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ON THE REPRESENTING MEASURE OF A FUNCTION
SUBORDINATE TO (1 + z)2/(1 - z)2 *

HONG OH KIM AND SANG KEUN LEE

The function F(z) = [(1 + z)/(l- z)]2 maps the unit disc U comor­
mally onto the complex plane minus the negative real axis. A function
f is said to be subordinate to F, denoted by 1 -< F, if 1 = F 0 t/J for
some holomorphic map t/J : U -+ U with t/J(O) = 0, or equivalently if 1
maps holomorphically U into the range of F with 1(0) = F(O) = l.

We recall the following theorem of Brannan, Clunie and Kirwan [1,2].

THEOREM A. HI -< F then there is a unique probability measure p.
on the boundazy vU of U which represents 1 as

(1) I(z) . 12
11' (

1 + ze-~t) 2 d (eit ) U
o 1 _ ze-,t p. ,z E .

In this short note, we determine the Poisson integral of the represent­
ing probability measure p of 1 -< F. This gives a method of determing
p from 1 which we illustrate by examples. An extremal property related
to f -< F is also given as a corollary.

The Poisson integral of a measure p on vU is defined as

1 f211' 1- r 2 . 'S

P[dp](z) = 211" 10 1_2rcos(6_t)+r2 dp(e,t), z=re'

See [3].
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We now prove
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THEOREM 1. If f -< F is represented by (1), then the Poisson integral
P[dIlJ of Il is given by

(2) 1 1 l r
f( e

i8
) 1P[dIlJ(z) = -2 + -Re P - dp, z = rei8 E U.

'11'" 4'11'" 0 P

00

Proof. Let f(z) = 1 + Lfnzn. Since
1

(
1 + ze-it )2 _1 LOO 4 n -int----=.t - + nz e1-ze-'

1

we have

00 00

(3) 1 + Lfnzn = 2'11'"jt(O) + L8'11'"njt(n)zn, z E U,
1 1

where
1 12

"'. .jt(n) = - e-mtdJ.L(elt
)

2'11'" 0

is the Fourier coefficients of 1-'. Comparing the corresponding coefficients
of (3), we have

n=O

n = 1,2,···.

Since I-' is a real measure (in fact, a probability measure) we have

it(-n) = Il(n) = fn/8'11'"n, n = 1,2,··· .

Therefore
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Hence the Poisson integral of Jt is given by

100J 00-';
P[dJtJ(z) = - +~-" z" +~~zn

2~ ~8~n ~8~n

1 1 Loo In "=-+-Re -z
2~ 4~ 1 n

1 1 Lr I( eiIJ
) 1 .= - + -Re P - dp, z = reiIJ E U.

2~ 4~ 0 p

This completes the proof.

COROLLARY 2. If I ~ F then

(4)

The equality holds on the right or on the left for one value Zo = roeilJo if
and only if

or

(
1- ze-i60)2

fez) = 1 + ze-i60 ,z E U

(
1 + ze-i60

)2
fez) = 1 '8' z E U,- ze-a °

respectively.

Proof. We prove only the lower estimate. The upper estimate can be
proved similarly.

H Jt is the probability measure on au which represents f by (1), then

(5) 1 1- r
P[dJtJ(z) 2:: --1-' z = rei6 E U.

2~ +r

Therefore, we have by (2)

Re r f(pe
i6

) - 1dp > 2( 1 - r _ 1) = -4r .
lo p - 1 + r 1 + r
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Now, we note that the equality holds on the right in (4) for Zo = rei80 if
and only if the corresponding equality holds in (5). Since

1- r2 1- r-------,----,----,.-----,,- > --
1 - 2r cos(t - 8) + r 2 - 1 + r '

the equality holds in (5) for Zo = roe i80 if and only if J.L is the unit point
mass at e i (8o+1I'). This is the case where

(1 -i80)2- ze
fez) = 1 + ze-i80

This completes the proof.

Theorem 1 also gives a method of determining the representing mea­
sure J.L of f ~ F. We state it explicitly as a corollary.

COROLLARY 3. If f ~ F, then the representing probability measure
J.L of f is obtained as the weak limit of

h ( i8) _ 1 1 R l r
f(pe

i8
) - 1d

re --2 +-4 e p
1r 1r 0 P

as r ---t 1.

Proof is immediate.

We illustrate Corollary 3 by examples.

l+z
EXAMPLE 4 fez) = -- -< F(z). We compute

1-z

h ( iO) _ 1 1 R lr (1 + pe
i9

1) dpre --+- e "--
21r 41r 0 1 - pel9 p

1 1 l r

e
iB

=-+-Re . dp
21r 21r 0 1 - pe lB

1 1 "0= - - -log 11 - reI I,
21r 21r
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which converges to ~(1 - log 2 - log Isin ~ I) as r -+ 1 in the sense of
2~ 2

Ll(T).
Therefore we have

1+ Z 12
11' (1 + ze-it )2 t dt

-1- = - 't (1 - log 2 - log Isin -21) -2 .- z 0 1- ze I ~

(
1 + n)2

EXAMPLE 5 fez) = z -< F(z), n = 1,2,··· .
1- zn

We compute

We easily check that

2 1 (1- r n ?
(ll) = -; (2 - 211 _ rnein812)

1 1 (1 - r n )2
- -- + - ~--,-'-;;-~
- n n 11 - r nein8 j2

converges to -~ as r -+ 1 in the sense of L1 (T).
Now, we show that

2 rn

(I) = ; . -l-+-r-n
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converges weakly to
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n-l

27l' '" 6 .
2 L...J "11n .

1=0

as r _ 1, where w = e27ri/n is the primitive root of unity and 6~ is the
unit mass concentrated at the point wi . In fact, if 9 E C(aU) then

which converges to
n-l

27l'Lg(eii7r/ n )
n .

1=0

as r _ 1 since the Poisson kernel is an approximate identity [3, Theorem
11.9]. Therefore we have

1 dO 1 n-l

dp. = (1- -)- + - '" d6~.
n 27l' n 2 f;:o

Hence we have the following representation of fez),

an identity which can also be proved by an elementary calculations.
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