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SMOOTHNESS AND WEAK ASPLUND SPACE *

SEUNG JAE OH

1. Introduction

A real Banach space X is said to be an Asplund (respectively, weak
Asplund) space if every continuous convex function defined on an open
convex subset of X is Frechet (respectively, Gateaux) differentiable on
a dense G6 subset of its domain. In 1968, Asplund [1] called Asplund
space (AS) a strong differentiability space, while he called weak Asplund
space (WAS) a weak differentiability space. Asplund proved that every
reflexive Banach space admitting a Frechet differentiable norm is an AS
[1]. Latter it was known that every reflexive Banach space is an AS [7],
and in 1976, I. Ekeland and G. Lebourg [3] essentially showed that a
Banach space admitting a Frechet differentiable norm is an AS [see also
4,p.170]. At this point it was asked whether latter type of property holds
for WAS; that is, if a Banach space X admits an equivallent smooth
norm (smooth norm is the one which is Gateaux differentiable at every
point of X except 0), is X a WAS? In contrast to AS, the knowledge of
WAS is rather incomplete. So far WAS was characterized by means of
the separability of the space [6], rotundity of the dual space of a Banach
space, and hence by the subspace of weakly compactly generated space
[1]. In 1979, D.G. Larman and R.R. Phelps asked whether every Gateaux
differentiability space (GDS) is a WAS and whether the existance of an
equivalent smooth norm on the space is either necessary or sufficient
for the space to be a WAS, but still these questions are unanswered
[5]. Several attempts were made to characterize it by smoothness of the
space. In 1987, J.M. Borwein and D. Preiss [2] showed if X is a Banach
space with a smooth renorm, then X is a GDS, which is a little short of
WAS.
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This paper introduces a particular positive sublinear functional in
Lemma 2 and by using it, it shows that if a Banach space X admits an
equivalent smooth norm so that in the dual X* of X, the map I -+ 11/11
is weak* upper semi-continuous, then X is a WAS.

DEFINITION. A real function tP on an open convex subset A of a Ba­
nach space X is said to be Gateaux differentiable at x E A in the direction
y EX if

li
tP(x + ty) - tP(x) .

m exlStS.
t-O t

IT the limit exists for every direction y EX, then we call tP Gateaux
differentiable at x.

A real function 'I/J on a linear space X is said to be positively homo­
geneous if

'I/J(tx) = t'I/J(x) for all t > 0 and x E X.

If 'I/J is positively homogeneous and convex, it is called sublinear func­
tional. The real function I on X which satisfies

I(y - x) ~ tP(y) - tP(x) for all yEA

is called a subgradient of tP at x and we denote the set of all such subgradi­
ents by 8tP(x). IT <p is continuous at x, then every lE 8tP(x) is continuous
linear functional on X [4, p.127, Theorem 7]. A Banach space X is said
to be a Gateaux differentiability space if every continuous convex func­
tion defined on an open convex subset of X is Gateaux differentiable on
a dense (not necessarily a dense G6) subset of its domain.

2. Smoothness and WAS

We will use the following theorem.

THEOREM 1. [4, P.134]. (weak* upper semi-continuity of subgradi­
ent mapping)

In a normed linear space X, for a continuous convex function tP defined
on an open convex subset A of X, given x E A and a sequence {xn } in A
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where IIxn - xii - 0, we have for any sequence {In} where In E 8if(xn)
that {fn} has a weak* cluster point and all such cluster points are in
81>(x).

LEMMA 2. Let 1> be a continuous convex function defined on an open
convex subset A of a Banach space X. Define for each x E A, 0"x on X
by

O"x(Y) = sup{f(y) : I E 81>(x)}, yE X, and let

Px(Y) = ux(y) + ux(-y).

Also define t/J on A by

t/J(x) = sup{lIf - gll, f,g E 81>(x)}.

Then

(i) Px is a positive sublinear functional on X, and for any fixed Yo E

X, {x EA: Px(yo) = O} is a dense G6 subset of A.
(ii) t/J(x) = sUPllvll=l Px(v).

(iii) t/J is upper semi-continuous if I - 11111 is weak* upper semi­
continuous in X*, and

(iv) t/J(x) = 0 if and only if 1> is Gateaux differentiable at x.

Proof. (i) By definition of Px, it is clear that Px is a positive sublinear
functional. For the second part, first we would like to show for a fixed
Yo EX, the map x - Px(Yo) is upper semi-continuous. It is sufficient
to show that x - ux(Yo) is upper semi-continuous. Suppose X n _ x.
Then

limsupuxn(Yo) = limsupfn(Yo) for some In E 81>(xn),
n-+oo n~oo

and by Theorem 1, all weak* cluster points of {In} are in 8</J(x). Hence

limsupuxn(Yo) :::; ux(yo).
n-oo

By definition of u x,
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-O"x(-yO) ~ f(yo) < O"x(Yo)

for all f E 8<p(x). Hence if Px(Yo) = 0, then f(yo) has the same value as
O"x(Yo) and -O"x(-Yo) for all f E 8<p(x). Therefore given Xn -+ x in A,

for some fn E 8<p(xn), and f E 8<p(x). Hence

(*) {x EA: Px(Yo) = O} ~ {x EA: x -+ O"x(Yo) is continuous at x}.

On the other hand, suppose x -+ O"x(Yo) is continuous at xo. For any
t > 0,

and
-!:r:oHyo(tyO) ~ <p(xo) - <p(xo + tyo)

for all fxo E 8<p(xo) and fxo+tyo E 8<p(xo + tyo). This implies

and hence

Likewise, we get

( ) <
<p(xo - tyo) - <p(xo)

O"xo-tyO Yo - -t

~ -O"xo(-yo), t > O.

Since -O"xo(-Yo) ~ O"zo(Yo) always, if x -+ O":r:(Yo) is continuous at Xo,
Pzo(Yo) = 0 follows from the last two inequalities. This reverses the
inclusion in (*). Hence, the conclusion follows because the set of points
at which an upper semicontinuous function is continuous is a dense G6

set [4, p.l09].
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(ii) There exist In,gn,in,9n E al/J(x), and IIvnll = 1, IIwnll = 1 such
that

sup Pz(v) = sup (O"z(v) + O"z(-v))
11"11=1 11"11=1

= lim (O"z(vn) + O"z(-vn))
n-+oo

= lim (In - gn)(Vn)
n-+oo

$ sup{1I1 - gll : I,g E al/J(x)}

= lim (in - 9n)(Wn)
n-+oo

$ lim (O"z(Wn) + O"z(-Wn))
n-+oo

= lim Pz(Wn)
n-+oo

$ sup Pz(V).
11"11=1

(iii) Suppose X n -+ x. Then

limsuPt/1(xn) = limsup{lI/n - gnll : In,gn E al/J(xn)}
n-+oo n-+oo

for some In,.,gn,. E 8l/J(xn,.) and IIvkll = 1. By taking further subse­
quence of {In,. - gn,.}, we get a weak* limit of the subsequence. We
assume {In,. - gn,.} is such a subsequence which weak* converges to
I - 9 E (al/J(x) - al/J(x)). Then

l!..~(In,. - gn,.)(Vk) $ k~~ II/n lc - gnlc 11

$111 - gll $ t/1(x).

(iv) By the definition of t/1, t/1(x) = 0 if and only if al/J(x) is a singleton
set. Hence l/J is Gateaux differentiable at x.

Following theorem is due to J .M. Borwein and D. Preiss.

THEOREM 3. [2]. Let X be a Banach space witb a smooth renorm
and let I : U C X -+ R be a convex and continuous on tbe open U.
Tben I is densely Gateaux diJIerentiable.
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THEOREM 4. Ha Banach space X admits an equivalent smooth norm
so that in the dual X· of X, the map f -+ 11111 is w'eak* upper semi­
continuous, then X is a WAS.

Proof. Let X be a Banach space with such renorm, and let t/J is a
continuous convex function defined on an open convex subset A of X.
Let t/J on A is defined as in Lemma 2. Since t/J is upper semi-continuous

D = {x EA: t/J is continuous at x}

is a dense G6 subset of A. We claim that t/J(x) = 0 for all x E D. H
t/J(x) > 0 for some x E D, then since t/J is continuous at x, there exists
6> 0 such that t/J(y) > 0 for alllly - xII < 6. But t/J is densely Ga'l;eaux
differentiable on A by Theorem 3. Hence there exists Xo at which t/J
is Gateaux differentiable and Xo is in the 6-neighbourhood of x. This
implies t/J( xo) = 0, which is contradiction.

We will give one application of Lemma 2.

THEOREM 5. (MAZUR]. Every separable Banach space is a WAS.

Proof. Let X be the given separable Banach space, and let any con-
tinuous convex function t/J and corresponding q z be defined as in Lemma
2. Suppose {x n } is a dense generating set of X. Let

00

Dn = {x EA: Px(xn ) = O} and D = nD n .

n=l

Then D is a dense Gs subset of A. H x E D, then Px(xn) = 0 for all n,
and since Px is a continuous sublinear functional, we can assume that
the set {x n } consists of dense boundary points of the unit ball of X.
Therefore for any boundary point v, Px(v) =0, which implies t/J(x) = O.
Hence X is a WAS.
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