Comm. Korean Math. Soc. 4(1989), No. 1, pp. 113~119

ON THE REPRESENTING MEASURE OF A FUNCTION SUBORDINATE TO $(1+z)^{2} /(1-z)^{\mathbf{2}}$ *

Hong Oh Kim and Sang Keun Lee

The function $F(z)=[(1+z) /(1-z)]^{2}$ maps the unit disc U conformally onto the complex plane minus the negative real axis. A function f is said to be subordinate to F, denoted by $f \prec F$, if $f=F \circ \psi$ for some holomorphic map $\psi: U \rightarrow U$ with $\psi(0)=0$, or equivalently if f maps holomorphically U into the range of F with $f(0)=F(0)=1$.

We recall the following theorem of Brannan, Clunie and Kirwan [1,2].
Theorem A. If $f \prec F$ then there is a unique probability measure μ on the boundary ∂U of U which represents f as

$$
\begin{equation*}
f(z)=\int_{0}^{2 \pi}\left(\frac{1+z e^{-i t}}{1-z e^{-i t}}\right)^{2} d \mu\left(e^{i t}\right), \quad z \in U \tag{1}
\end{equation*}
$$

In this short note, we determine the Poisson integral of the representing probability measure μ of $f \prec F$. This gives a method of determing μ from f which we illustrate by examples. An extremal property related to $f \prec F$ is also given as a corollary.

The Poisson integral of a measure μ on ∂U is defined as

$$
P[d \mu](z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-t)+r^{2}} d \mu\left(e^{i t}\right), z=r e^{i \theta}
$$

See [3].

Received December 7, 1988.
*이 논문은 1988년도 문교부 지원 학술진훙재단의 자유공모 과제 학술연구 조성비에 의하여 연구되었음.

We now prove
Theorem 1. If $f \prec F$ is represented by (1), then the Poisson integral $P[d \mu]$ of μ is given by

$$
\begin{equation*}
P[d \mu](z)=\frac{1}{2 \pi}+\frac{1}{4 \pi} \operatorname{Re} \int_{0}^{r} \frac{f\left(\rho e^{i \theta}\right)-1}{\rho} d \rho, z=r e^{i \theta} \in U . \tag{2}
\end{equation*}
$$

Proof. Let $f(z)=1+\sum_{1}^{\infty} f_{n} z^{n}$. Since

$$
\left(\frac{1+z e^{-i t}}{1-z e^{-i t}}\right)^{2}=1+\sum_{1}^{\infty} 4 n z^{n} e^{-i n t}
$$

we have

$$
\begin{equation*}
1+\sum_{1}^{\infty} f_{n} z^{n}=2 \pi \hat{\mu}(0)+\sum_{1}^{\infty} 8 \pi n \hat{\mu}(n) z^{n}, z \in U \tag{3}
\end{equation*}
$$

where

$$
\hat{\mu}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} d \mu\left(e^{i t}\right)
$$

is the Fourier coefficients of μ. Comparing the corresponding coefficients of (3), we have

$$
\hat{\mu}(n)= \begin{cases}1 / 2 \pi, & n=0 \\ f_{n} / 8 \pi n, & n=1,2, \cdots\end{cases}
$$

Since μ is a real measure (in fact, a probability measure) we have

$$
\hat{\mu}(-n)=\overline{\mu(n)}=\overline{f_{n}} / 8 \pi n, \quad n=1,2, \cdots .
$$

Therefore

$$
\mu \sim \frac{1}{2 \pi}+\sum_{1}^{\infty} \frac{f_{n}}{8 \pi n} e^{i n \theta}+\sum_{1}^{\infty} \frac{\overline{f_{n}}}{8 \pi n} e^{-i n \theta} .
$$

On the representing measure of a function subordinate to $(1+z)^{2} /(1-z)^{2} 115$
Hence the Poisson integral of μ is given by

$$
\begin{aligned}
P[d \mu](z) & =\frac{1}{2 \pi}+\sum_{1}^{\infty} \frac{f_{n}}{8 \pi n} z^{n}+\sum_{1}^{\infty} \frac{\overline{f_{n}}}{8 \pi n} \bar{z}^{n} \\
& =\frac{1}{2 \pi}+\frac{1}{4 \pi} \operatorname{Re} \sum_{1}^{\infty} \frac{f_{n}}{n} z^{n} \\
& =\frac{1}{2 \pi}+\frac{1}{4 \pi} \operatorname{Re} \int_{0}^{r} \frac{f\left(\rho e^{i \theta}\right)-1}{\rho} d \rho, z=r e^{i \theta} \in U
\end{aligned}
$$

This completes the proof.
Corollary 2. If $f \prec \boldsymbol{F}$ then
(4)

$$
\frac{4 r}{1-r} \geq \operatorname{Re} \int_{0}^{r} \frac{f\left(\rho e^{i \theta}\right)-1}{\rho} d \rho \geq-\frac{4 r}{1+r}, z=r e^{i \theta} \in U
$$

The equality holds on the right or on the left for one value $z_{0}=r_{0} e^{i \theta_{0}}$ if and only if

$$
\begin{aligned}
f(z) & =\left(\frac{1-z e^{-i \theta_{0}}}{1+z e^{-i \theta_{0}}}\right)^{2}, z \in U \\
\text { or } \quad f(z) & =\left(\frac{1+z e^{-i \theta_{0}}}{1-z e^{-i \theta_{0}}}\right)^{2}, z \in U, \quad \text { respectively. }
\end{aligned}
$$

Proof. We prove only the lower estimate. The upper estimate can be proved similarly.

If μ is the probability measure on ∂U which represents f by (1), then

$$
\begin{equation*}
P[d \mu](z) \geq \frac{1}{2 \pi} \frac{1-r}{1+r}, \quad z=r e^{i \theta} \in U \tag{5}
\end{equation*}
$$

Therefore, we have by (2)

$$
\operatorname{Re} \int_{0}^{r} \frac{f\left(\rho e^{i \theta}\right)-1}{\rho} d \rho \geq 2\left(\frac{1-r}{1+r}-1\right)=\frac{-4 r}{1+r}
$$

Now, we note that the equality holds on the right in (4) for $z_{0}=r e^{i \theta_{0}}$ if and only if the corresponding equality holds in (5). Since

$$
\frac{1-r^{2}}{1-2 r \cos (t-\theta)+r^{2}} \geq \frac{1-r}{1+r},
$$

the equality holds in (5) for $z_{0}=r_{0} e^{i \theta_{0}}$ if and only if μ is the unit point mass at $e^{i\left(\theta_{0}+\pi\right)}$. This is the case where

$$
f(z)=\left(\frac{1-z e^{-i \theta_{0}}}{1+z e^{-i \theta_{0}}}\right)^{2} .
$$

This completes the proof.
Theorem 1 also gives a method of determining the representing measure μ of $f \prec F$. We state it explicitly as a corollary.

Corollary 3. If $f \prec F$, then the representing probability measure μ of f is obtained as the weak limit of

$$
h_{r}\left(e^{i \theta}\right)=\frac{1}{2 \pi}+\frac{1}{4 \pi} \operatorname{Re} \int_{0}^{r} \frac{f\left(\rho e^{i \theta}\right)-1}{\rho} d \rho
$$

as $r \rightarrow 1$.
Proof is immediate.
We illustrate Corollary 3 by examples.
EXAMPLE $4 f(z)=\frac{1+z}{1-z}-\{F(z)$. We compute

$$
\begin{aligned}
h_{r}\left(e^{i \theta}\right) & =\frac{1}{2 \pi}+\frac{1}{4 \pi} \operatorname{Re} \int_{0}^{r}\left(\frac{1+\rho e^{i \theta}}{1-\rho e^{i \theta}}-1\right) \frac{d \rho}{\rho} \\
& =\frac{1}{2 \pi}+\frac{1}{2 \pi} \operatorname{Re} \int_{0}^{r} \frac{e^{i \theta}}{1-\rho e^{i \theta}} d \rho \\
& =\frac{1}{2 \pi}-\frac{1}{2 \pi} \log \left|1-r e^{i \theta}\right|,
\end{aligned}
$$

On the representing measure of a function subordinate to $(1+x)^{2} /(1-x)^{2} \quad 117$ which converges to $\frac{1}{2 \pi}\left(1-\log 2-\log \left|\sin \frac{\theta}{2}\right|\right)$ as $r \rightarrow 1$ in the sense of $L^{1}(T)$.

Therefore we have

$$
\frac{1+z}{1-z}=\int_{0}^{2 \pi}\left(\frac{1+z e^{-i t}}{1-z e^{-i t}}\right)^{2}\left(1-\log 2-\log \left|\sin \frac{t}{2}\right|\right) \frac{d t}{2 \pi}
$$

EXAMPLE $5 f(z)=\left(\frac{1+z^{n}}{1-z^{n}}\right)^{2} \prec F(z), n=1,2, \cdots$.
We compute

$$
\begin{aligned}
2 \pi h_{r}\left(e^{i \theta}\right) & =1+\frac{1}{2} \operatorname{Re} \int_{0}^{r}\left[\left(\frac{1+\rho^{n} e^{i n \theta}}{1-\rho^{n} e^{i n \theta}}\right)^{2}-1\right] \frac{d \rho}{\rho} \\
& =1+2 \operatorname{Re} \int_{0}^{r} \frac{\rho^{n-1} e^{i n \theta}}{\left(1-\rho^{n} e^{i n \theta}\right)^{2}} d \rho \\
& =1+\frac{2}{n} \operatorname{Re}\left[\frac{1}{1-r^{n} e^{i n \theta}}-1\right] \\
& =1+\frac{2}{n} \frac{r^{n}\left(\cos n \theta-r^{n}\right)}{\left|1-r^{n} e^{i n \theta}\right|^{2}} \\
& =1+\frac{2}{n} \frac{r^{n}\left(1-r^{n}\right)}{\left|1-r^{n} e^{i n \theta}\right|^{2}}-\frac{2}{n} \frac{r^{n}(1-\cos n \theta)}{\left|1-r^{n} e^{i n \theta}\right|^{2}} \\
& =1+(I)+(I I) .
\end{aligned}
$$

We easily check that

$$
\begin{aligned}
(I I) & =-\frac{2}{n}\left(\frac{1}{2}-\frac{\left(1-r^{n}\right)^{2}}{2\left|1-r^{n} e^{i n \theta}\right|^{2}}\right) \\
& =-\frac{1}{n}+\frac{1}{n} \frac{\left(1-r^{n}\right)^{2}}{\left|1-r^{n} e^{i n \theta}\right|^{2}}
\end{aligned}
$$

converges to $-\frac{1}{n}$ as $r \rightarrow 1$ in the sense of $L^{1}(T)$.
Now, we show that

$$
(I)=\frac{2}{n} \cdot \frac{r^{n}}{1+r^{n}} \cdot \frac{1-r^{2 n}}{\left|1-r^{n} e^{i n \theta}\right|^{2}}
$$

converges weakly to

$$
\frac{2 \pi}{n^{2}} \sum_{j=0}^{n-1} \delta_{\omega^{j}}
$$

as $r \rightarrow 1$, where $\omega=e^{2 \pi i / n}$ is the primitive root of unity and $\delta_{\omega j}$ is the unit mass concentrated at the point ω^{j}. In fact, if $g \in C(\partial U)$ then

$$
\begin{aligned}
\int_{0}^{2 \pi} g\left(e^{i \theta}\right) \frac{1-r^{2 n}}{\left|1-r^{n} e^{i n \theta}\right|^{2}} d \theta & =\int_{-\pi}^{(2 n-1) \pi} g\left(e^{i t / n}\right) \frac{1-r^{2 n}}{\left|1-r^{n} e^{i t}\right|^{2}} \frac{d t}{n} \\
& =\frac{1}{n} \sum_{j=0}^{n-1} \int_{-\pi}^{\pi} g\left(e^{i j \pi / n} e^{i \theta}\right) \frac{1-r^{2 n}}{\left|1-r^{n} e^{i \theta}\right|^{2}} d \theta,
\end{aligned}
$$

which converges to

$$
\frac{2 \pi}{n} \sum_{j=0}^{n-1} g\left(e^{i j \pi / n}\right)
$$

as $r \rightarrow 1$ since the Poisson kernel is an approximate identity [3, Theorem 11.9]. Therefore we have

$$
d \mu=\left(1-\frac{1}{n}\right) \frac{d \theta}{2 \pi}+\frac{1}{n^{2}} \sum_{j=0}^{n-1} d \delta_{\omega^{j}}
$$

Hence we have the following representation of $f(z)$,

$$
\left(\frac{1+z^{n}}{1-z^{n}}\right)^{2}=\frac{n-1}{n}+\frac{1}{n^{2}} \sum_{j=0}^{n-1}\left(\frac{\omega^{j}+z}{\omega^{j}-z}\right)^{2}
$$

an identity which can also be proved by an elementary calculations.

References

1. Brannan, D.A., Clunie, J.G. and Kirwan, W.E., On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. Al Math. Phys. 523 (1973), 3-18.

On the representing measure of a function subordinate to $(1+x)^{2} /(1-x)^{2} \quad 119$
2. Hallenbeck, D.J. and MacGregor, T.H., Subordination and extreme point theory, Pacific J. Math., 50 (1974), 455-468.
3. Rudin, W., Real and complex Analysis, 2nd. McGraw-Hill, New York (1974).

KAIST
Seoul 130-010, Korea
and
Gyeongsang National University
Chinju 660-701, Korea

