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FINITE NORMALIZING EXTENTIONS OF RINGS

DoNG Su LEE

1. Introduction

An over ring S of R is called a finite normalizing extension of R if S
is a finitely generated R-bimodule whose generator z; has normalizing
property that is ; Rz; = z;R. We encountered this extension often in
algebraic structure for example ; group rings, skew group rings, twisted
group rings, crossed products and matrix rings, etc. We call a generating
set {z1,%2, - ,Tn} a normalizing base for S. Especially a finite normal-
izing extension is free if its normalizing base is free that is; Y z;r; =0
implies all z; = 0.

Recall that a ring R is called singular if there exists some z in R such
that anng(z) = {r € R | rz = 0} is essential left ideal of R. If R is
not singular then we call R nonsingular usually. We get the following
theorem for nonsingularity.

THEOREM 1.1. Let S be a free normalizing extension. Then if S is
nonsingular, R is also nonsingular.

Proof. Supposed that R is singular. Then there exists some r € R
such that anng(r) is an essential left ideal of R. We claim that anns(r)
1s an essential left ideal of S. Let I be any left ideal of S and s € I

where s = inai. By renumbering normalizing base we get j such

=1
that if k¥ < j, ax € anng(r) and if k > j, ax ¢ anng(r). Since
annpg(r) isessential there exists some b; such that 0 # b;a; € anng(r).
n

Let ¢; € R such that cjz; = bjr;.  Then 0 # c]-(inai) € I and

i=1
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n
c]-(z zia;) = cj(Za:ga;) + xjb;. Since bja;r = 0 and azr = 0 for

=1 i=j

n
k < j, CJ(Z .'Biai)'f' = CJ( Z -Tiai)'f'. Let CiTjy1 = $j+1dj+1. If
=1 1=j+1
djt1aj41 € anng(r), by similar method we can choose bj11, ¢j+1 € R
such that 0 # b;y1d; 1041 € anng(r) and ¢j11%j41 = T41bj41, 0 F#
n n n

Cj+1Cj(Z z;a;) € I and cj+10j(z T;a;)r = cip165( Z z;a;)r. Sim-

=1 =1 1=]+‘2
ilarly we can find ¢jy2,c¢j43, -, cn such that ¢, - cJ(Za: a;) € 1IN

anng(r). Thus anng(r) is an essential left ideal of S. ThlS is contradic-
tion to the nonsingularity of S.

2. Rational extensions and Jacobson radical

Usually an exact sequence 0 — A J, B C - 0is said to be ratio-
nal if for every module D with f(A) C D C B and every homomorphism
g : D — B the inclusion f(A) C Ker(g) implies that g=0. Let N be a

submodule of M such that the exact sequence 0 - N — M — M/N —
0 is rational. Then we will say that N is a rational submodule of M or
M is a rational extension of N. And we know that this definition is
equivalent to the fact that is for every z,y # 0 € M, there exists some
r € R such that rz € N and ry # 0. A module is called rationally
complete if it has no proper rational extension. Clearly every rational

extension is essential extension. Z(M) is called a singular submodule of
M such that Z(M) = {m € M |ann(m) is essential ideal of R}.

REMARK 2.1. Let N be a submodule of a module M. If Z(N) =0
and N is essential in M, then M is a rational extension of N.

Proof. Let f : A — M where N C A and f(N) = 0. Suppose that
there exists some k € A such that f(k) # 0. Then there exists some
r € R such that rf(k) € N that is f(rk) € N. Since Z(N) = 0, there
is an s € R such that tsf(rk) # 0 for every t € R because ann(f(rk))
is not essential. Since Rsrk N N = 0 for N is essential, f(¢tsrk) = 0 for
some t € R. This is contradiction. Hence f = 0.
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Since S is a left R-module we can consider Hompg(S, M) for some R-
module M. In this case Hompg(.S, M) is a S-module via s * f(z) = f(zs)
for every s,z € S and f € Hompg(S, M). L.Soeif showed that if N is an
essential R—submodule then Hompg(S, N) is an essential R-submodule
(and consequently an essential S-submodule) of Hompg(S, N). Using
this proposition and some lemma, we obtain some our results.

LEMMA 2.2. Let S be a finite free normalizing extension of a ring R
and N be an R-module. If Zp(N) = 0, then Zp(Hompg(S,N)) =0 (and
consequentely Zs(Hompg(S,N)) = 0).

Proof. Suppose that Zp(Hompg(S,N)) # 0. Then there exists some
f € Zr(Hompg(S,N)) such that f(z;) # 0 for some i for f # 0 where
each z; is a normalizing base of S. We calaim that for arbiturary r € R
there exist some s € R such that srf(z;) = 0 that is f(z;) is contained
in Z(N). Let rf(z;) # 0, then f(rz;) # 0 for f is a left R-module
homomorphism. Since rz; = z;t for some t € R, f(rz;) = f(z;t) # 0.
On the other hand for some v € R, (ut)* f = 0 and ut # 0 because f €
ZrHomp(S,N)). Thus f(z;ut) = 0. But since z;u = sr;, T;ut = srz;.
Hence srf(z;) = f(srz;) = f(zjut) = 0 and sr # 0 for ut # 0. Thus
f(zi) is contained in Z(N). This is impossible for Z(N) = 0.

The hypotheses of above lemma can be replaced by one that ann(z;) =
0, because the proof of lemma, is dependent on the property that sr is
nonzero.

ProPosSITION 2.3. (L.SOUEIF). Let S be a finite normalizing exten-
sion of aring R. Let M be an R—module and N be a submodule of M.
If M is an essential extension of N, then Hompg(S, M) is an essential
extension of Hompg(S, N).

Proof. See (12).

THEOREM 2.4. Let S be a finite free normalizing extension of a ring R.
Let M be an R—-module and N be a submodule of M. If Z(N) = 0 and M
is an essential extension of N, then Hompg(S, M) is a rational extension
of Hompg(S, N) as R-module (and consequentely as S—-module).

Proof. By lemma 2.2. we get Zr(Hompg(S, N)) = 0. And Homg(S, M)
is an essential extension of Homg(S, N') by proposition 2.3. Thus
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Hompg(S, M) is a rational extension of Hompg(S, N) by remark 2.1.
From Proposition 2.3. we have some corrolaries.

COROLLARY 2.5. Let N be an R-module. Then if Homg(S,N) is
S—injective, N is R—injective.

Proof. See (12).

COROLLARY 2.6. Let N be a R-module and E its injective hull. Then

(i) Hompg(S, E) is the injective hull of the S—module Hompg(S, N).
(i1) Homp(S,N) =0 if and only if N = 0.

Proof. See (12).

Here we modify Corollary 2.5 in quasi-injective case. Quasi-injective-
ness of modules is defined by several ways. A well known result of
Johnson-Wong states that a module M is quasi-injective if and only if
M is a fully invariant submodule of its injective hull that is ; fM C M
for every f € EndpE where E is injective hull of M. Using this we prove
the following theorem.

THEOREM 2.7. If M is an R-module and Hompg(S, M) is quasi-
injective as S—module, then M is quasi-injective as R—-module.

Proof. For arbiturary f € EndgrE where E is an injective hull of
M, we can choose f € Endg(Hompg(S, E)) via f(g) = fg for every
g € Homg(S, E). Since Hompg(S, E) is an injective hull of Homg(S, M)
by Corollary 2.7. and Hompg(S, M) is quasi-injective as S—module,
F(Hompg(S, M)) C Homg(S, M). Thus for every g € Hompg(S, M), F(g)
is contained in Hompg(S, M) that is fg € Hompg(S,M). Thus fM C
M. On the other hand we can prove that above f is contained in
Endr(Hompg(S, E)). At first we know that fg € Hompg(S,E). Sec-
ondly f is an S-module homomorphism for Ft*g)(=) = f(t*g(s)) =
Fg(st)) = (Fa)(st) = t * (fg)(s) = £ + F(g(s)) where ¢ € S.

Recall that the Jacobson radical J(R) = {a € R|aM = 0 for every left
irreducible R — module }. We reprove that J(R) = J(S) N R that was
proved by M.Lorenz and R.Resco independently.
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PRrOPOSITION 2.8. (R.RESCO). Let S be a finite normalizing exten-
sion of a ring R. Then J(R) = J(S)NR.

Proof. Since every irreducible S—-module M is semisimple R-~module
clealy we obtain J(R) C J(S).

For proving J(S) N R C J(R) it is sufficient to show that for every
irreducible R-module M, aM = 0 where a € J(S)N R. Let M be
an irreducible R-module. We can find the injective hull E(M) of M
always. Then for arbiturary f € Hompg(R, M) we can find extended ho-
momorphism f which is contained in Hom (S, E(M)) via the following’
diagram.

R —— §
7|

M F

|

Since M is irreducible f(R) = f(R) = M if f # 0. We know that
Hompg(R, M) and Hompg(S, E(M)) are R—module and S-module respec-
tively. Let ® : Hompg(S, E(M)) — E(M) define by ®(g) = g(1). Then
® is an R-module homomorphism for ®(r * g) = (r * g)(1) = ¢(r) =
rg(1) = r&(g). Moreover

Ker(&) = {g € Hompg(S, E(M)) | ¢(1) = 0} = 0.

Using this R-module homomorphism & we can obtain that R «fis R-
isomorphic to M for (R * f) = f(R) = M. Since M is irreducible
R-module we can know that Socr(Hompg(S, E(M)) contains R * f-In
this case S * f is an artinian R-module for S « f contains R * f M.
Thus S * f is an artinian S—-module. That implies that Socs(S * f) # 0
for S * f contains minimal submodule of itself.

Let g € Socs(S*f) C Socs(Homp(S, E(M)). Then R+g is isomorphic
to Rg(1) as before. Since Rg(1) C E(M), Rg(1)N M # O for M is,
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essential in E(M). Hence M C Rg(1). Therefore we have M C Rg(1) C
Rx*g C Socg(S * f) C Socs(Hompg(S, E(M)). Since S + f is artinian,
Socg(S * f) is semisimple artinian that is ; Socs(S * f) is a finite direct
sum of simple S-modules. For every a € J(S) N R, a(Socs(S * f) = 0.
This implies that aM = 0 for M is contained in Socs(S * f).

From this proposition we know that S/J(S) is a finite normalizing
extension of R/J(R) for J(R) = J(S)N R. Thus we get the following
corollaries.

COROLLARY 2.9. If S is a local ring, then R is a local ring.

Proof. Recall that a ring R is local if and only if R/J(R) is a division
ring. Suppose that R is not local ring that is ; R/J(R) is not division
ring. Then there exist some proper left ideal K of R/J(R). In fact
(S/J(S))K is a proper left ideal of S/J(S) because the fact that IS = S
implies that I = R (9).

We call R left perfect if every left R-module M has projective cover.
It is well known that R is left perfect if and only if R/J(R) is artinian
and J(R) is T-nilpotent.

Also we get the following corollary.

COROLLARY 2.10. If S is left perfect, so R is.

Proof. Since J(R) = R(S) N R the T-nilpotency of J(S) implies that
J(R) is T-nilpotent. And the fact that S/J(S) is artinian implies that
R/J(R) is artinian.

3. Strongly primeness and strongly M—primariness

B.S.Chew and J.Negger introduced a generalization of primary ideal.
We denote these primarinesses as M-primarinesses in the sense these

are defined through R-modules.

DEFINITON 3.1. Let R be a ring.

(1) Anideal I of R is M—primary ideal if there is a faithful indecom-
posable R/I-module M.

(2) An ideal I of R is strongly M-primary ideal if there is a faithful
indecomposable artinian and noetherian R/I-module M.
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They showed that every strongly M-primary ideal is primary in usual
sense and every primary ideal is M—primary if R is commutative ring.
But the converses are not true. In fact althouth Z is prime, Z is not
strongly M-primary for Z has no faithful artinian and noetherian Z-
modules. And let A = F(z,y,2)/ < zy — 22 >, then P = (22,22,2%) is
M-primary ideal but not primary ideal. By simple calculation we know-
that A/P is a fithful indecomposable A/P-module.

On the other hand D.Handelman and J.Lawrence defined strongly
primeness of a ring. We know that some mathematicians call R—strongly
prime if ab = 0 implies a = 0 or b = 0. But the concept of their strongly
primeness is different and weaker than usual concept.

At first they defined a (left) insulator for r € R \{0} to be a finite
subset of R, denoted by S(r) such that

ann;(sr|s € S(r)) =0

DEFINITION 3.2. R is (left) strongly prime if each nonzero element of

R has a left insulator. That is, for every r € R ; there exists a finite set
S(r) such that fort € R, {tsr|s € S(r)} =0 impliest =0

They showed that left strongly primeness and right strongly primeness
are not symmetric by examples (5). But if R is (left or right) strongly
prime, R is prime.

In this section we study some properties of strongly primeness and
strongly M-primariness respectively. And in finite normalizing case we
obtain some results between them.

THEOREM 3.3. Ler R-be a commutative ring with 1. If R is subdi-
rectly irreducible ring satisfying either chain conditions on ideals, then
R is a strongly M —primay ring.

Proof. We prove that R itself is a faithful indecomposable artinian
and noetherian R-module. At first R is a faithful indecomposable R-
module for R is subdirectly irreducible. Since every artinian ring is
noetherian, artinian implies noetherian. We assume that R is noetherian.
Let N = ann(hR) where hR is the heart of R. Since N is maximal R/N
is a field and for some k, N*¥ = 0 by Levizki’s Theorem. Then each
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factor Ni=1/N' is R/N-module with (z + Ni)(r + N) =zr+ N* for
£ € N* ' andr € R. Thus N1 /N ' is a finite dimensional vector space
over R/N. This implies that N*~!/N* has a composition series. Thus
we obtain a composition series RO N =N; 3 D Nyo---D Ny ; = NZ =
Nz,l D N2’2 e D Nk—l,j = N* = 0. Thus R is artinian.

But left subdirectly irreducibility of R implies that R is not indecom-
posable left module. Thus every left subdirectly irreducible ring is left
M-primary.

Generally primeness of a ring R does not imply strongly M—-primariness

of R even if R is an integral domain for example an integer ring Z. But
with additional condition that is true.

THEOREM 3.4. If R is strongly prime and left artinian, then R is
strongly M -primary.

Proof. Since R is artinian there exists a minimal right ideal L. We
claim that L is an indecomposable fithful artinian and noetherian. Since
L is minimal we know that L is both artinian and noetherian indecom-
posable. On the other hand every element of L has an insulator. Thus
ann(L) = 0 that is L is a faithful R—module.

Generally prime ring R is not strongly prime. D.Handleman and
J.Lawrence proved the following proposition.

PRroPOSITION 3.5. If R is prime and satisfies the decending chain
condition on left (or right) annihilators, then R is left (right) strongly
prime.

Proof. See (5).

From above proposition we know that if R is prime and artinian, then
R s strongly M—primary for if R is prime and artinian, then R is strongly
prime. And we can get the following.

THEOREM 3.6. If R is a semiprime left Goldie ring then every essential
left ideal of R contains an insulator that is ; there exist some finite set
@y, az, --- ,ax € I such that ann{a;|1 < i < k} = 0 for every left
essential ideal I of R.
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Proof. Since R is semiprime left Goldie, there exist finite minimal
prime ideals Py, P,,--- P,. By proposition, each R/P; is left strongly
prime that is ; each P; is left strongly prime ideal. Let I be an essential
ideal of R. Then I is not contained in any P; for IN(N;%;P) # 0 (in fact
N2, P = 0). So there exist finite sets a;j € I such that {a;; |1 <j < 43}
is an insulator of I+ P;/P; in R/P; that is za;; € P; for all j implies that
z € P;. let F = U{a;;}. Then F is an insulator of I for Fz =0 =NZ,F;
implies that z € N2, P; = 0.

For the study of finite normalizing extensions, we get the folowing.

THEOREM 3.7. Let S be a liberal extension of aring R. If S is strongly
prime then R is strongly prime.

Proof. Since S is strongly prime and every element of R is also con-
tained in R, every a € R has an insulator S(a) in S. Let S(a) =

{sj11 < j <t} where s; = er,-z,- for some r;; € R, we claim that
i=1

{rji|1 £ ¢ < n, 1 <j <Lt} is an insulator for a in R. If trja = 0 for
n n

every ¢ and j, then for all j, tsja = t(z TjiZi)a = Z(trj,-a)z = 0 for
i=1 =1

S 1s liberal extension of R. Thus ¢t = 0.
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