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CAUCHY PROBLEM FOR CARLEMAN EQUATION
BY FINITE DIFFERENCE METHODS

S.K. CHUNG?, K.H. KwoNtt AND Y.B. PARk*

1. Introduction

We shall consider the coupled system of first order hyperbolic nonlin-
ear equations

u¢+u,=v2——u2

(1.1) ,

Vg — Vg = u2 -
with initial conditions
(1.2) u(z,0) = f(z), v(z,0)=g(z),

where f and g are bounded measurable functions. System (1.1) is
known as the Carleman equation. It was developed to model the spatio—
temporal behavior of the velocity distribution function of a gas whose
molecules move parallel to the z—axis with constant and equal speed,
either in the direction of increasing z or in the direction of decreasing z.

The initial value problem for the Carleman equation has been studied
by various analytic methods [2,3,5,6,7]. In [6], Tartar stated the exis-
tence and uniqueness of the initial value problem (without proof) with
bounded initial data using a fixed point argument. Later, Kaper and
Leaf [5] treated the problem in a unified manner and improved some
of the previous results by considering the abstract initial value problem
associated to the Carleman equation. Decaying property of solutions in
time was discussed in [3,5].

Here, we shall prove the uniqueness and existence of a solution for the
problem (1.1) and (1.2) for bounded initial data by a finite difference
method.
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2. Main theorem and the proof of uniqueness

DEFINITION 2.1. A pair of bounded measurable function (u,v) is
called a (weak) solution of the initial value problem (1.1) and (1.2),
provided that (2.1) and (2.2) hold for all ¢, where ¢ is a C* func-
tion which vanishes outside of a compact subset in R x [0,00), that
is, suppp N {R x 0,00)} C D, for some rectangle D = {(z,t)la < z <
b, 0 < t < T}, so chosen that ¢ = 0 outside of D and on the lines
t=T,z=aandz=b:

(2.1) /000 /_:[u(qb, + ¢2) + (v — u®)¢)dz dt
+ [-w f(z)¢(z,0)dz =0,

(2.2) /0 ” /_ " [o(be — 62) + (u? — v?)dlda dt
+ [ a@biz, 00z =0,

Let C} be the space of all C! functions ¢ such as in definition 2.1. We
say that a bounded function f on R is of bounded variation if for any
r > 0 and any real number y there is a constant C(r) > 0 such that

/W, [f(z +y) = f(z)ldz < C(r)lyl.

THEOREM 2.1. For any initial data f and g of bounded variation
with 0 < f(z),9(z) < M, the initial value problem (1.1) and (1.2)
has a unique (weak) solution u and v in L*°(R x [0,00)) with 0 <
u(z,t),v(z,t) < M on R x [0, 00).

Proof of uniqueness : Let (u;,v;) and (uz,v2) be 2 sets of the solution
as in theorem 2.1, and set u = u; — u2 and v = v; — v,. Then, we have

(2.3) / / u(pe + ¢2) + (vF — v —u? 4 ud)dzdt =0,
0 —c0
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(2.4) / / (P + ¢2) + (u2 —u2 —v? + vd)dz dt = 0.
0 —00

Adding (2.3) and (2.4) gives

2.5) /o ~ /_ Z(u +0)(de + bo)dz dt = 0.

Since, for any given ¢ € C}, we can solve ¢;+¢, = 1 for ¢ € C}, u+v =
Oae fort>0. Then,u =v=0a.e. fort > 0sinceu>0andv >0
for t > 0.

3. Approximate solutions by a finite difference method

For any fixed T > 0 and a positive integer n, let h = %’:— and Qr =
R x [0,T).

First we shall construct an approximate solution on Q7 by using a
finite difference scheme.

Define fi(z) and gi(z) for 0 < k < n inductively as :

(3.1) fo(z) = f(2), go(z) = g(z)
(3:2) fr41(2) = fi(x — B) + hlgi(z — h) — fi(z — b)]
(3.3) gr+1(z) = gi(z + h) + h[fi(z + h) — gi(z + R)].

Define approximate solutions u,(z,t) and v,(z,t) on @Qr as

(3.4) up(z,t) = fi(z), kh<t<(k+1)h

(3.5)  vn(z,t) =gi(z), kh<t<(k+1)h, 0<k<n-—1.

LEMMA 3.1. If n is so large that 2Mh <1, then for 0 < k < n,

(3.6) 0 < fi(z), gr(z) < M.
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Proof. It follows immediately from (3.2) and (3.3) by induction on k.
From now on, we always assume that 2Mh < 1 and that f and g are the
same as in Theorem 2.1.

LEMMA 3.2. The function fi(z) and gx(z) are also of bounded varia-
tion. Moreover, for eachr > 0, there is a constant C(r) > 0 (independent
of k and n) such that

3.7) /l _ Mr(e+B) = fule)lde < Crh

(38) /l _ Jox(z+ 1) — gu(e)lde < C(h.
z|<r
Proof. For each r > 0, let Cy(r) > 0 be such that
1
Co(r) > max(oup o [ |f(@+) - f@)ldz,
y#0 Iyl jz|<r

1
sup l9(z +y) — g(z)ldz}.
y#0 Iyl |zi<r

We claim that for 0 <k <n

(3.9) |fe(z +h) — fu()\dz, /

lgk(z + k) — gi(z)|dz
|zl<r |zl <r

< Co(r)h(1 + 4MR)E.

When k = 0, it is obvious. Assume that it is true up to k. From (3.2)
and (3.6), we get

|fet1(z + h) — fi(2)] < |fa(z) — filz — R)| + 2Mhigr(z) — gr(z — h)|
+2Mb|fi(z) — fr(z — h)|

from which (3.9)g4+1 follows immediately for f and so similarly for g.
Since (1 + 4Mh)¥ < (1+4MT/n)" < exp(4MT), 0 < k < n, we may
take C(r) = Co(r) exp(4MT).



Cauchy problem for Carleman Equation by Finite Difference Methods 125

LEMMA 3.3. For each r > 0, there is a constant d(r) > 0 such that

(3.10) /I . Mena(e) = fufe)lde < dh

(3.11) -/|=|<r lgk+1(z) — gi(z)|dx < d(r)h.

Proof. For example, (3.10) follows easily from (3.2), (3.6) and (3.7)
with d(r) = C(r) + 4M?r, where C(r) is the constant found in Lemma
3.2

4. Convergence of approximate solutions

Let us consider the space L}, _(R) with the metric

—o—j ¢ — 2l
dé, )= ) 277 ——v—r
2 Tl

where ||¢]|; = fltl<i |¢(x)|dx so that a sequence {¢;(z)} converges to ¢

in L}, (R) iff it converges to ¢ in L!(K) for every compact subset K of
R. We need the following elementary facts (cf. [1,4]).

LEMMA 4.1. If H is a bounded subset of L°°(R) satisfying for each
r>0

(4.) Jim sup ]Mg 16(2 + k) — $(2)ldz = 0

then H is precompact in L}, (R).

LEMMA 4.2. Let X be a separable space and Y a complete metric
space with metric d. If a sequence {¢;} : X — Y of continuous functions

satisfy

(a) for any p in X and € > 0, there is an integer N and a neighborhood
U(p) of p such that

d(¢;(p), $j(g)) < eif j > N and q € U(p)
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(b) for any fixed p in X, the set {¢;(p)| j > 1} is precompact in Y,
then there is a subsequence of {¢;} which converges to a contin-
uous function on X uniformly on any compact subset of X.

For n large so that 2Mh < 1, consider the sequence of approximate
solutions {un(z,t)} and {v.(z,t)}. We may view (cf. Lemma 3.3)
un(z,t) = un(t)(z) and va(z,t) = va(t)(z) as continuous functions on
(0, T] valued in L}, (R).

loc

LEMMA 4.3. The sequences {u,(t)} and {v,(t)} satisfy the conditions
(a) and (b) of Lemma 4.2.

Proof. (a): For any € > 0, choose N so large that 3 .. v 277 < £
Then by Lemma, 3.3, we have

N
d(un(t)) un(s)) < 22—j||un(t) - un(s)"j + %

i=1
< Jun(?) — un(s)llv +

< d(N)|t — 5| + %

€

2

Hence, it’s enough to require d(N)|t — s] < /2.

(b): For any fixed ¢ in [0,T}, {ua(t)} is a bounded subset of L*(R)
by (3.4) and (3.6). Hence, by Lemma 4.1, it suffices to show (4.1) for
{un(t)}. But it is immediate from (3.7) since u,(t)(z) = fi(z) for some
k for any fixed ¢. The proof for {v,(t)} is the same as that of {u,(t)}.

Hence, by Lemma 4.2, we may assume that the sequences {u,} and
{vn} converge to u(x,t) and v(z,t) in L}, (QT) respectively and so

0 <u(z,t), v(z,t) <M ae. in Qr

by choosing subsequences if necessary.

Since T > 0 is arbitrary, the function © and v are in fact defined on
R x [0,00) as bounded locally integrable functions.

Finally, we shall prove that the pair (u,v) is a solution of (1.1) and
(1.2) although it’s quite standard at this moment. Let ¢ be any function
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in C} and choose T > 0 so large that supp ¢ N {t > 0} C Q7. Multiply
(3.3) by ¢(z,kh) to get

(4.2)
fe41(z) + fe(z — k)
+ (9i(z — k) — fi(z — h))¢(z, kh)
+ % [fe(z — h)¢(z — h, kh) — ferr(z)d(z,(k +1)h)] =0

8(z, (k + D) ~ (z, kh) #(z, kh) — ¢(c — h,kh)
h h

Multiply (4.2) by h, sum over k = 0,--- ,n — 1 and then integrate with
respect to z over R.

(43) /_ P (G DD gk,

e k=0

oo n—1 _
+ [ Z hfk(:c _ h)¢($’ kh) - (})i(.’l: h> kh) dz

C k=0

N /_ 3" hgk(e  b) - fi(= — h))d(z, kh)dz

© k=0

+ /°° Z—:[fk(z — h)¢(z — h, kh)

=00 k=0
= frr1(z)4(z, (k + 1)h)]dz =0
Since ¢(z,nh) = ¢(z,T) = 0, the last term in (4.3) becomes
f(z)é(z,0)dz. Since ¢ is smooth, ¢(z,t) = 0 for t > T and

- (k+1)h
hfi(z) = /’; . un(z,t)dt, (4.3) may be rewritten as

(4.4) /o°° /_ °:° [un(de + b2) + (v2 — ul)g|dz dt

+ /_ ' H(2)d(z, 0)dz + (k) = 0
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where 6(h) — 0 as h — 0, i.e., n — oo. Noting that the integrations
in (4.4) are in fact carried over compact sets, we get (2.1) as n — oo.
Similarly, we can also get (2.2).
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