## FINITE NORMALIZING EXTENTIONS OF RINGS

## DONG SU LEE

#### 1. Introduction

An over ring S of R is called a finite normalizing extension of R if S is a finitely generated R-bimodule whose generator  $x_i$  has normalizing property that is;  $Rx_i = x_iR$ . We encountered this extension often in algebraic structure for example; group rings, skew group rings, twisted group rings, crossed products and matrix rings, etc. We call a generating set  $\{x_1, x_2, \dots, x_n\}$  a normalizing base for S. Especially a finite normalizing extension is free if its normalizing base is free that is;  $\sum x_i r_i = 0$  implies all  $x_i = 0$ .

Recall that a ring R is called singular if there exists some x in R such that  $\operatorname{ann}_R(x) = \{r \in R \mid rx = 0\}$  is essential left ideal of R. If R is not singular then we call R nonsingular usually. We get the following theorem for nonsingularity.

THEOREM 1.1. Let S be a free normalizing extension. Then if S is nonsingular, R is also nonsingular.

Proof. Supposed that R is singular. Then there exists some  $r \in R$  such that  $\operatorname{ann}_R(r)$  is an essential left ideal of R. We claim that  $\operatorname{ann}_S(r)$  is an essential left ideal of S. Let I be any left ideal of S and  $s \in I$  where  $s = \sum_{i=1}^n x_i a_i$ . By renumbering normalizing base we get j such that if k < j,  $a_k \in \operatorname{ann}_R(r)$  and if  $k \ge j$ ,  $a_k \notin \operatorname{ann}_R(r)$ . Since  $\operatorname{ann}_R(r)$  is essential there exists some  $b_j$  such that  $0 \ne b_j a_j \in \operatorname{ann}_R(r)$ . Let  $c_j \in R$  such that  $c_j x_j = b_j x_j$ . Then  $0 \ne c_j (\sum_{i=1}^n x_i a_i) \in I$  and

$$c_j(\sum_{i=1}^n x_i a_i) = c_j(\sum_{i=j}^n x_i a_i) + x_j b_j$$
. Since  $b_j a_j r = 0$  and  $a_k r = 0$  for  $k < j$ ,  $c_j(\sum_{i=1}^n x_i a_i) r = c_j(\sum_{i=j+1}^n x_i a_i) r$ . Let  $c_j x_{j+1} = x_{j+1} d_{j+1}$ . If  $d_{i+1} a_{i+1} \in \operatorname{ann}_R(r)$ , by similar method we can choose  $b_{i+1}$ ,  $c_{i+1} \in R$ 

 $d_{j+1}a_{j+1} \in \operatorname{ann}_R(r)$ , by similar method we can choose  $b_{j+1}, c_{j+1} \in R$  such that  $0 \neq b_{j+1}d_{j+1}a_{j+1} \in \operatorname{ann}_R(r)$  and  $c_{j+1}x_{j+1} = x_{j+1}b_{j+1}, 0 \neq c_{j+1}c_{j+1}$ 

$$c_{j+1}c_{j}(\sum_{i=1}^{n}x_{i}a_{i}) \in I \text{ and } c_{j+1}c_{j}(\sum_{i=1}^{n}x_{i}a_{i})r = c_{j+1}c_{j}(\sum_{i=j+2}^{n}x_{i}a_{i})r. \text{ Similarly the property } c_{j}(\sum_{i=1}^{n}x_{i}a_{i})r$$

ilarly we can find  $c_{j+2}, c_{j+3}, \dots, c_n$  such that  $c_n \cdots c_j (\sum_{i=1}^n x_i a_i) \in I \cap \operatorname{ann}_S(r)$ . Thus  $\operatorname{ann}_S(r)$  is an essential left ideal of S. This is contradiction to the nonsingularity of S.

### 2. Rational extensions and Jacobson radical

Usually an exact sequence  $0 \to A \xrightarrow{f} B \to C \to 0$  is said to be rational if for every module D with  $f(A) \subset D \subset B$  and every homomorphism  $g:D\to B$  the inclusion  $f(A)\subset \mathrm{Ker}(g)$  implies that g=0. Let N be a submodule of M such that the exact sequence  $0 \to N \xrightarrow{i} M \to M/N \to 0$  is rational. Then we will say that N is a rational submodule of M or M is a rational extension of N. And we know that this definition is equivalent to the fact that is for every  $x,y\neq 0\in M$ , there exists some  $r\in R$  such that  $rx\in N$  and  $ry\neq 0$ . A module is called rationally complete if it has no proper rational extension. Clearly every rational extension is essential extension. Z(M) is called a singular submodule of M such that  $Z(M)=\{m\in M\mid \mathrm{ann}(m) \text{ is essential ideal of } R\}$ .

REMARK 2.1. Let N be a submodule of a module M. If Z(N) = 0 and N is essential in M, then M is a rational extension of N.

**Proof.** Let  $f:A\to M$  where  $N\subset A$  and f(N)=0. Suppose that there exists some  $k\in A$  such that  $f(k)\neq 0$ . Then there exists some  $r\in R$  such that  $rf(k)\in N$  that is  $f(rk)\in N$ . Since Z(N)=0, there is an  $s\in R$  such that  $tsf(rk)\neq 0$  for every  $t\in R$  because ann(f(rk)) is not essential. Since  $Rsrk\cap N=0$  for N is essential, f(tsrk)=0 for some  $t\in R$ . This is contradiction. Hence f=0.

Since S is a left R-module we can consider  $\operatorname{Hom}_R(S, M)$  for some R-module M. In this case  $\operatorname{Hom}_R(S, M)$  is a S-module via s \* f(x) = f(xs) for every  $s, x \in S$  and  $f \in \operatorname{Hom}_R(S, M)$ . L.Soeif showed that if N is an essential R-submodule then  $\operatorname{Hom}_R(S, N)$  is an essential R-submodule (and consequently an essential S-submodule) of  $\operatorname{Hom}_R(S, N)$ . Using this proposition and some lemma, we obtain some our results.

LEMMA 2.2. Let S be a finite free normalizing extension of a ring R and N be an R-module. If  $Z_R(N) = 0$ , then  $Z_R(Hom_R(S, N)) = 0$  (and consequently  $Z_S(Hom_R(S, N)) = 0$ ).

Proof. Suppose that  $Z_R(\operatorname{Hom}_R(S,N)) \neq 0$ . Then there exists some  $f \in Z_R(\operatorname{Hom}_R(S,N))$  such that  $f(x_i) \neq 0$  for some i for  $f \neq 0$  where each  $x_i$  is a normalizing base of S. We calaim that for arbiturary  $r \in R$  there exist some  $s \in R$  such that  $srf(x_i) = 0$  that is  $f(x_i)$  is contained in Z(N). Let  $rf(x_i) \neq 0$ , then  $f(rx_i) \neq 0$  for f is a left R-module homomorphism. Since  $rx_i = x_i t$  for some  $t \in R$ ,  $f(rx_i) = f(x_i t) \neq 0$ . On the other hand for some  $u \in R$ , (ut) \* f = 0 and  $ut \neq 0$  because  $f \in Z_R \operatorname{Hom}_R(S,N)$ . Thus  $f(x_iut) = 0$ . But since  $x_iu = sx_i$ ,  $x_iut = srx_i$ . Hence  $srf(x_i) = f(srx_i) = f(x_iut) = 0$  and  $sr \neq 0$  for  $ut \neq 0$ . Thus  $f(x_i)$  is contained in Z(N). This is impossible for Z(N) = 0.

The hypotheses of above lemma can be replaced by one that  $\operatorname{ann}(x_i) = 0$ , because the proof of lemma is dependent on the property that sr is nonzero.

PROPOSITION 2.3. (L.SOUEIF). Let S be a finite normalizing extension of a ring R. Let M be an R-module and N be a submodule of M. If M is an essential extension of N, then  $\operatorname{Hom}_R(S,M)$  is an essential extension of  $\operatorname{Hom}_R(S,N)$ .

*Proof.* See (12).

THEOREM 2.4. Let S be a finite free normalizing extension of a ring R. Let M be an R-module and N be a submodule of M. If Z(N) = 0 and M is an essential extension of N, then  $Hom_R(S, M)$  is a rational extension of  $Hom_R(S, N)$  as R-module (and consequently as S-module).

*Proof.* By lemma 2.2. we get  $Z_R(\operatorname{Hom}_R(S,N))=0$ . And  $\operatorname{Hom}_R(S,M)$  is an essential extension of  $\operatorname{Hom}_R(S,N)$  by proposition 2.3. Thus

 $\operatorname{Hom}_R(S,M)$  is a rational extension of  $\operatorname{Hom}_R(S,N)$  by remark 2.1.

From Proposition 2.3. we have some corrolaries.

COROLLARY 2.5. Let N be an R-module. Then if  $Hom_R(S, N)$  is S-injective, N is R-injective.

**Proof.** See (12).

COROLLARY 2.6. Let N be a R-module and E its injective hull. Then

- (i)  $\operatorname{Hom}_R(S, E)$  is the injective hull of the S-module  $\operatorname{Hom}_R(S, N)$ .
- (ii)  $Hom_R(S, N) = 0$  if and only if N = 0.

Proof. See (12).

Here we modify Corollary 2.5 in quasi-injective case. Quasi-injectiveness of modules is defined by several ways. A well known result of Johnson-Wong states that a module M is quasi-injective if and only if M is a fully invariant submodule of its injective hull that is;  $fM \subset M$  for every  $f \in \operatorname{End}_R E$  where E is injective hull of M. Using this we prove the following theorem.

THEOREM 2.7. If M is an R-module and  $Hom_R(S, M)$  is quasi-injective as S-module, then M is quasi-injective as R-module.

**Proof.** For arbiturary  $f \in \operatorname{End}_R E$  where E is an injective hull of M, we can choose  $\overline{f} \in \operatorname{End}_R(\operatorname{Hom}_R(S,E))$  via  $\overline{f}(g) = fg$  for every  $g \in \operatorname{Hom}_R(S,E)$ . Since  $\operatorname{Hom}_R(S,E)$  is an injective hull of  $\operatorname{Hom}_R(S,M)$  by  $\operatorname{Corollary}\ 2.7$ . and  $\operatorname{Hom}_R(S,M)$  is quasi-injective as S-module,  $\overline{f}(\operatorname{Hom}_R(S,M)) \subset \operatorname{Hom}_R(S,M)$ . Thus for every  $g \in \operatorname{Hom}_R(S,M)$ ,  $\overline{f}(g)$  is contained in  $\operatorname{Hom}_R(S,M)$  that is  $fg \in \operatorname{Hom}_R(S,M)$ . Thus  $fM \subset M$ . On the other hand we can prove that above  $\overline{f}$  is contained in  $\operatorname{End}_R(\operatorname{Hom}_R(S,E))$ . At first we know that  $fg \in \operatorname{Hom}_R(S,E)$ . Secondly  $\overline{f}$  is an S-module homomorphism for  $\overline{f}(t*g)(x) = \overline{f}(t*g(s)) = f(g(st)) = (fg)(st) = t*f(g(s))$  where  $t \in S$ .

Recall that the Jacobson radical  $J(R) = \{a \in R \mid aM = 0 \text{ for every left irreducible } R - \text{module } \}$ . We reprove that  $J(R) = J(S) \cap R$  that was proved by M.Lorenz and R.Resco independently.

PROPOSITION 2.8. (R.RESCO). Let S be a finite normalizing extension of a ring R. Then  $J(R) = J(S) \cap R$ .

*Proof.* Since every irreducible S-module M is semisimple R-module clealy we obtain  $J(R) \subset J(S)$ .

For proving  $J(S) \cap R \subset J(R)$  it is sufficient to show that for every irreducible R-module M, aM = 0 where  $a \in J(S) \cap R$ . Let M be an irreducible R-module. We can find the injective hull E(M) of M always. Then for arbiturary  $f \in \operatorname{Hom}_R(R,M)$  we can find extended homomorphism  $\overline{f}$  which is contained in  $\operatorname{Hom}_R(S,E(M))$  via the following diagram.



Since M is irreducible  $\overline{f}(R) = f(R) = M$  if  $\overline{f} \neq 0$ . We know that  $\operatorname{Hom}_R(R,M)$  and  $\operatorname{Hom}_R(S,E(M))$  are R-module and S-module respectively. Let  $\Phi: \operatorname{Hom}_R(S,E(M)) \to E(M)$  define by  $\Phi(g) = g(1)$ . Then  $\Phi$  is an R-module homomorphism for  $\Phi(r*g) = (r*g)(1) = g(r) = rg(1) = r\Phi(g)$ . Moreover

$$\operatorname{Ker}(\Phi) = \{g \in \operatorname{Hom}_R(S, E(M)) \mid g(1) = 0\} = 0.$$

Using this R-module homomorphism  $\Phi$  we can obtain that  $R*\overline{f}$  is R-isomorphic to M for  $\Phi(R*\overline{f})=\overline{f}(R)=M$ . Since M is irreducible R-module we can know that  $\mathrm{Soc}_R(\mathrm{Hom}_R(S,E(M)))$  contains  $R*\overline{f}$ . In this case  $S*\overline{f}$  is an artinian R-module for  $S*\overline{f}$  contains  $R*\overline{f}=M$ . Thus  $S*\overline{f}$  is an artinian S-module. That implies that  $\mathrm{Soc}_S(S*\overline{f})\neq 0$  for  $S*\overline{f}$  contains minimal submodule of itself.

Let  $g \in \operatorname{Soc}_S(S*\overline{f}) \subset \operatorname{Soc}_S(\operatorname{Hom}_R(S, E(M)))$ . Then R\*g is isomorphic to Rg(1) as before. Since  $Rg(1) \subset E(M)$ ,  $Rg(1) \cap M \neq 0$  for M is

essential in E(M). Hence  $M \subset Rg(1)$ . Therefore we have  $M \subset Rg(1) \subset R*g \subset \operatorname{Soc}_S(S*f) \subset \operatorname{Soc}_S(\operatorname{Hom}_R(S,E(M)))$ . Since  $S*\overline{f}$  is artinian,  $\operatorname{Soc}_S(S*\overline{f})$  is semisimple artinian that is;  $\operatorname{Soc}_S(S*\overline{f})$  is a finite direct sum of simple S-modules. For every  $a \in J(S) \cap R$ ,  $a(\operatorname{Soc}_S(S*\overline{f})) = 0$ . This implies that aM = 0 for M is contained in  $\operatorname{Soc}_S(S*\overline{f})$ .

From this proposition we know that S/J(S) is a finite normalizing extension of R/J(R) for  $J(R) = J(S) \cap R$ . Thus we get the following corollaries.

COROLLARY 2.9. If S is a local ring, then R is a local ring.

**Proof.** Recall that a ring R is local if and only if R/J(R) is a division ring. Suppose that R is not local ring that is; R/J(R) is not division ring. Then there exist some proper left ideal K of R/J(R). In fact (S/J(S))K is a proper left ideal of S/J(S) because the fact that IS = S implies that I = R (9).

We call R left perfect if every left R-module M has projective cover. It is well known that R is left perfect if and only if R/J(R) is artinian and J(R) is T-nilpotent.

Also we get the following corollary.

COROLLARY 2.10. If S is left perfect, so R is.

**Proof.** Since  $J(R) = R(S) \cap R$  the T-nilpotency of J(S) implies that J(R) is T-nilpotent. And the fact that S/J(S) is artinian implies that R/J(R) is artinian.

# 3. Strongly primeness and strongly M-primariness

B.S.Chew and J.Negger introduced a generalization of primary ideal. We denote these primarinesses as M-primarinesses in the sense these are defined through R-modules.

DEFINITON 3.1. Let R be a ring.

- (1) An ideal I of R is M-primary ideal if there is a faithful indecomposable R/I-module M.
- (2) An ideal I of R is strongly M-primary ideal if there is a faithful indecomposable artinian and noetherian R/I-module M.

They showed that every strongly M-primary ideal is primary in usual sense and every primary ideal is M-primary if R is commutative ring. But the converses are not true. In fact althouth Z is prime, Z is not strongly M-primary for Z has no faithful artinian and noetherian Z-modules. And let  $A = F(x,y,z)/\langle xy-z^2\rangle$ , then  $P = (x^2,xz,z^2)$  is M-primary ideal but not primary ideal. By simple calculation we know that A/P is a fithful indecomposable A/P-module.

On the other hand D.Handelman and J.Lawrence defined strongly primeness of a ring. We know that some mathematicians call R-strongly prime if ab = 0 implies a = 0 or b = 0. But the concept of their strongly primeness is different and weaker than usual concept.

At first they defined a (left) insulator for  $r \in R \setminus \{0\}$  to be a finite subset of R, denoted by S(r) such that

$$\operatorname{ann}_1(sr \mid s \in S(r)) = 0.$$

DEFINITION 3.2. R is (left) strongly prime if each nonzero element of R has a left insulator. That is, for every  $r \in R$ ; there exists a finite set S(r) such that for  $t \in R$ ,  $\{tsr \mid s \in S(r)\} = 0$  implies t = 0.

They showed that left strongly primeness and right strongly primeness are not symmetric by examples (5). But if R is (left or right) strongly prime, R is prime.

In this section we study some properties of strongly primeness and strongly M-primariness respectively. And in finite normalizing case we obtain some results between them.

THEOREM 3.3. Let R-be a commutative ring with 1. If R is subdirectly irreducible ring satisfying either chain conditions on ideals, then R is a strongly M-primay ring.

*Proof.* We prove that R itself is a faithful indecomposable artinian and noetherian R-module. At first R is a faithful indecomposable R-module for R is subdirectly irreducible. Since every artinian ring is noetherian, artinian implies noetherian. We assume that R is noetherian. Let  $N = \operatorname{ann}(hR)$  where hR is the heart of R. Since N is maximal R/N is a field and for some k,  $N^k = 0$  by Levizki's Theorem. Then each

factor  $N^{i-1}/N^i$  is R/N-module with  $(x+N^i)(r+N)=xr+N^i$  for  $x\in N^{i-1}$  and  $r\in R$ . Thus  $N^{i-1}/N^i$  is a finite dimensional vector space over R/N. This implies that  $N^{i-1}/N^i$  has a composition series. Thus we obtain a composition series  $R\supset N=N_{1,1}\supset N_{1,2}\cdots\supset N_{1,j}=N^2=N_{2,1}\supset N_{2,2}\cdots\supset N_{k-1,j}=N^k=0$ . Thus R is artinian.

But left subdirectly irreducibility of R implies that R is not indecomposable left module. Thus every left subdirectly irreducible ring is left M-primary.

Generally primeness of a ring R does not imply strongly M-primariness of R even if R is an integral domain for example an integer ring Z. But with additional condition that is true.

THEOREM 3.4. If R is strongly prime and left artinian, then R is strongly M-primary.

**Proof.** Since R is artinian there exists a minimal right ideal L. We claim that L is an indecomposable fithful artinian and noetherian. Since L is minimal we know that L is both artinian and noetherian indecomposable. On the other hand every element of L has an insulator. Thus  $\operatorname{ann}(L) = 0$  that is L is a faithful R-module.

Generally prime ring R is not strongly prime. D.Handleman and J.Lawrence proved the following proposition.

PROPOSITION 3.5. If R is prime and satisfies the decending chain condition on left (or right) annihilators, then R is left (right) strongly prime.

Proof. See (5).

From above proposition we know that if R is prime and artinian, then R is strongly M-primary for if R is prime and artinian, then R is strongly prime. And we can get the following.

THEOREM 3.6. If R is a semiprime left Goldie ring then every essential left ideal of R contains an insulator that is; there exist some finite set  $a_1, a_2, \dots, a_k \in I$  such that  $\operatorname{ann}\{a_i | 1 \leq i \leq k\} = 0$  for every left essential ideal I of R.

*Proof.* Since R is semiprime left Goldie, there exist finite minimal prime ideals  $P_1, P_2, \dots P_m$ . By proposition, each  $R/P_i$  is left strongly prime that is; each  $P_i$  is left strongly prime ideal. Let I be an essential ideal of R. Then I is not contained in any  $P_i$  for  $I \cap (\bigcap_{i \neq j} P) \neq 0$  (in fact  $\bigcap_{i=1}^m P = 0$ ). So there exist finite sets  $a_{ij} \in I$  such that  $\{a_{ij} \mid 1 \leq j \leq i_1\}$  is an insulator of  $I + P_i/P_i$  in  $R/P_i$  that is  $xa_{ij} \in P_i$  for all j implies that  $x \in P_i$ . let  $F = \bigcup \{a_{ij}\}$ . Then F is an insulator of I for  $Fx = 0 = \bigcap_{i=1}^m P_i$  implies that  $x \in \bigcap_{i=1}^m P_i = 0$ .

For the study of finite normalizing extensions, we get the following.

THEOREM 3.7. Let S be a liberal extension of a ring R. If S is strongly prime then R is strongly prime.

Proof. Since S is strongly prime and every element of R is also contained in R, every  $a \in R$  has an insulator S(a) in S. Let  $S(a) = \{s_j \mid 1 \leq j \leq t\}$  where  $s_j = \sum_{i=1}^n r_{ji}x_i$  for some  $r_{ji} \in R$ , we claim that  $\{r_{ji} \mid 1 \leq i \leq n, \ 1 \leq j \leq t\}$  is an insulator for a in R. If  $tr_{ji}a = 0$  for every i and j, then for all j,  $ts_ja = t(\sum_{i=1}^n r_{ji}x_i)a = \sum_{i=1}^n (tr_{ji}a)x = 0$  for S is liberal extension of R. Thus t = 0.

#### References

- 1. L.Bican, T.Kepptk, and P.Nemec, Rings, Modules and preradicals, Marcel Dekker, Inc. (1982).
- 2. B.S. Chwe and J. Negger, *Primary ideals*, J. Korean Math. Soc. 21, No.2 (1984), 141-146.
- E.Formanek and A.V. Jategaonkar, Subrings of noetherian rings, Proc. Amer. Math. Soc. 46 (1974), 181-186.
- 4. D. Handelman and L. Lawrence, Strongly prime rings, Tran. Amer. Math. Soc. 211 (1975), 209-233.
- 5. D. Handelman, Strongly semiprime rings, Pacific Math. 60 (1975), 115-122.
- 6. A.G. Heinicke and J.C. Robson, Normalizing Extensions: Prime ideals and incomparability, J. of Algebra, 72 (1981), 237-268.
- 7. C. Lanski, Goldie conditions in finite normalizing extensions, Proc. Amer. Math. Soc. 79 (1980), 515-519.

- 8. M. Lorenz and D.S. Passman, Integrability and normalizing extensions, J. of Algebra, 61 (1979), 289-297.
- 9. M. Lorenz and D.S. Passman, Prime ideals in crossed products of finite groups, Israel J. Math. 33 (1979), 89-132.
- 10. M. Lorenz, Finite normalizing extensions of rings, Math. Z. 176 (1981), 89-243.
- R. Resco, Radicals of finite normalizing extensions, Comm. Algebra, 7 (1981), 713-725.
- 12. L. Soueif, Normalizing extensions and injective modules, essentially bounded normalizing extensions, Comm. Algebra, 15, No.8, (1987), 1607-1619.

Ulsan University Ulsan 680-749, Korea