Comm. Korean Math. Soc. 4(1989), No. 1, pp. 83~87

THE CENTRALIZER OF KH α IN KG α *

Y.S. Park and E.S. Kim

1. Introduction

In [2], G.Karpilovsky investigated a K-basis of the center of a twisted group algebra $K^{t} G$ by utilizing the Berman-Reynolds permutation lemma which can not be generalized to rings in a suitable way.

It is well-known that twisted group algebras are the algebras obtained from group algebras by identifying a central subgroup with a subgroup of the commutative ring's multiplicative group. A very satisfactory characterization of the center of the algebras obtained from group algebras over an integral domain by such identifications has been obtained by A.A. Iskander [1]. Using analogue methods, we shall characterize a $K-$ basis of the centralizer of $K H \alpha$ in $K G \alpha$.

Unless otherwise stated, G will denote a not necessarily finite group, $\zeta(G)$ the center of G, K a commutative ring with 1 , and K^{*} the group of units of K. Let A be an algebra, B a subalgebra of A. The centralizer of B in A will be denote by $C_{A}(B)$. If $A=B$, then $C_{A}(A)$, written $\zeta(A)$, is the center of A.

2. Main Results

We let $K^{t} G$ denote a twisted group algebra of G over K. That is, $K^{t} G$ is an associative K-algebra which is a free K-module with basis $\{\bar{x} \mid x \in G\}$ and which satisfies the condition that for all $x, y \in G, \overline{x y}=$ $r(x, y) \bar{x} \bar{y}, r(x, y) \in K^{*}$.

The associativity condition is equivalent to $\bar{x}(\bar{y} \bar{z})=(\bar{x} \bar{y}) \bar{z}$ for all $x, y, z \in G$ and this is equivalent to $r(x, y z) r(y, z)=r(x, y) r(x y, z)$. If

Received November 8,1988 .

*This is partially supported by the Basic Science Research Institute Program, Ministry of Education, 1988.
$r(x, y)=1$ for all $x, y \in G$ then $K^{t} G$ is in fact $K G$, the group algebra of G over K.

Let N be a central subgroup of a group G and let $\alpha: N \rightarrow K^{*}$ be a homomorphism. If $I(\alpha)$ is the ideal of $K G$ generated by $\{n-\alpha(n) 1 \mid n \in$ $N\}$, then we let $K G \alpha$ denote $K G / I(\alpha)$. In fact, $K G \alpha$ is the algebra obtained from the group algebra $K G$ by identifying n with $\alpha(n)$ for every $n \in N$.

We next provide an important link between twisted group algebras and ordinary group algebras. That is, twisted group algebras are $K G \alpha$ for appropriate G and α.

Theorem 1 [1]. Let N be a central subgroup of G and let $\alpha: N \rightarrow$ K^{*} be a homomorphism. Then $K G \alpha$ is a twisted group algebra of G / N over K. Furthermore, if B is a transversal of G modulo N, then every element of $K G$ is uniquely writable as a K-linear combination in B plus an element of $I(\alpha)$.

Theorem 2. [1]. Suppose N and α are as in Theorem 1. If L is the kernel of α and α^{\prime} is the injective homomorphism of N / L into K^{*} induced by α, then $K G \alpha \cong K(G / L) \alpha^{\prime}$.

Let H be a subgroup of G. Then two elements $x, y \in G$ are called H-conjugate if $y=h^{-1} x h$ for some $h \in H$.

It is clear that the H-conjugacy is an equivalence relation and so G is a union of H-conjugacy classes. For a given $g \in G$, let $C l_{H}(g)$ denote the H-conjugacy class of g, i.e., $C l_{H}(g)=\left\{h^{-1} g h \mid h \in H\right\}$. If $G=H$, then $C l_{G}(g)$, written $C l(g)$, is the conjugacy class of g.

Lemma 3. Suppose H is a subgroup of G, N is a central subgroup of G such that $N \subseteq H$, and $g \in G$. Let $T_{H}(g)=[g, H] \cap N$, where $[g, H]=\left\{g^{-1} h^{-1} g h \mid h \in H\right\}$. Then
(1) $T_{H}(g)=\{n \in N \mid n g$ is a H-conjugate of $g\}$
(2) $T_{H}(g)$ is a subgroup of N
(3) if g is a H-conjugate of g^{\prime}, then $T_{H}(g)=T_{H}\left(g^{\prime}\right)$

Proof. Since (1) is obvious, we prove (2) and (3). Let $m, n \in T_{H}(g)$. Then there are $h, k \in H$ such that $h^{-1} g h=m g, k^{-1} g k=n g$. Hence
$\left(k^{-1} h\right)^{-1} g\left(k^{-1} h\right)=h^{-1}\left(k g k^{-1}\right) h=h^{-1} n^{-1} g h=n^{-1} h^{-1} g h=n^{-1} m g$. Thus $T_{H}(g)$ is a subgroup of N. If g is a H-conjugate of g^{\prime} and $m \in$ $T_{H}(g)$, there are $h, k \in H$ such that $h^{-1} g h=m g, k^{-1} g k=g^{\prime}$. Hence $k^{-1}(m g) k=m g^{\prime}$. Thus $g, g^{\prime}, m g, m g^{\prime}$ are all H-conjugates, i.e., g^{\prime} is a H-conjugate of $m g^{\prime}$. Therefore $T_{H}(g) \subset T_{H}\left(g^{\prime}\right)$. By symmetry, $T(g)=T\left(g^{\prime}\right)$.

We may identify $K H \alpha$ as a subalgebra of $K G \alpha$.
The following theorem describes the centralizer of $K G \alpha$ in $K G \alpha$.
Theorem 4. Suppose K is an integral domain, H is a subgroup of G, N is a central subgroup of G such that $N \subseteq H$, and $\alpha: N \rightarrow$ K^{*} is an injective homomorphism. Let $D \subseteq G$ and $\left\{N_{d} \mid d \in D\right\}$ be a transversal for the H / N-conjugacy classes of G / N. Then the set $\left\{\sum C l_{H}(d)+I(\alpha)\left|d \in D,\left|C l_{H}(d)\right|<\infty\right.\right.$ and $\left.T_{H}(d)=\{1\}\right\}$ is a basis for $C_{K G \alpha}(K H \alpha)$ as a K-module.

Proof. Step 1. We construct a transversal B of G modulo N such that $D \subseteq B \subseteq \cup\left\{C l_{H}(d) \mid d \in D\right\}$

For every $d \in D$, let $B(d) \subseteq C l_{H}(d)$ be a transversal of $N C l_{H}(d)$ modulo N such that $d \in B(d)$. Then $B=\cup\{B(d) \mid d \in D\}$ is a transversal of G modulo N

Indeed, let $b \in B(d), b^{\prime} \in B\left(d^{\prime}\right)$ and $N_{b}=N_{b^{\prime}}$. Since $B(d) \subseteq$ $C l_{H}\left(d^{\prime}\right), b$ is a H-conjugate of d and b^{\prime} is a H-conjugate of d^{\prime}. Thus N_{b} is a H / N-conjugate of N_{d} and $N_{b^{\prime}}$ is a H / N-conjugate of $N_{d^{\prime}}$. Hence N_{d} is a H / N-conjugate of $N_{d^{\prime}}$ and so $d=d^{\prime}$. Therefore $b, b^{\prime} \in B(d)$ and $N_{b}=N_{b^{\prime}}$. By the choice of $B(d), b=b^{\prime}$. Let $g \in G$, then N_{g} is a $H / N-$ conjugate of N_{d} in G / N for some $d \in D$. Thus $N_{g}=N_{h^{-1}} N_{d} N_{h}=$ $N_{h^{-1} d h}$ for some $h \in H$ and so $n g=h^{-1} d h$ for some $n \in N$. Hence $n g \in C l_{H}(d)$. Therefore there is $b \in B(d)$ such that $N_{b}=N_{n g}=N_{g}$.

Step 2. Let $B^{\prime}=\left\{b \in B \mid T_{H}(b)=[b, H] \cap N=\{1\}\right\}$. Then B^{\prime} is closed under H-conjugates.

Indeed, if $b \in B^{\prime}$, then $b \in B(d) \subseteq C l_{H}(d)$ and $T_{H}(b)=1$. Thus $C l_{H}(b)=C l_{H}(d)$ and so $T(d)=1$. If $c \in C l_{H}(b)=C l_{H}(d), N_{c}=N_{b^{\prime}}$ for some $b^{\prime} \in B(d)$. Hence $c=n b^{\prime}$ for some $n \in N$. Since $b, c, b^{\prime} \in$ $C l_{H}(d)$, they are all H-conjugates. Thus $n \in T_{H}\left(b^{\prime}\right)=T_{H}(d)=\{1\}$ and so $n=1$ or $c=b^{\prime} \in B(d)$. Hence $B(d)=C l_{H}(d)$. Thus the
mapping $b \rightarrow h^{-1} b h$ is a permutation of B^{\prime} for every $h \in H$.
Step 3. Suppose $b, c \in B, \quad m, n \in N, \quad h \in H$ and $h^{-1} b h=m b$, $h^{-1} c h=n b$. Then $b=c$.
Indeed, $h^{-1} m^{-1} n b h=m^{-1} n h^{-1} b h=m^{-1} n m b=h^{-1} c h$. Thus $m^{-1} n b=c$ and so $b=c$.

Step 4. We claim that $C_{K G \alpha}(K H \alpha)$ is generated by $\left\{\sum C l_{H}(d)+\right.$ $I(\alpha) \mid d \in D, C l_{H}(d)<\infty$ and $\left.T_{H}(d)=1\right\}$ as a K-module.

Let $A=\sum\left\{t_{b} b \mid b \in B\right\}+I(\alpha) \in C_{K G \alpha}(K H \alpha)$. Then $A=h^{-1} A h$ for all $h \in H$, i.e., $A=\sum\left\{t_{b} h^{-1} b h \mid b \in B\right\}+I(\alpha)$.

Let $c \in B$ and $n \in T_{H}(c)$. Then $k^{-1} c k=n c$ for some $k \in H$. Thus $I(\alpha)=A-k^{-1} A k=t_{c}(1-\alpha(n)) c+\sum\left\{u_{b} b \mid b \in B, b \neq c\right\}+I(\alpha)$. By Theorem $1, t_{c}(1-\alpha(n))=0$ in K. Since K is an integral domain, $t_{c}=0$ or $\alpha(n)=1$. Since α is injective, $t_{c}=0$ or $n=1$. Hence $A=\sum\left\{t_{b} b \mid b \in\right.$ $\left.B^{\prime}\right\}+I(\alpha)$. If $c, c^{\prime} \in B^{\prime}$ are H-conjugate, then $k^{-1} c k=c^{\prime}$ for some $k \in H$. Hence $I(\alpha)=A-k^{-1} A k=\left(t_{c^{\prime}}-t_{c}\right) c^{\prime}+\sum\left\{s_{b} b \mid b \in B^{\prime}, b \neq c^{\prime}\right\}$.

By Theorem $1, t_{c^{\prime}}=t_{c}$.
If $c \in B^{\prime}$ has an infinite conjugacy class, then $t_{c}=0$ since only finitely many $t_{b} \neq 0$. Thus every element of $C_{K G \alpha}(K H \alpha)$ is uniquely writable as $\sum\left\{t_{b} b\left|b \in B^{\prime},\left|C l_{H}(b)\right|<\infty\right\}+I(\alpha)\right.$, where $t_{b} \neq 0$ only for a finite number of $b \in B^{\prime}$ and $t_{b}=t_{c}$ if b is a conjugate of c. Conversely, every element of this form belongs to $C_{K G \alpha}(K H \alpha)$ since the subset of B^{\prime} of all elements with finitely many conjugates is invariant under $H-$ conjugation. Thus $C_{K G \alpha}(K H \alpha)$ is generated by $\left\{\sum C l_{H}(b)+I(\alpha) \mid b \in\right.$ $B^{\prime},\left|C l_{H}(b)\right|<\infty$ and $\left.T_{H}(b)=\{1\}\right\}$ as a $K-$ module. If $b \in B, b \in B(d)$ and $T_{H}(b)=\{1\}$, then $B(d)=C l_{H}(d)=C l_{H}(b)$. Hence $C_{K G \alpha}(K H \alpha)$ is generated by $\left\{\sum C l_{H}(d)+I(\alpha)\left|d \in D,\left|C l_{H}(d)\right|<\infty\right.\right.$ and $T_{H}(d)=$ $\{1\}\}$.

Step 5. If $d \neq d^{\prime}$ and $T_{H}(d)=T_{H}\left(d^{\prime}\right)=1$, then $C l_{H}(d)$ and $C l_{H}\left(d^{\prime}\right)$ are disjoint subsets of B. Hence $\left\{\sum C l_{H}(d)+I(\alpha)\left|d \in D,\left|C l_{H}(d)\right|<\right.\right.$ ∞ and $\left.T_{H}(d)=\{1\}\right\}$ is K-linearly independent. So it is a basis for $C_{K G \alpha}(K H \alpha)$ as a K-module.

REMARK. From the proof Theorem 4, it is clear that the conclusions of the theorem remain valid if K is a commutative ring with 1 such that $1-\alpha(n)$ is not a zero divisor in K for every $1 \neq n \in N$.

If $G=H$, then we obtain Corollary 5. Thus Theorem 4 generalizes Theorem 7 of [1].

Corollary 5. Suppose K is an integral domain, G is a group, N is a central subgroup of G and $\alpha: N \rightarrow K^{*}$ is an injective homomorphism. Let $D \subseteq G$ and $\left\{N_{d} \mid d \in D\right\}$ be a transversal for the conjugacy classes of G / N. Then the set $\left\{\sum C l(d)+I(\alpha)|d \in D,|C l(d)|<\infty\right.$ and $T(d)=[d, G] \cap N=\{1\}\}$ is a basis for the center of $K G \alpha$ as a $K-$ module.

References

1. A.A. Iskander, Groups and central algebras, Illinois J. of Math. (1) 31(1987), 1-16.
2. G. Karpilovsky, Projective representations of finite groups, Marcel Dekker, Inc., 1985.
3. D.S. Passman, The algebraic structure of group rings, Wiley-Inc., New York, 1977.

Kyungpook University
Daegu 702-701, Korea

