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FINITE NORMALIZING EXTENTIONS OF RINGS

DONG Su LEE

1. Introduction

An over ring S of R is called a finite normalizing extension of R if S
is a finitely generated R-bimodule whose generator Xi has normalizing
property that is ; Rx i = X iR. We encountered this extension often in
algebraic structure for example; group rings, skew group rings, twisted
group rings, crossed products and matrix rings, etc. We call a generating
set {Xl, X2, •• , ,Xn } a normalizing base for S. Especially a finite normal­
izing extension is free if its normalizing base is free that is; L: Xiri = 0
implies all Xi = O.

Recall that a ring R is called singular if there exists some X in R such
that annR(x) = {r E R I rx = D} is essential left ideal of R. If R is
not singular then we call R nonsingular usually. We get the following
theorem for nonsingularity.

THEOREM 1.1. Let S be a free normalizing extension. Tben if S is
nonsingular, R is also nonsingular.

Proof. Supposed that R is singular. Then there exists some r E R
such that annR( r) is an essential left ideal of R. We claim that anns(r)
is an essential left ideal of S. Let I be any left ideal of S and s E I

n

where s = L Xiai· By renumbering normalizing base we get j such
i==l

that if k < j, ak E annR(r) and if k ~ j, ak f/:. annR(r). Since
annR(r) isessential there exists some bj such that 0 =I- bjaj E annR(r).

n

Let Cj E R such that CjXj = bjxj . • Then 0 =I- Cj(Lxiai) E I and
i=l
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n

Cj(LXiai) -
i=l
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C;(L Xiai) + x jbj . Since bjajr = 0 and akr = 0 for
i=j

n n

k < j, Cj(L xiai)r = Cj( L xiai)r. Let CjXj+l = Xj+ldj+l. H
i=l i=j+l

dj+laj+l E annR(r), by similar method we can choose bj+I, Cj+I E R
such that 0 =f bj+1dj+laj+l E annR(r) and Cj+lXj+l = xj+1bj+h 0 l-

n n n

cj+lcj(L x iai) E I and Cj+lcj(Lxiai)r = Cj+l Cj( L xiai)r. Sim-
i=l i=l i=j+2

n

ilarly we can find Cj+2, Cj+3,·· . ,Cn such that cn ··· Cj(L Xiai) E In
i=l

anns(r). Thus anns(r) is an essential left ideal of S. This is contradic-
tion to the nonsingularity of S.

2. Rational extensions and Jacobson radical

Usually an exact sequence 0 --t A ~ B --t C --t 0 is said to be ratio­
nal if for every module D with I(A) c D c B and every homomorphism
9 : D --t B the inclusion f(A) C Ker(g) implies that g= o. Let N be a

submodule of M such that the exact sequence 0 --t N ~ M --t M / N --t

o is rational. Then we will say that N is a rational submodule of M or
M is a rational extension of N. And we know that this definition is
equivalent to the fact that is for every x, y I- 0 EM, there exists some
r E R such that rx E N and ry I- o. A module is called rationally
complete if it has no proper rational extension. Clearly every rational
extension is essential extension. Z(M) is called a singular submodule of
M such that Z(M) = {m E M Iann(m) is essential ideal of R}.

REMARK 2.1. Let N be a submodule of a module M. If ZeN) = 0
and N is essential in M, then M is a rational extension of N.

Proof. Let I : A --t M where N C A and feN) = o. Suppose that
there exists some k E A such that I(k) I- o. Then there exists some
r E R such that r I(k) E N that is f(rk) E N. Since ZeN) = 0, there
is an s E R such that tsf(rk) I- 0 for every t E R because ann(f(rk»
is not essential. Since Rsrk n N = 0 for N is essential, I(tsrk) = 0 for
some t E R. This is contradiction. Hence 1=0.
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Since S is a left R-module we can consider HomR(S, M) for some R­
module M. In this case HomR(S,M) is a S-module via s*/(x) = f(xs)
for every S,X E S and I E HomR(S, M). L.Soeif showed that if N is an
essential R-submodule then HomR(S, N) is an essential R-submodule
(and consequently an essential S-submodule) of HomR(S, N). Using
this proposition and some lemma, we obtain some our results.

LEMMA 2.2. Let S be a finite free normalizing extension of a ring R
and N be an R-module. If ZR(N) = 0, then ZR(HomR(S,N)) = 0 (and
consequentely Zs(HomR(S,N)) = 0).

Proof. Suppose that Z R(HomR(S, N)) 1= O. Then there exists some
I E ZR(HomR(S,N)) such that I(Xi) 1= 0 for some i for I 1= 0 where
each Xi is a normalizing base of S. We calaim that for arbiturary r ER
there exist some s ER such that sr/(xi) = 0 that is I(Xi) is contained
in ZeN). Let r I(Xi) 1= 0, then I(rxi) 1= 0 for I is a left R-module
homomorphism. Since rXi = xit for some t E R, I(rxi) = I(Xit) 1= O.
On the other hand for some u E R, (ut) * I = 0 and ut 1= 0 because I E
ZRHomR(S,N)). Thus I(Xiut) = O. But since XiU = SXi, xiut = srXi.
Hence srI(Xi) = f(srxi) = f(Xiut) = 0 and sr 1= 0 for ut 1= O. Thus
I(Xi) is contained in ZeN). This is impossible for ZeN) = O.

The hypotheses of above lemma can be replaced by one that ann(Xi) =
0, because the proof of lemma is dependent on the property that sr is
nonzero.

PROPOSITION 2.3. (L.SOUEIF). Let S be a finite normalizing exten­
sion of a ring R. Let M be an R-module and N be a submodule of M.
If M is an essential extension of N, then HomR( S, M) is an essential
extension of HomR( S, N).

Proof. See (12).

THEOREM 2.4. Let S be a finite free normalizing extension ofa ring R.
Let M be an R-module and N be a submodule ofM. IfZ( N) = 0 and M
is an essential extension of N, then H omR(S, M) is a rational extension
of HomR(S, N) as R-module (and consequentely as S-module).

Proof. By lemma 2.2. we get Z R(HomR(S, N)) = O. And HomR(S, M)
is an essential extension of HomR( S, N) by proposition 2.3. Thus
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HomR(S, M) is a rational extension of HomR(S, N) by remark 2.1.

From Proposition 2.3. we have some corrolaries.

COROLLARY 2.5. Let N be an R-module. Then if HomR(S, N) is
S-injective, N is R-injective.

Proof. See (12).

COROLLARY 2.6. Let N be a R-module and E its injeetive hull. Tben

(i) HomR(S, E) is the injective bull of the S-module HomR(S, N).
(ii) HomR(S, N) = 0 if and only if N = O.

Proof. See (12).

Here we modify Corollary 2.5 in quasi-injective case. Quasi-injective­
ness of modules is defined by several ways. A well known result of
Johnson-Wong states that a module M is quasi-injective if and only if
M is a fully invariant submodule of its injective hull that is ; 1M c M
for every 1 E EndRE where Eis injective hull of M. Using this we prove
the following theorem.

THEOREM 2.7. H M is an R-module and HomR(S,M) is quasi­
injective as S-module, then M is quasi-injective as R-module.

Proof. For arbiturary 1 E EndRE where E is an injeetive hull of
M, we can choose 1 E EndR(HomR(S,E» via 1(g) = Ig for every
9 E HomR(S,E). Since HomR(S,E) is an injective hull of HOIDR(S, M)
by Corollary 2.7. and HomR(S, M) is quasi-injeetive as S-module,
l(HomR(S,M» c HomR(S, M). Thus for every 9 E HomR(S, M), 1(g)
is contained in HomR(S,M) that is Ig E HomR(S,M). Thus fM C
M. On the other hand we can prove that above 1 is contained in
EndR(HomR(S, E». At first we know that Ig E HomR(S,E). Sec­
ondly 1 is an S-module homomorphism for I(t * g)(x) = 1(t * g(s» =
I(g(st» = (lg)(st) = t * (lg)(s) = t *1(g(s» where t E S.

Recall that the Jacobson radical J(R) = {a E R IaM = 0 for every left
irreducible R - module }. We reprove that J(R) = J(S) n R that was
proved by M.Lorenz and R.Resco independently.
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PR{)POSITION 2.8. (R.REsco). Let 8 be a finite normalizing exten­
sion of a ring R. Then J(R) = J(8) n R.

Proof. Since every irreducible 8-module M is semisimple R-module
clealy we obtain J(R) C J(8).

For proving J(S) n R C J(R) it is sufficient to show that for every
irreducible R-module M, aM = 0 where a E J(8) n R. Let M b~

an irreducible R-module. We can find the injective hull E(M) of M
always. Then for arbiturary f E HomR(R, M) we can find extended ho­
momorphism 1 which is contained in HomR(8,E(M)) via the following'
diagram.

R ,8

1
E(M)

Since M is irreducible I(R) = f(R) = M if 1 :f o. We know that
HomR(R, M) and HomR(8, E(M)) are R-module and 8-module respec­
tively. Let ~ : HomR(8, E(M)) -+ E(M) define by ~(g) = g(l). Then
~ is an R-module homomorphism for ~(r * g) = (r * g)(l) = g(r) =
rg(l) = r~(g). Moreover

Ker(~) = {g E HomR(S,E(M)) Ig(1) = O} = O.

Using this R-module homomorphism ~ we can obtain that R *f is R­
isomorphic to M for ~(R * 1) = I(R) = M. Since M is irreducible
R-module we can know that SocR(HomR(8, E(M)) contains R * 1. In
this case 8 * 1 is an artinian R-module for 8 .f' 1 contains R *1 = M.
Thus S *1 is an artinian 8-module. That implies that Socs(8 * f) =F 0
for 8 *1 contains minimal submodule of itself.

Letg E Socs(8*f) C Socs(HomR(8,E(M)). ThenR*gisisomorphic
to Rg(1) as before. Since Rg(1) C E(M), Rg(1) n M =F 0 for M is
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essential in E(M). Hence MC Rg(!). Therefore we have M C Rg(!) C

R * 9 C Socs(S * f) C Socs(HomR(S,E(M». Since S *1 is artinian,
Socs(S *1) is semisimple artinian that is ; Socs(S *1) is a finite direct
sum of simple S-modules. For every a E J(S) n R, a(Socs(S *1) = O.
This implies that aM = 0 for M is contained in Socs(S *1).

From this proposition we know that SIJ (S) is a finite normalizing
extension of RjJ(R) for J(R) -= J(S) n R. Thus we get the following
corollaries.

COROLLARY 2.9. If S is a local ring, then R is a local ring.

Proof. Recall that a ring R is local if and only if RIJ(R) is a division
ring. Suppose that R is not local ring that is ; RIJ(R) is not division
ring. Then there exist some proper left ideal K of RIJ( R). In fact
(SIJ(S»K is a proper left ideal of SIJ(S) because the fact that IS = S
implies that I = R (9).

We call R left perfect if every left R-module M has projective cover.
It is well known that R is left perfect if and only if RIJ(R) is artinian
and J(R) is T-nilpotent.

Also we get the following corollary.

COROLLARY 2.10. IfS is left perfect, so R is.

Proof. Since J(R) = R(S) n R the T-nilpotency of J(S) implies that
J(R) is T-nilpotent. And the fact that SIJ(S) is artinian implies that
RjJ(R) is artinian.

3. Strongly primeness and strongly M -primariness

RS.Chew and J.Negger introduced a generalization of primary ideal.
We denote these primarinesses as M -primarinesses in the sense these
are defined through R-modules.

DEFINIITON 3.1. Let R be a ring.

(1) An ideal I of R is M -primary ideal if there is a faithful indecom­
posable RII -module M.

(2) An ideal I of R is strongly M -primary ideal if there is a faithful
indecomposable artinian and noetherian RII -module M.
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They showed that every strongly M -primary ideal is primary in usual
sense and every primary ideal is M -primary if R is commutative ring.
But the converses are not true. In fact althouth Z is prime, Z is not
strongly M -primary for Z has no faithful artinian and noetherian Z­
modules. And let A = F(x, y, z)1 < xy - z2 >, then P = (x 2, xz, z2) is
M-primary ideal but not primary ideal. By simple calculation we know·
that AlP is a fithful indecomposable AlP-module.

On the other hand D.Handelman and J.Lawrence defined strongly
primeness of a ring. We know that some mathematicians call R-strongly
prime if ab = 0 implies a = 0 or b = O. But the concept of their strongly
primeness is different and weaker than usual concept.

At first they defined a (left) insulator for r E R \ {O} to be a finite
subset of R, denoted by S(r) such that

annl(sr Is E S(r» = O.

DEFINITION 3.2. R is (left) strongly prime if each nonzero element of
R has a left insulator. That is, for every r ER; there exists a finite set
S(r) such that for t E R, {tsr Is E S(r)} = 0 implies t = o.

They showed that left strongly primeness and right strongly primeness
are not symmetric by examples (5). But if R is (left or right) strongly
prime, R is prime.

In this section we study some properties of strongly primeness and
strongly M -primariness respectively. And in finite normalizing case we
obtain some results between them.

THEOREM 3.3. Ler R-be a commutative ring with 1. H R is subdi­
rectly irreducible ring satisfying either chain conditions on ideals, then
R is a strongly M-primay ring.

Proof. We prove that R itself is a faithful indecomposable artinian
and noetherian R-module. At first R is a faithful indecomposable R­
module for R is subdirectly irreducible. Since every artinian ring is
noetherian, artinian implies noetherian. We assume that R is noetherian.
Let N = ann(hR) where hR is the heart of R. Since N is maximal RIN
is a field and for some k, N k = 0 by Levizki's Theorem. Then each
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factor Ni-l/Ni is R/N-module with (x + Ni)(r + N) = xr + Ni for
x E N i- 1 and rE R. Thus Ni-l/Ni is a finite dimensional vector space
over R/N. This implies that Ni-1/Ni has a composition series. Thus
we obtain a composition series R => N = N 1 1 => N 1 Z... => N 1 j = NZ =
Nz 1 => Nz z ... => Nk-l ]" = Nk = o. Thus Ris artician. '" ,

But left subdirectly irreducibility of R implies that R is not indecom­
posable left module. Thus every left subdirectly irreducible ring is left
M-primary.

Generally primeness of a ring R does not imply strongly M -primariness
of R even if R is an integral domain for example an integer ring Z. But
with additional condition that is true.

THEOREM 3.4. H R is strongly prime and left artinian, then R is
strongly M -primary.

Proof. Since R is artinian there exists a minimal right ideal L. We
claim that L is an indecomposable fithful artinian and noetherian. Since
L is minimal we know that L is both artinian and noetherian indecom­
posable. On the other hand every element of L has an insulator. Thus
an:q(L) = 0 that is L is a faithful R-module.

Generally prime ring R is not strongly prime. D.Handleman and
J .Lawrence proved the following proposition.

PROPOSITION 3.5. H R is prime and satisfies the decending chain
condition on left (or right) annihilators, then R is left (right) strongly
pnme.

Proof. See (5).

From above proposition we know that if R is prime and artinian, then
R is strongly M-primary for if R is prime and artinian, then R is strongly
prime. And we can get the following.

THEOREM 3.6. HR is a semiprime left Goldie ring then every essential
left ideal of R contains an insulator that is ; there exist some finite set
at, az, ... ,ak E I such that ann{ai 11 S; i S; k} = 0 for every left
essential ideal I of R.
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Proof. Since R is semiprime left Goldie, there exist finite minimal
prime ideals PI, p 2 ,·· • Pm. By proposition, each RIPi is left strongly
prime that is ; each Pi is left strongly prime ideal. Let I be an essential
ideal of R. Then I is not contained in any Pi for In (ni#jP) f:. 0 (in fact
nr;I P = 0). So there exist finite sets aij E I such that {aij 11 :$; j :$; i I}
is an insulator of 1+ PitPi in RIPi that is Xaij E Pi for all j implies that
x E Pi. let F = U{aij}. Then F is an insulator of I for Fx = 0 = nr;IPi
implies that x E nr;I Pi = o.

For the study of finite nonnalizing extensions, we get the folowing.

THEOREM 3.7. Let S be a liberal extension ofaring R. IfS is strongly
prime then R is strongly prime.

Proof. Since S is strongly prime and every element of R is also con­
tained in R, every a E R has an insulator S (a) in S. Let S (a) =

n

{Sj 11 :::; j :$; t} where Sj = L TjiXi for some Tji E R, we claim that
i=I

{Tji 11 :$; i :$; n, 1 :$; j :$; t} is an insulator for a in R. H tTjia = 0 for
n n

every i and j, then for all j, tSja = t(L Tjixi)a = L(tTjia)X = 0 for
i=l i=l

S is liberal extension of R. Thus t = o.
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