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CAUCHY PROBLEM FOR CARLEMAN EQUATION
BY FINITE DIFFERENCE METHODS

S.K. CHUNG+, K.H. KWON++ AND Y.B. PARK++

1. Introduction

We shall consider the coupled system of first order hyperbolic nonlin
ear equations

(1.1)

with initial conditions

2 2
Ut +u:r: = v - U

2 2
Vt -V:r: = U - v

(1.2) U(x,O) = f(x), v(x,O) = g(x),

where f and 9 are bounded measurable functions. System (1.1) is
known as the Carleman equation. It was developed to model the spatio
temporal behavior of the velocity distribution function of a gas whose
molecules move parallel to the x-axis with constant and equal speed,
either in the direction of increasing x or in the direction of decreasing x.

The initial value problem for the Carleman equation has been studied
by various analytic methods [2,3,5,6,7]. In [6], Tartar stated the exis
tence and uniqueness of the initial value problem (without proof) with
bounded initial data using a fixed point argument. Later, Kaper and
Leaf [5] treated the problem in a unified manner and improved some
of the previous results by considering the abstract initial value problem
associated to the Carleman equation. Decaying property of solutions in
time was discussed in [3,5].

Here, we shall prove the uniqueness and existence of a solution for the
problem (1.1) and (1.2) for bounded initial data by a finite difference
method.
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2. Main theorem and the proof of uniqueness

DEFINITION 2.1. A pair of bounded measurable function (u, v) is
called a (weak) solution of the initial vB.lue problem (1.1) and (1.2),
provided that (2.1) and (2.2) hold for all 4J, where 4J is a Cl func
tion which vanishes outside of a compact subset in R x [0,00), that
is, supp4J n {R x O,oo)} C D, for some rectangle D = {(x,t)la ~ x ~.

b, °~ t ~ T}, so chosen that 4J = °outside of D and on the lines
t = T, x = a and x = b:

(2.1) 1(X) i: [u(4Jt + 4J%) + (v2
- u 2 )4J]dx dt

+i: f(x)<f>(x,O)dx = 0,

(2.2) 1(X) i: [v(4Jt - 4J%) + (u2
- v2 )4J]dx dt

+i: g(x)4J(x,O)dx = 0.

Let CJ be the space of all Cl functions 4J such as in de1inition 2.1. We
say that a bounded function f on R is of bounded variation if for any
r > 0 and any real number y there is a constant C(r) > °such that

f If(x + y) - f(x)ldx ~ C(r)lyl.
J1%I$r

THEOREM 2.1. For any initial data f and 9 of bounded variation
with °~ f(x),gJx) ~ M, the initial value problem (1.1) and (1.2)
has a unique (weak) solution u and v in L(X)(R x [0,00» with °~

u(x,t),v(x,t) ~ M on R X [0,00).

Proof of uniqueness : Let (Ul' VI) and (U2, V2) be 2 sets of the solution
as in theorem 2.1, and set U = Ul - U2 and v = VI - V2. Then, we have

(2.3) f(X) j(X) u(4Jt + 4J%) + (v~ - v~ - u~ + u~ )dx dt = 0,Jo -(X)



(2.5)
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(2.4) 100100 v( <Pt + <Px) + (u~ - u~ - v~ + v~)dx dt = O.
o -00

Adding (2.3) and (2.4) gives

100i:(u + v)(<Pt + <Px)dx dt = O.

Since, for any given 1/J E cJ, we can solve <Pt +<Px = t/J for <P E CJ, U +v =
o a.e. for t ~ O. Then, u = v = 0 a.e. for t ~ 0 since u ~ 0 and v ~ 0
for t ~ O.

3. Approximate solutions by a finite difference method

For any fixed T > 0 and a positive integer n, let h = ~ and QT =
R x [O,T].

First we shall construct an approximate solution on QT by using a
finite difference scheme.

Define fk(X) and gk(X) for 0 ~ k ~ n inductively as :

(3.1) fo(x) = f(x), go(x) = g(x)

(3.2) fk+l(X) = fk(X - h) + h[gi(x - h) - f~(x - h)]

(3.3) gk+l(X) = gk(X + h) + h[f~(x + h) - gi(x + h)].

Define approximate solutions un(x, t) and vn(x, t) on QT as

(3.4) Un(x, t) = hex), kh ~ t < (k + l)h

(3.5) vn(x, t) = gk(X), kh ~ t < (k + l)h, 0 ~ k ~ n -1.

LEMMA 3.1. Ifn is so large that 2Mh ~ 1, then for 0 ~ k ~ n,

(3.6)
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Proof. It follows immediately from (3.2) and (3.3) by induction on k.
From now on, we always assume that 2Mh ~ 1 and that f and 9 are the
same as in Theorem 2.1.

LEMMA 3.2. The function /k(x) and g,,(x) are also of bounded varia
tion. Moreover, for each r > 0, there is a constant G(r) > 0 (independent
of k and n) such that

(3.7)

(3.8) f Ig,,(x + h) - g,,(x)ldx ~ G(r)h.
J1z l5:r

Proof. For each r > 0, let Go(r) > 0 be such that

Go(r) > max{sup _111 f If(x + y) - f(x)ldx,
y#o Y J1xl5:r

SUP_Ill f Ig(x+y) -g(x)ldx}.
y#o Y J1xl5:r

We claim that for 0 ~ k ~ n

(3.9) f l/k(x + h) - /k(x)ldx, f Ig,,(x + h) - g,,(x)ldx
J1xl5:r J1x l5:r

~ Go(r)h(l +4Mh)".

When k = 0, it is obvious. Assume that it is true up to k. From (3.2)
and (3.6), we get

1/k+1(X + h) - f,,(x)1 ~ If,,(x) - /k(x - h)1 + 2Mhlg,,(x) - g,,(x - h)1
+ 2Mhlh(x) - h(x - h)1

from which (3.9)"+1 follows immediately for f and so similarly for g.
Since (1 + 4Mh)" ~ (1 + 4MTjn)n ~ exp(4MT), 0 ~ k ~ n, we may
take G(r) = Go(r)exp(4MT).
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LEMMA 3.3. For each r > 0, there is a constant d(r) > 0 such that

(3.10)

(3.11)

f 1h:+1(X) - h:(x)ldx ::; d(r)h
J1zl-5.r

f Igk+1(X) - gA;(x)ldx ::; d(r)h.
J\zl-5.r

Proof. For example, (3.10) follows easily from (3.2), (3.6) and (3.7)
with d(r) = G(r) + 4M2r, where G(r) is the constant found in Lemma
3.2.

4. Convergence of approximate solutions

Let us consider the space L}oc(R) with the metric

d(l/J t/J) = E2-; 1Il/J - tfJllj
, ;=1 1 + 1Il/J - tfJ IIj

where 1Il/Jllj = ~XI-5.j 1l/J(x)ldx so that a sequence {l/Jj(x)} converges to l/J
in Lfoc(R) iff it converges to l/J in L1(K) for every compact subset K of
R. We need the following elementary facts (cf. [1,4]).

LEMMA 4.1. H H is a bounded subset of LOO(R) satisfying for each
r>O

(4.1) lim sup f Il/J(x + h) - l/J(x)ldx = 0
h-+O H J1Z I-5.r

then H is precompact in Lloc(R).

LEMMA 4.2. Let X be a separable space and Y a complete metric
space with metric d. H a sequence {</>;} : X -+ Y of continuous functions
satisfy

(a) for any p in X and f > 0, there is an integer N and a neighborhood
U(p) ofp such that

d(l/J;(p),l/J;(q)) < f if j 2: N and q E U(p)
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(b) for any fixed p in X, the set {~;(p)I j ~ 1} is precompact in Y,
then there is a subsequence of {~;} which converges to a contin
uous function on X uniformly on any compact subset of X.

For n large so that 2Mh ~ 1, consider the sequence of approximate
solutions {un(x,t)} and {vn(x,t)}. We may view (d. Lemma 3.3)
un(x, t) = un(t)(x) and vn(x, t) = vn(t)(x) as continuous functions on
[0, T] valued in L}oc(R).

LEMMA 4.3. The sequences {un(t)} and {vn(t)} satisfy the conditions
(a) and (b) of Lemma 4.2.

Proof· (a): For any E > 0, choose N so large that L:;>N 2-; < i.
Then by Lemma 3.3, we have

N

d(un(t), un(s)) ~ L 2-;lIun(t) - un(s)lI; + i
;=1

f
~ II U n(t) - un(s)IIN + 2

f
~ d(N)lt - si + 2·

Hence, it's enough to require d(N)lt - si < E/2.
(b): For any fixed t in [0, T], {un(t)} is a bounded subset of LOO(R)

by (3.4) and (3.6). Hence, by Lemma 4.1, it suffices to show (4.1) for
{un(t)}. But it is immediate from (3.7) since un(t)(x) = fk(X) for some
k for any fixed t. The proof for {vn(t)} is the same as that of {un(t)}.

Hence, by Lemma 4.2, we may assume that the sequences {un} and
{vn} converge to u(x, t) and vex, t) in L}oc(QT) respectively and so

o< u(x, t), vex, t) ~ M a.e. in QT

by choosing subsequences if necessary.
Since T > 0 is arbitrary, the function u and v are in fact defined on

R X [0,00) as bounded locally integrable functions.
Finally, we shall prove that the pair (u, v) is a solution of (1.1) and

(1.2) although it's quite standard at this moment. Let ~ be any function
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in CJ and choose T > °so large that supp <p n {t ~ o} C QT. Multiply
(3.3) by <p(x,kh) to get

(4.2)
~ ()<p(x,(k + l)h) - <p(x,kh) ~ ( h)<P(x,kh) - <p(x - h,kh)
Jk+1 x h + Jk x - h

+ (gHx - h) - fi(x - h»<p(x, kh)
1

+ h [fk(X - h)<p(x - h, kh) - fHl(X)<J1(X, (k + l)h)] = °
Multiply (4.2) by h, sum over k = 0, ... ,n - 1 and then integrate with
respect to x over R.

(4.3) 1.:~ hfHl(X) 4>(x, (k + 1)~) - 4>(x, kh) d>;

+1.:~hf.(x - h/(x,kh) - ~(x - h,kh) d>;

+1.:~h(gHx - h) - mx - h))4>(x, kh)dx

+1.: 't.[!.(X - h)4>(x - h, kh)

- h+l(X)<P(x,(k + l)h)]dx = °
Since <p(x, nh) = <p(x, T) = 0, the last term. in (4.3) becomes

L: f(x)<J1(x,O)dx. Since <p is smooth, <J1(x,t) = °for t ~ T and

l
(k+I)h

hh(x) = un(x,t)dt, (4.3) may be rewritten as
kh

(4.4) 100 L:[un(<Pt+<Px)+(V;-U~)<J1]dXdt

+L: f(X)<p(x,O)dx +6(h) = °
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where b(h) -+ °as h -+ 0, i.e., n -+ 00. Noting that the integrations
in (4.4) are in fact carried over compact sets, we get (2.1) as n -+ 00.

Similarly, we can also get (2.2).

References

1. Adams, R.A., Sobolev spaces, Academic Press, New York, 1975.
2. Illner, R., Global existence for two-velocity models of Bolzman equation, Math.

Mech. Appl. Sci., 1, (1979), 187-193.
3. Illner, R. and Reed, C., The Decay of Solutions of the Carleman Model, Math.

Mech in the Appl. Sci., 3, (1981), 121-127.
4. Kannan, R. and Ortega R., A semi-discrete convergent scheme for a quasilinear

hyperbolic equation, preprint.
5. Kaper, B.G. and Leaf, G.K., Initial Value Problems for the Carleman Equation,

J. Nonlinear Anal., VolA, No.2, (1980),343-362.
6. Tartar, L., Evolution Equations in Infinite Dimensions, in Dynamical Systems,

edited by L. Cesarim, Volll, Academic Press, New York, (1976), 167-177.
7. Temam, R., Sur la Resolution Exaete et Approchee d'un probleme Hyperbolique

Non Linearie de T.Carleman, Arch. Rat Mech. Anal., 35 (1969),351-362.

+Seoul National University
Seoul 151-742, Korea
and

++KAIST
Seoul 130-650, Korea




