+ E is
strongly measurable if X is the almost everywhere (JL] limit of simple

n

measurable functions of the form L x~Ai, Xi E E, Ai E ~. A random
i=1

variable means a strongly measurable function. A random variable X :
n -t E is called Pettis integrable if I(X) E Ll(n,~, Jl) for all I E E*
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and for each A E :E there exists XA E E satisfying the identity f(XA) =
fAf(X)dp for all f E E*. In this case one writes XA = fAXdp. IT
also IIXII E L1(p) then f is Bochner integrable. IT random variable X is
Pettis integrable, the Pettis norm of X is

IIX II = sup {If(X)ldp.
IIfll9ln

It is known that IIXII is equal to the semivariation of the measure
A ....-+ fAXdp, i.e.,

IIX II = sup 11 L ai i; Xdpll

where the supremum is taken over all finite collections of scalars with
lail ::; 1 and all partitions of n into finitely many disjoint sets. One also
has

IIXII ~ 4 sup 11 j Xdpll
AE~ A

this is known result, which can be proved as follows: Let X . p be the
measure defined by

Then

IIXII = sup {Variation of f(X)· p}
IIfll~l

::; sup 4 sup I { f(X)dpl
IIfll~l A lA

= 4 sup I sup If( { Xdp)1I
A IIfll9 lA

= 4 sup 11 { Xdpll
A lA

Thus the norm of X given by sup 11 fAX dpll is equivalent to Pettis
A

norm. After identification of functions which agree on all but possibly a
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of JL-measure zero, the collection of all E-valued strongly measurable
and Pettis integrable functions becomes a normed linear space which is
typically incomplate [8]. This space will be denoted by PI (E) or PI (p, E)
or PI ('E, JL, E) depending on the context. The Banach space consisting
of E-valued strongly measurable and Bochner integrable functions will
be denoted by L I (E) or L I(JL, E) or LI(Y:., JL, E).

DEFINITION 1.1 [9]. Let X E PI(Y:., E) and Y:.o be a sub--u-fie1d ofY:..
Y E PI (Y:.o, E) is called the conditional expectation of X with respect
to Y:.o if JE X dJL = JE Y dJL for all E E Y:.o. In this case one writes
E(XjY:.o) = Y.

DEFINITION 1.2. Let J be a directed set filtering to the right and
{Y:. t , t E J} be an increasing net of sub--u.:-algebras of E; i.e., t I $ t 2

implies Etl ~ Et2 . (Xt,Et,t E J) c PI(E,E) is a martingale iftI $ t2

implies E(Xt2 IE t1 ) = X t1 and X t E PI (Y:. t , E).
A function F : E --t E is called a vector measure ifF(UAn) = EF(An)

for every sequence (An) of disjoint sets in E. The measure F is p­
continuous iff F(A) = 0 for all A E E with JL(A) = O. The variation
of vector measure F is the extended non-negative function IFI whose
value on a set E E E is given by

IFI(E) = sup L IIF(A)II
11' AE1I'

where the supremum is taken over all partitions 7r of E into finite dis­
joint sequence AI, ... ,An of E. The measure F has a finite variation if
IF/(n) < 00. The measure F has a u-finite variation if n is a countable
union of sets on which F has finite variation.

DEFINITION 1.3 [4]. The Banach space E is said to have the Radon­
Nikodym property iff for every probability space (n, Y:., JL) and every
measure F : E --t E such that F is JL-continuous and F has finite
variation on n, there is a Bochner integrable X : n --t E such that
F(A) = JA XdJL for all A E E. It follows that if F is merely required to
have u-nnite variation on n, then there is a Pettis integrable strongly
measurable function X : n --t E such tha.t F(A) = JA XdJL for all
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A E ~. Notice tbat for a Pettis integrable strongly measurable function
X : n -7 E, ifmeasure F given by F( A) = JA X dp, bas a finite variation
tben X is a Bocbner integrable.

2. Pettis mean convergence of martingales and Radon
-Nikodym property

For a E-valued stochastic process (Xt , ~t, J) ~ Pt(p"E), we define
vector-valued measure X t . p, : ~ -7 E as follows;

If X t is Bochner integrable then X t . p, has a finite variation and IXt •

fLl(n) = In IIXtlldJ.l = IIXtll 1. Thus we have that sup IXt . p,1(n) =
t

sup IIXt 11 1. In other word, the finiteness of set function sup IXt . J.LI is
t t

the same as Lt-boundedness of (Xt ).

J:J. Uhl [12] showed that Banach space E has Radon-Nikod~mprop­
erty iff for every probability space (n,~, p,), uniformly integrable mar­
tingale (Xt , ~t, J) ~ Lt (p" E) with finiteness of set function sup IXt . J.l1

t

converges in Lt (p" E)-norm. Here uniformly integrability of (Xt ) C

L 1(p"E) means lim [IIXtlldJ.l uniformly in t E J.
Il(A)---+O JA

THEOREM 2.1. Banach space E bas Radon-Nikodym property iff
for every probability space (n,~,p,), uniformly integrable martingale
(Xt , ~t, J) ~ Lt(p" E) witb eT-finiteness of set function sup IXt . p,1 on

t

(n, ~to) for some to E J converges in Lt (p" E)-norm.

Proof. Since sup IXt · p,1 is eT-finite on (n, ~to), there exists a sequence
t

{An} ~ ~to of disjoint sets such that sup IXt · p,1(An) < +00. Uniformly
t

integrability assumption implies that there exists no such that
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Then A belongs to E to amd (Xt1A, EtnA, t :2: to) is uniformly integrable
martingale on (A, En A, piA) and sup IXt • pl(A) < +00. By the above
Uhl's theorem, (Xt lA) is Cauchy in L1(p, E). For tl, t2 :2: to, we have

in IIXtl - X t2 11dp = LIIXtl - X t2 11dp +LcllXtl - X t2 11dp

:::; L/lXtl - X t2 /1dp + 2e.

The completeness of L1 (p, E) implies that (Xt ) converges in L 1 (p, E)­
norm.

J.J. Uhl [9] gave an example in which P1(JL, E)-bounded uniformly
integrable martingale (Xt ) of Pettis integrable functions (valued in a
reflexive Banach space) does not converge in PI (p, E)-norm. To obtain
the Pettis mean convergence theorem of Pettis integrable martingale, we
need a stronger condition than PI (p, E)-boundedness. The proof of the
next theorem is a modification of that of Uhl's Theorem [12]. Uniformly

integrability of (Xt ) ~ Pl(p, E) means lim r Xtdp = 0 uniformly in
p(E)-.O lE

t E J, i.e., given e > 0 there exist 8 > 0 such that JL(A) < 8 implies

11 LXtdpll < e for all t E J. (see [11])

This definition of uniformly integrability is reduced to the ordinary def­
inition of uniformly integrability in the case of real-valued functions.

THEOREM 2.2. The followings are equivalent.

(i) Banach space E has Rodon-Nikodym property.
(ii) For every probability space (il, E, J.l), every uniformly integrable

martingale (Xt,Et,J) ~ P1(p,E) converges in P1(p,E)-norm
if set function sup IXt ·pi is (1-finite on (il, E to ) for some to E J.

t
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Proof. (i) ==} (ii). For A E Ut~t set F(A) = lim [ XtdJ.L. Since
t lA

(Xt , ~t, J) is uniformly integrable, it follows that lim F(E) = 0 on
p.(E)-+O

UtEJ~t. On the other hand, since set function sup IXt . J.LI is u-finite on
t

(n, ~to) for some to E J, there exists a partition {Bn } of n into disjoint
sets in ~to such that sup IXt . J.L1(Bn ) < 00 for all n. For a fixed n, if
1r ~ Ut~t is a finite partition of B n then there is an index t l > to such
that 1r ~ ~tl. Consequently one has

L II F (A)II = L 111 X ti dflll
AE1l" AE1l" A

= L II(Xti . J.L)(A)II ~ IXti . fll(Bn )

AE1l"

~ sup IXt . J.L1(Bn ) < +00.
t

Hence F has u-finite variation on Ut ~t. An appeal to [2] produces
a J.L-continuous vector measure G of u-finite variation on ~o, the u­
field generated by Ut~t, such taht G(E) = F(E) on Ut~t. Since E
has the Radon-Nikodym property, there is X E Pl(J.LI~o, E) such that
G(A) = fAXdfl for all A E ~o. But if A E Ut~t, then

lim [ XtdJ.L = F(A) = G(A) = j Xdfl.
t lA A

By [9, Lemma 1.4] (Xt ) converges to X in Pl(fl,E)-norrn.

(ii) ==} (i). Let (n,~, fl) be a fixed probability space and F : ~ --+ E
be a J.L-continuous vector measure of u-finite variation. There exists a
countable partition 1ro = {An} of n such that IFI(An) < +00. Let J be
the class of all partitions 1r of n into ~ which are refinements of 1ro then
J is a directed set by refinement. For each 1r E J, define

X1l" = L F(A) lA (convention ~ = 0)
AE1l" J.L(A)

Let ~1l" be the u-field generated by 1r. By the countable additivity of F,

we see that X1l" is a Pettis integrable and [ X1l"dJ.L = L F(A). Simple
in AE1l"
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calculation shows that (X1r , ~1r' J) is a martingale in PI (p, E). Next

we show that F(A) = liml X 1rdp for every A E ~. For A E ~, set
1r A

7r' = {A n Ai, Ai\(A nAi)li = 1,2,· .. }. Then 71"' is a partition of n and
is a refinement of 71"0 and

1X1r,dp = f f X 1r,dp
A i=I JAnAi

00

= LF(AnAi )
i=I

=F(A).

Thus we obtain that F(A) = Em f X 1rdp for A E ~. Next we will
1r lA

show that sup IX1r • pl(An ) < +00, for all n, so sup IX1r • pi is a-finite on
1r 1r

(n, ~1ro). For a fixed n, let B I ,· •• ,Bk be a partition of An and Bi E ~1r.

Then we have
k k

L IIX1r • p)(Bi)1I = L 111 XdJLII
i:::::I i=I Bi

k

= L II F (Bi)1I ~ IFI(An )

i=I

so
IX1r • JLI(An ) ~ IFI(An ) for all 7r E J.

Thus we have sup IX1r • JLI(An ) ~ IFI(An) < +00. Also since F ~ p, we
1r

have IFI ~ JL. Hence for each IS > 0 there is 8 > 0 such that IFI(A) < t:
whenever JL(A) < 8. Now if A E ~11" and JL(A) < 8 then

11 i X1I"dJLII ~ IX1r • JLI(A) ~ IFI(A) < c.

Thus (X1r, ~1r' J) is uniformly integrable. By hypothesis (X1r) converges

to X E PI (p, E) in Pettis norm. Thus we have F(A) = lim1X 1I"dJL =
1r A1X dJL. This completes the proof.



154 Wi Chong Ahn and Bong Dae Choi

References

1. S.D. Chatterji, Martingale convergence and the Radon-Nikodym theorem, Math.
Scand. 22 (1968), 21-41.

2. B.D. Choi, Hyperamarts: Conditions for Regularity of Continuous Parameter
Processes, J. Multivariate Analysis 14, 2 (1984), 248-267.

3. J. Diestel and J.J. UhI. JR. Vector measures, Amer. Math. Soc. (1977).
4. G.A. Edgar and L. Sucheston, Amarts: A class of asyTnptotic martingales (Dis­

crete parameter), J. Multivariate Analysis 6, 2 (1976), 193-221.
5. K. Krickeberg, Convergence of martingales with a directed indexed set, Trans.

Amer. Math. Soc. 83 (1956), 313-337.
6. S. Moedomo and J.J. Uhl, JR., Radon-Nikodym theorems for the Bochner and

Pettis integrals Pacific J. Math. 38 (1971), 531-536.
7. J. Neveu., Discrete-parameter Martingales, North Holland, Amsterdem (1975).
8. B.J. Pettis., On integration in vector space, Trans. Amer. Math. Soc. 44 (1938),

277-304.
9. J.J. UhI. JR., Martingales of strongly measurable Pettis integrable functions,

Trans. Amer. Math. Soc. 167 (1972), 369-378.
10. J.J. UbI. JR., Applications of Radon-Nikodym theorems to Martingale conver­

gence, Trans. Amer. Math. Soc. 145 (1969), 271-285.
11. J.J. UbI. JR., Pettis mean convergence of vector-valued asymptotic martingales,

Zeit. Wahrscheinlichkeitstheories verw Gebiete (1977), 291-295.
12. J.J. UhI. JR., The Radon-Nikodym theorem and the mean convergence of Banach

space valued martingales, Proc. Amer. Math. Soc. 21 (1969), 139-144.

Kook Min University
Seoul 136-702, Korea
and
Korea Advanced Institute of Science and Technology
Seoul 130-010, Korea




