CAUCHY PROBLEM FOR CARLEMAN EQUATION BY FINITE DIFFERENCE METHODS

S.K. Chung ${ }^{+}$, K.H. Kwon ${ }^{+}{ }^{+}$and Y.B. Park ${ }^{++}$

1. Introduction

We shall consider the coupled system of first order hyperbolic nonlinear equations

$$
\begin{align*}
u_{t}+u_{x} & =v^{2}-u^{2} \tag{1.1}\\
v_{t}-v_{x} & =u^{2}-v^{2}
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=f(x), \quad v(x, 0)=g(x) \tag{1.2}
\end{equation*}
$$

where f and g are bounded measurable functions. System (1.1) is known as the Carleman equation. It was developed to model the spatiotemporal behavior of the velocity distribution function of a gas whose molecules move parallel to the x-axis with constant and equal speed, either in the direction of increasing x or in the direction of decreasing x.

The initial value problem for the Carleman equation has been studied by various analytic methods $[2,3,5,6,7]$. In [6], Tartar stated the existence and uniqueness of the initial value problem (without proof) with bounded initial data using a fixed point argument. Later, Kaper and Leaf [5] treated the problem in a unified manner and improved some of the previous results by considering the abstract initial value problem associated to the Carleman equation. Decaying property of solutions in time was discussed in [3,5].

Here, we shall prove the uniqueness and existence of a solution for the problem (1.1) and (1.2) for bounded initial data by a finite difference method.

[^0]
2. Main theorem and the proof of uniqueness

DEfinition 2.1. A pair of bounded measurable function (u, v) is called a (weak) solution of the initial value problem (1.1) and (1.2), provided that (2.1) and (2.2) hold for all ϕ, where ϕ is a C^{1} function which vanishes outside of a compact subset in $R \times[0, \infty)$, that is, $\operatorname{supp} \phi \cap\{R \times 0, \infty)\} \subset D$, for some rectangle $D=\{(x, t) \mid a \leq x \leq$ $b, 0 \leq t \leq T\}$, so chosen that $\phi=0$ outside of D and on the lines $t=T, x=a$ and $x=b$:

$$
\begin{align*}
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[u\left(\phi_{t}+\phi_{x}\right)+\left(v^{2}-u^{2}\right) \phi\right] d x d t & \tag{2.1}\\
& +\int_{-\infty}^{\infty} f(x) \phi(x, 0) d x=0
\end{align*}
$$

$$
\begin{align*}
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[v\left(\phi_{t}-\phi_{x}\right)+\left(u^{2}-v^{2}\right) \phi\right] d x d & \tag{2.2}\\
& +\int_{-\infty}^{\infty} g(x) \phi(x, 0) d x=0
\end{align*}
$$

Let C_{0}^{1} be the space of all C^{1} functions ϕ such as in definition 2.1. We say that a bounded function f on R is of bounded variation if for any $r>0$ and any real number y there is a constant $C(r)>0$ such that

$$
\int_{|x| \leq r}|f(x+y)-f(x)| d x \leq C(r)|y| .
$$

Theorem 2.1. For any initial data f and g of bounded variation with $0 \leq f(x), g(x) \leq M$, the initial value problem (1.1) and (1.2) has a unique (weak) solution u and v in $L^{\infty}(R \times[0, \infty)$) with $0 \leq$ $u(x, t), v(x, t) \leq M$ on $R \times[0, \infty)$.

Proof of uniqueness: Let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be 2 sets of the solution as in theorem 2.1, and set $u=u_{1}-u_{2}$ and $v=v_{1}-v_{2}$. Then, we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty} u\left(\phi_{t}+\phi_{x}\right)+\left(v_{1}^{2}-v_{2}^{2}-u_{1}^{2}+u_{2}^{2}\right) d x d t=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty} v\left(\phi_{t}+\phi_{x}\right)+\left(u_{1}^{2}-u_{2}^{2}-v_{1}^{2}+v_{2}^{2}\right) d x d t=0 \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4) gives

$$
\begin{equation*}
\int_{0}^{\infty} \int_{-\infty}^{\infty}(u+v)\left(\phi_{t}+\phi_{x}\right) d x d t=0 \tag{2.5}
\end{equation*}
$$

Since, for any given $\psi \in C_{0}^{1}$, we can solve $\phi_{t}+\phi_{x}=\psi$ for $\phi \in C_{0}^{1}, u+v=$ 0 a.e. for $t \geq 0$. Then, $u=v=0$ a.e. for $t \geq 0$ since $u \geq 0$ and $v \geq 0$ for $t \geq 0$.
3. Approximate solutions by a finite difference method

For any fixed $T>0$ and a positive integer n, let $h=\frac{T}{n}$ and $Q_{T}=$ $R \times[0, T]$.

First we shall construct an approximate solution on Q_{T} by using a finite difference scheme.

Define $f_{k}(x)$ and $g_{k}(x)$ for $0 \leq k \leq n$ inductively as :

$$
\begin{equation*}
f_{0}(x)=f(x), \quad g_{0}(x)=g(x) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
f_{k+1}(x)=f_{k}(x-h)+h\left[g_{k}^{2}(x-h)-f_{k}^{2}(x-h)\right] \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
g_{k+1}(x)=g_{k}(x+h)+h\left[f_{k}^{2}(x+h)-g_{k}^{2}(x+h)\right] \tag{3.3}
\end{equation*}
$$

Define approximate solutions $u_{n}(x, t)$ and $v_{n}(x, t)$ on Q_{T} as

$$
\begin{equation*}
v_{n}(x, t)=g_{k}(x), \quad k h \leq t<(k+1) h, \quad 0 \leq k \leq n-1 \tag{3.5}
\end{equation*}
$$

Lemma 3.1. If n is so large that $2 M h \leq 1$, then for $0 \leq k \leq n$,

$$
\begin{equation*}
0 \leq f_{k}(x), g_{k}(x) \leq M \tag{3.6}
\end{equation*}
$$

Proof. It follows immediately from (3.2) and (3.3) by induction on k. From now on, we always assume that $2 M h \leq 1$ and that f and g are the same as in Theorem 2.1.

Lemma 3.2. The function $f_{k}(x)$ and $g_{k}(x)$ are also of bounded variation. Moreover, for each $r>0$, there is a constant $C(r)>0$ (independent of k and n) such that

$$
\begin{align*}
& \int_{|x| \leq r}\left|f_{k}(x+h)-f_{k}(x)\right| d x \leq C(r) h \tag{3.7}\\
& \int_{|x| \leq r}\left|g_{k}(x+h)-g_{k}(x)\right| d x \leq C(r) h . \tag{3.8}
\end{align*}
$$

Proof. For each $r>0$, let $C_{0}(r)>0$ be such that

$$
\begin{aligned}
& C_{0}(r)>\max \left\{\sup _{y \neq 0} \frac{1}{|y|} \int_{|x| \leq r}|f(x+y)-f(x)| d x\right. \\
&\left.\sup _{y \neq 0} \frac{1}{|y|} \int_{|x| \leq r}|g(x+y)-g(x)| d x\right\} .
\end{aligned}
$$

We claim that for $0 \leq k \leq n$

$$
\begin{align*}
& \int_{|x| \leq r}\left|f_{k}(x+h)-f_{k}(x)\right| d x, \int_{|x| \leq r} \mid g_{k}(+h)-g_{k}(x) \mid d x \tag{3.9}\\
& \leq C_{0}(r) h(1+4 M h)^{k}
\end{align*}
$$

When $k=0$, it is obvious. Assume that it is true up to k. From (3.2) and (3.6), we get

$$
\begin{aligned}
\left|f_{k+1}(x+h)-f_{k}(x)\right| \leq\left|f_{k}(x)-f_{k}(x-h)\right| & +2 M h\left|g_{k}(x)-g_{k}(x-h)\right| \\
& +2 M h\left|f_{k}(x)-f_{k}(x-h)\right|
\end{aligned}
$$

from which (3.9) $)_{k+1}$ follows immediately for f and so similarly for g. Since $(1+4 M h)^{k} \leq(1+4 M T / n)^{n} \leq \exp (4 M T), 0 \leq k \leq n$, we may take $C(r)=C_{0}(r) \exp (4 M T)$.

LEMMA 3.3. For each $r>0$, there is a constant $d(r)>0$ such that

$$
\begin{align*}
& \int_{|x| \leq r}\left|f_{k+1}(x)-f_{k}(x)\right| d x \leq d(r) h \tag{3.10}\\
& \int_{|x| \leq r}\left|g_{k+1}(x)-g_{k}(x)\right| d x \leq d(r) h . \tag{3.11}
\end{align*}
$$

Proof. For example, (3.10) follows easily from (3.2), (3.6) and (3.7) with $d(r)=C(r)+4 M^{2} r$, where $C(r)$ is the constant found in Lemma 3.2.

4. Convergence of approximate solutions

Let us consider the space $L_{l o c}^{1}(R)$ with the metric

$$
d(\phi, \psi)=\sum_{j=1}^{\infty} 2^{-j} \frac{\|\phi-\psi\|_{j}}{1+\|\phi-\psi\|_{j}}
$$

where $\|\phi\|_{j}=\int_{|x| \leq j}|\phi(x)| d x$ so that a sequence $\left\{\phi_{j}(x)\right\}$ converges to ϕ in $L_{l o c}^{1}(R)$ iff it converges to ϕ in $L^{1}(K)$ for every compact subset K of R. We need the following elementary facts (cf. [1,4]).

Lemma 4.1. If H is a bounded subset of $L^{\infty}(R)$ satisfying for each $r>0$

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup _{H} \int_{|x| \leq r}|\phi(x+h)-\phi(x)| d x=0 \tag{4.1}
\end{equation*}
$$

then H is precompact in $L_{l o c}^{1}(R)$.
Lemma 4.2. Let X be a separable space and Y a complete metric space with metric d. If a sequence $\left\{\phi_{j}\right\}: X \rightarrow Y$ of continuous functions satisfy
(a) for any p in X and $\epsilon>0$, there is an integer N and a neighborhood $U(p)$ of p such that

$$
d\left(\phi_{j}(p), \phi_{j}(q)\right)<\epsilon \text { if } j \geq N \text { and } q \in U(p)
$$

(b) for any fixed p in X, the set $\left\{\phi_{j}(p) \mid j \geq 1\right\}$ is precompact in Y, then there is a subsequence of $\left\{\phi_{j}\right\}$ which converges to a continuous function on X uniformly on any compact subset of X.
For n large so that $2 M h \leq 1$, consider the sequence of approximate solutions $\left\{u_{n}(x, t)\right\}$ and $\left\{v_{n}(x, t)\right\}$. We may view (cf. Lemma 3.3) $u_{n}(x, t)=u_{n}(t)(x)$ and $v_{n}(x, t)=v_{n}(t)(x)$ as continuous functions on $[0, T]$ valued in $L_{l o c}^{1}(R)$.

Lemma 4.3. The sequences $\left\{u_{n}(t)\right\}$ and $\left\{v_{n}(t)\right\}$ satisfy the conditions (a) and (b) of Lemma 4.2.

Proof. (a): For any $\epsilon>0$, choose N so large that $\sum_{j>N} 2^{-j}<\frac{\epsilon}{2}$. Then by Lemma 3.3, we have

$$
\begin{aligned}
d\left(u_{n}(t), u_{n}(s)\right) & \leq \sum_{j=1}^{N} 2^{-j}\left\|u_{n}(t)-u_{n}(s)\right\|_{j}+\frac{\epsilon}{2} \\
& \leq\left\|u_{n}(t)-u_{n}(s)\right\|_{N}+\frac{\epsilon}{2} \\
& \leq d(N)|t-s|+\frac{\epsilon}{2}
\end{aligned}
$$

Hence, it's enough to require $d(N)|t-s|<\epsilon / 2$.
(b): For any fixed t in $[0, T],\left\{u_{n}(t)\right\}$ is a bounded subset of $L^{\infty}(R)$ by (3.4) and (3.6). Hence, by Lemma 4.1, it suffices to show (4.1) for $\left\{u_{n}(t)\right\}$. But it is immediate from (3.7) since $u_{n}(t)(x)=f_{k}(x)$ for some k for any fixed t. The proof for $\left\{v_{n}(t)\right\}$ is the same as that of $\left\{u_{n}(t)\right\}$.

Hence, by Lemma 4.2, we may assume that the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ converge to $u(x, t)$ and $v(x, t)$ in $L_{l o c}^{1}\left(Q_{T}\right)$ respectively and so

$$
0 \leq u(x, t), v(x, t) \leq M \text { a.e. in } Q_{T}
$$

by choosing subsequences if necessary.
Since $T>0$ is arbitrary, the function u and v are in fact defined on $R \times[0, \infty)$ as bounded locally integrable functions.

Finally, we shall prove that the pair (u, v) is a solution of (1.1) and (1.2) although it's quite standard at this moment. Let ϕ be any function
in C_{0}^{1} and choose $T>0$ so large that supp $\phi \cap\{t \geq 0\} \subset Q_{T}$. Multiply (3.3) by $\phi(x, k h)$ to get

$$
\begin{align*}
& f_{k+1}(x) \frac{\phi(x,(k+1) h)-\phi(x, k h)}{h}+f_{k}(x-h) \frac{\phi(x, k h)-\phi(x-h, k h)}{h} \tag{4.2}\\
& \quad+\left(g_{k}^{2}(x-h)-f_{k}^{2}(x-h)\right) \phi(x, k h) \\
& \quad+\frac{1}{h}\left[f_{k}(x-h) \phi(x-h, k h)-f_{k+1}(x) \phi(x,(k+1) h)\right]=0
\end{align*}
$$

Multiply (4.2) by h, sum over $k=0, \cdots, n-1$ and then integrate with respect to x over R.

$$
\begin{gather*}
\int_{-\infty}^{\infty} \sum_{k=0}^{n-1} h f_{k+1}(x) \frac{\phi(x,(k+1) h)-\phi(x, k h)}{h} d x \tag{4.3}\\
+\int_{-\infty}^{\infty} \sum_{k=0}^{n-1} h f_{k}(x-h) \frac{\phi(x, k h)-\phi(x-h, k h)}{h} d x \\
+\int_{-\infty}^{\infty} \sum_{k=0}^{n-1} h\left(g_{k}^{2}(x-h)-f_{k}^{2}(x-h)\right) \phi(x, k h) d x \\
+\int_{-\infty}^{\infty} \sum_{k=0}^{n-1}\left[f_{k}(x-h) \phi(x-h, k h)\right. \\
\left.\quad-f_{k+1}(x) \phi(x,(k+1) h)\right] d x=0
\end{gather*}
$$

Since $\phi(x, n h)=\phi(x, T)=0$, the last term in (4.3) becomes
$\int_{-\infty}^{\infty} f(x) \phi(x, 0) d x$. Since ϕ is smooth, $\phi(x, t)=0$ for $t \geq T$ and
$h f_{k}(x)=\int_{k h}^{(k+1) h} u_{n}(x, t) d t,(4.3)$ may be rewritten as

$$
\begin{align*}
& \int_{0}^{\infty} \int_{-\infty}^{\infty}\left[u_{n}\left(\phi_{t}+\phi_{x}\right)+\left(v_{n}^{2}-u_{n}^{2}\right) \phi\right] d x d t \tag{4.4}\\
&+\int_{-\infty}^{\infty} f(x) \phi(x, 0) d x+\delta(h)=0
\end{align*}
$$

where $\delta(h) \rightarrow 0$ as $h \rightarrow 0$, i.e., $n \rightarrow \infty$. Noting that the integrations in (4.4) are in fact carried over compact sets, we get (2.1) as $n \rightarrow \infty$. Similarly, we can also get (2.2).

References

1. Adams, R.A., Sobolev spaces, Academic Press, New York, 1975.
2. Illner, R., Global existence for two-velocity models of Bolzman equation, Math. Mech. Appl. Sci., 1, (1979), 187-193.
3. Illner, R. and Reed, C., The Decay of Solutions of the Carleman Model, Math. Mech in the Appl. Sci., 3, (1981), 121-127.
4. Kannan, R. and Ortega R., A semi-discrete convergent scheme for a quasilinear hyperbolic equation, preprint.
5. Kaper, H.G. and Leaf, G.K., Initial Value Problems for the Carleman Equation, J. Nonlinear Anal., Vol.4, No.2, (1980), 343-362.
6. Tartar, L., Evolution Equations in Infinite Dimensions, in Dynamical Systems, edited by L. Cesarim, Voll1, Academic Press, New York, (1976), 167-177.
7. Temam, R., Sur la Resolution Exacte et Approchee d'un probleme Hyperbolique Non Linearie de T.Carleman, Arch. Rat Mech. Anal., 35 (1969), 351-362.
[^1]
[^0]: Received December 19, 1988.

[^1]: ${ }^{+}$Seoul National University Seoul 151-742, Korea and
 ${ }^{+}$KAIST
 Seoul 130-650, Korea

