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SMOOTHNESS AND WEAK ASPLUND SPACE *

SEUNG JAE OH

1. Introduction

A real Banach space X is said to be an Asplund (respectively, weak
Asplund) space if every continuous convex function defined on an open
convex subset of X is Fréchet (respectively, Gateaux) differentiable on
a dense G subset of its domain. In 1968, Asplund [1] called Asplund
space (AS) a strong differentiability space, while he called weak Asplund
space (WAS) a weak differentiability space. Asplund proved that every
reflexive Banach space admitting a Fréchet differentiable norm is an AS
(1]. Latter it was known that every reflexive Banach space is an AS [7],
and in 1976, I. Ekeland and G. Lebourg [3] essentially showed that a
Banach space admitting a Fréchet differentiable norm is an AS [see also
4,p.170]. At this point it was asked whether latter type of property holds
for WAS ; that is, if a Banach space X admits an equivallent smooth
norm (smooth norm is the one which is Gateaux differentiable at every
point of X except 0), is X a WAS? In contrast to AS, the knowledge of
WAS is rather incomplete. So far WAS was characterized by means of
the separability of the space [6], rotundity of the dual space of a Banach
space, and hence by the subspace of weakly compactly generated space
[1]. In 1979, D.G. Larman and R.R. Phelps asked whether every Gateaux
differentiability space (GDS) is a WAS and whether the existance of an
equivalent smooth norm on the space is either necessary or sufficient
for the space to be a WAS, but still these questions are unanswered
[5]. Several attempts were made to characterize it by smoothness of the
space. In 1987, J.M. Borwein and D. Preiss [2] showed if X is a Banach
space with a smooth renorm, then X is a GDS, which is a little short of
WAS.
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This paper introduces a particular positive sublinear functional in
Lemma 2 and by using it, it shows that if a Banach space X admits an
equivalent smooth norm so that in the dual X* of X, the map f — || f||
- is weak® upper semi—continuous, then X is a WAS.

DEFINITION. A real function ¢ on an open convex subset A of a Ba-
nach space X is said to be Gateauz differentiable at z € A in the direction
yeXif

i 2+ 1Y) — 8(2)

exists.
t—0 t

If the limit exists for every direction y € X, then we call ¢ Gateauz
differentiable at .

A real function ¥ on a linear space X is said to be positively homo-
geneous if

P(tz) =ty(z) forall t>0 and z€X.

If ¢ is positively homogeneous and convex, it is called sublinear func-
tional The real function f on X which satisfies

fly—z) < d(y)—¢(z) forall ye A

is called a subgradient of ¢ at x and we denote the set of all such subgradi-
ents by 0¢(z). If ¢ is continuous at z, then every f € 0¢(z) is continuous
linear functional on X [4, p.127, Theorem 7]. A Banach space X is said
to be a Gateauz differentiability space if every continuous convex func-
tion defined on an open convex subset of X is Gateaux differentiable on
a dense (not necessarily a dense G;) subset of its domain.

2. Smoothness and WAS
We will use the following theorem.

THEOREM 1. [4, P.134]. (weak® upper semi—continuity of subgradi-
ent mapping)

In a normed linear space X, for a continuous convex function ¢ defined
on an open convex subset A of X, given z € A and a sequence {z,} in A
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where [jzn, — z|] — 0, we have for any sequence {f,} Where fn € 8¢(z,)
that {f.} has a weak* cluster point and all such cluster points are in

9¢(z).

LEMMA 2. Let ¢ be a continuous convex function defined on an open
convex subset A of a Banach space X. Define for each z € A, 0, on X
by

o:(y) =sup{f(y) : f € 94(z)}, y € X, and let
Pr(y) = 02(y) + 02(—y).

Also define ¢ on A by

Y(z) = sup{||f —gl, f,9 € 0¢(z)}.
Then

(1) P; is a positive sublinear functional on X, and for any fixed yo €
X, {z € A : Py(yo) =0} is a dense G subset of A.
(i) ¥(z) = supjy|=1 P=(v).
(ii1) v is upper semi-continuous if f — || f|| is weak® upper semi-
continuous in X*, and
(iv) ¥(z) = 0 if and only if ¢ is Gateaux differentiable at z.

Proof. (i) By definition of P,, it is clear that P, is a positive sublinear
functional. For the second part, first we would like to show for a fixed
Yo € X, the map x — P,(yo) is upper semi-continuous. It is sufficient
to show that * — o0,(y0) is upper semi-continuous. Suppose =, — .

Then

limsup o, (yo) = limsup f,(yo) for some f,, € 9¢(z,),

n—oo n—oo

and by Theorem 1, all weak* cluster points of {f.} are in d¢(z). Hence
limsup oz, (yo) < o2(yo)-
n—oo

By definition of o,
f(_yo) < 03(—y0)3
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and
—0:(—0) < f(¥o) < 0=z(Yo)

for all f € 8¢(z). Hence if P;(yo) = 0, then f(yo) has the same value as
0:(yo) and —oz(—yp) for all f € O¢(z). Therefore given z, — z in A,

Jim o, (v0) = lim_ fa(w0) = f(v0) = o=(30)
for some fn, € 9¢(z,), and f € O¢(z). Hence
(*) {r€A: P(yo) =0} C{z € A: £ — 0,(yo) is continuous at z}.

On the other hand, suppose £ — 0:(yo) is continuous at zo. For any
t>0,

Jzo(tyo) < &(zo + tyo) — ¢(x0),
and
—Fzottyo(t¥0) < (z0) — #(z0 + tyo)
for all f;, € O¢(z0) and fry4ty, € d¢(zo + tyo). This implies

H(zo + tyo) — ¢(z0)
t

Fzo(y0) < < frottyo(yo)s

and hence

< Ozo+tye (y0)~

02o(tn) < A0t 10) — 2(Z0)

Likewise, we get

ato—tyo(yO) < ¢($0 — t:l_lft) — ¢(z0)

< —02,(—y0), t>0.

Since —0z,(—yo) < 0z0(yo) always, if £ — o,(yo) is continuous at zo,
P;,(yo) = 0 follows from the last two inequalities. This reverses the
inclusion in (*). Hence, the conclusion follows because the set of points
at which an upper semicontinuous function is continuous is a dense G
set [4, p.109].
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(ii) There exist fn,gn, fn,dn € 84(z), and fjva}] = 1, JJwnll = 1 such
that

sup P.(v) = sup (0,(v) + o(—v))
llvll=1 llvfi=1

= lim (92(vn) + 02(—va))

= lim (fo = gn)(vn)

< sup{llf — gl : £,9 € 3¢(=)}
= lim (fa — §n)(wn)

< lim (02(wa) + 02(-wa))

= lim P.(w,)

n—oo

< sup P(v).
llell=1

(iii) Suppose z,, — z. Then
liinsolip ¥(zn) = limsup{||fn — gul : fn,9n € Op(zn)}
= kﬁ—{%o(f"" = 99. )()

for some fn,,gn, € 0¢(zn,) and |Jvz]] = 1. By taking further subse-
quence of {fn, — gn.}, We get a weak* limit of the subsequence. We
assume {fp, — gn,} is such a subsequence which weak* converges to

f — g € (04(z) — 3¢(z)). Then
klif%o(fnk = gn, )(vk) < kll»n;o | fne — gn.ll
S Wf —gll £ ¥().
(iv) By the definition of 4, 1(z) = 0 if and only if J¢(z) is a singleton
set. Hence ¢ is Gateaux differentiable at z.

Following theorem is due to J.M. Borwein and D. Preiss.

THEOREM 3. [2]. Let X be a Banach space with a smooth renorm
andlet f : U C X — R be a convex and continuous on the open U.
Then f is densely Gateaux differentiable.
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THEOREM 4. If a Banach space X admits an equivalent smooth norm
so that in the dual X* of X, the map f — | f|| is weak™ upper semi-
continuous, then X is a WAS.

Proof. Let X be a Banach space with such renorm, and let ¢ is a
continuous convex function defined on an open convex subset A of X.
Let ¢ on A is defined as in Lemma 2. Since 9 is upper semi—continuous

D = {z € A : v is continuous at z}

is a dense G subset of A. We claim that ¥(z) = 0 for all z € D. If
(z) > 0 for some = € D, then since ¥ is continuous at z, there exists
6 > 0 such that ¥(y) > 0 for all ||y — z|| < 6. But ¢ is densely Gateaux
differentiable on A by Theorem 3. Hence there exists zo at which ¢
is Gateaux differentiable and z¢ is in the é-neighbourhood of z. This
implies (o) = 0, which is contradiction.

We will give one application of Lemma 2.

THEOREM 5. [MAZUR]. Every separable Banach space is a WAS.

Proof. Let X be the given separable Banach space, and let any con-
tinuous convex function ¢ and corresponding o, be defined as in Lemma
2. Suppose {z,} is a dense generating set of X. Let

D,={z € A: Py(zn) =0} and D=nDn.

n=1

Then D is a dense G5 subset of A. If z € D, then P,(z,) =0 for all n,
and since P, is a continuous sublinear functional, we can assume that
the set {z,} consists of dense boundary points of the unit ball of X.
Therefore for any boundary point v, P;(v) = 0, which implies ¥(z) = 0.
Hence X is a WAS.
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