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A ROLE OF CURVATURES IN THE CLASSIFICATION
OF MANIFOLDS *

HoNaGg-JoNG KM

0. Introduction

The category of isomorphism classes of differentiable manifolds of di-
mension < 3 is equal to the category of isomorphism classes of topo-
logical manifolds of dimension < 3, although for the higher dimensional
case this is no longer true. For instance, there is a (unique) simply
connected topological spin 4-manifold with the prescribed definite inter-
section form [F], but there is no such 4-manifold in the differentiable
category [D]. This result is obtained by studying (nonlinear) Yang-Mills
equation on an SU(?) bundle. In the bundle theoretic point of view,
the real line R! and the circle S* are different, since the former has
only the trivial bundles and the latter has the nontrivial (Mébius) line
bundle. In the cohomological theoretic point of view, real line bundles
over a topological manifold X corresponds to an element, called the first
Stiefel-Whitney class, in H'(X; Z,) and the M6bius bundle corresponds
to the generator of H(S';Z,) = Z,. The same type of reasoning is true
for compact surfaces. For, if we denote by gX the connected sum of g
copies of a surface X, then

HY(gT* Z,) = (29)22, H(9P%Z;) = g2,

where T2 is the torus, P2 is the real projective plane and gZ, is the
direct sum of g copies of Z,.

In fact, the theory of vector bundles are closely related with the clas-
sification of 4-manifolds.
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THEOREM (M. FREEDMAN). Two compact simply connected 4-man-
ifolds are homeomorphic if and only if they have the isomorphic coho-
mology rings.

The ring structure of the cohomology of such 4-manifold X is just the
cup product

U: H¥(X;Z)® H*(X;Z) » HY(X;Z),

where H2(X;Z) is equal to the isomorphism classes of complex line bun-
dles on X and H*(X; Z) is equal to the isomorphism classes of quaternion
line bundles on X. In this point of view, the above cup product is,the
following identity

Cl(Ll) U Cl(Lg) = 62(L1 @ Lz),

for complex line bundles L; and Lo, where ¢; is the i-th Chern class.

For the high dimensional case, we still have the concept of anti-self-
dual connections when the base manifold is a hermitian manifold. Anti-
self-dual connections are special types of Einstein connections [Kob]. Al-
though many statements in this paper are true for Einstein connections,
we will focus only on anti-self-dual connections.

1. Anti-self-dual connections on high dimensional hermitian
manifolds

Let M be a compact complex manifold of (complex) dimension n > 2
equipped with a hermitian metric

n
(1.1) 9= gurdz* ®dz".
p,v=1
The associated (real) fundamental 2-form is denoted by ®;

(1.2) ®=v-1) gupdz*AdZ".

py=1
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The space of real differential k-forms on M is denoted by A* for k =
0,1,---,2n. Then
(1.3) AF@C= )" 4rq,
pte=k

where A?'? denotes the space of complex differential forms on M of type
(P b) q)

DEFINITION 1.4. A primitive real (1,1)-form on M is said to be anti-
self-dual.

Thus w = /-1 E:,u:l wyupdz* A dz” is anti-self-dual if and only if

n

Aw = Z 9*w,; =0,

=1

where (g#?) is the inverse matrix of (g,5); Yo_; 9*° 9o = 6%. Thus the
space A? of 2-forms on M decomposes into two orthogonal subspaces;

(1.5) A= A% @ A%,
where
(1.6) A2 @C =AY 9A*? @ {f®: feC>M)®C)}.

If d®"~% = 0 ( in particular, when M is Kihler) , by Hodge theory, the
above decomposition is true also in the cohomology level;

(1.7 H*(M;R)=H} ® HZ,

where H3 is the space of (anti-)self-dual closed 2-forms on the hermitian
manifold (M, ®).

Now let E be a smooth complex vector bundle over M of rankc = r.
We denote by AF(E) (resp. AP4(E)) the space of differential k-forms
(resp. (p, g)-forms) on M with values in E. Then

AE)= ) AP(E).

ptg=k
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Now a connection
(1.8) D : A(E) — AY(E)
is said to be anti-self-dual if the associated curvature tensor
(1.9) R=Ry + R_ € A*(End(E)) = A% (End(E)) ® A2 (End(E))

is anti-self-dual , i.e., Ry = 0. In particular, every flat bundle admits
an anti-self-dual connection. Anti-self-dual connections are special types
of Einstein-Hermitian connections [Kob]. If E admits an anti-self-dual
connection and d®"~! = 0, then it is obvious that

c1(B)U @™ = 0 € H*"(M;R).

Now the following proposition is trivial.

PROPOSITION 1.10. If Dy (resp. D;) is an anti-self-dual connection
on a vector bundle E; (resp. E;) over a hermitian manifold M, then

DI@D27 Dl ®D2, D;
are anti-self-dual connections on E; @ E,, F) @ E; and Ej, respectively.

Now let h be a hermitian metric on E and let D be an anti-self-
dual connection on E compatible with A. Then the curvature R of D
is of type (1,1) and hence E admits a unique holomorphic structure
€ = ED such that D is the associated Chern connection [AHS]. Recall
that a holomorphic vector bundle £ over a complex manifold M is said
to be simple [OSS] if constant endomorphisms are the only holomorphic
endomorphisms of £, or equivalently,

HY(M,sl(€)) =0,
where sl(£) is the bundle of trace-free endomorphisms of &;

End(&) =sli(E)® C - 1¢.
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Now the following proposition is a special case of the more general van-
ishing principle [Kob, p.52].

PROPOSITION 1.11. Let D be an anti-self-dual connection on a uni-
tary vector bundle (E,h). Then any holomorphic section of £ = EP is
parallel, and € is a direct sum of simple bundles. If D is irreducible,
then £ is simple.

2. Determinant line bundle and the moduli space

Let (E, k) be a rank r hermitian vector bundle over M. Then the line
bundle det(E) = A"E is equipped with the induced metric det(h). The
set of all connections on (E,h) will be denoted by Con(E, k) and the
subspace of Con(E, k) consisting of anti-self-dual connections is denoted
by ASD(E,h). A connection (resp. anti-self-dual connection) D on
(E, h) induces a connection (resp. anti-self-dual connection) det(D) on
(det(E),det(h)) and hence we have the following commutative diagram

ASD(E,h) ———  Con(E,h)

det l ldet

ASD(det(E), det(h)) —— Con(det(E), det(h))

with the surjective vertical arrows [K2]. Now we define for each V €
Con(det(E),det(h)),

Con(E, h,V) = {D € Con(E, ) : det(D) = V}

and
ASD(E,h,V) = ASD(E,h)NCon(E,h,V).
Then
Con(E,h) =U{Con(E, h,V) :V € Con(det(E), det(h))}
and

ASD(E, k) = U{ASD(E, h,V) : V € ASD(det(E),det(k))}.
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Now let U(E, h) be the group of all C* isometries on (E, h) and let
SU(E, h) be the subgroup of U(E, h) consisting of elements with deter-
minant = 1. Then SU(E, k) acts on each Con(E, h, V) and the subspace
ASD(E,h,V) is invariant. The quotient space
M = M(E,h,V)=ASD(E,h,V)/SU(E,h)
is called the moduli space of anti-self-dual connections on E.

PROPOSITION 2.1. M is independent of the dhoice (k, V).

PROOF: Note that any two hermitian structures h and k' are equivalent,
i.e., there exists a C*° bundle automorphism f : E — E such that
h' = f*(h). Now this automorphism also pulls back connections;
f* : Con( B, h) - Con(E, ),
given by f*(D)= f~' o Do f for D € Con(E, k). Obviously
f*(ASD(E,h)) C ASD(E,h').
Note that for ¢ € U(E, h),
£(9) = Fogo f € U(E, W)
and the diagram

Con(E,h) —f—> Con(E, h')

o| re

Con(E,h) —— Con(E, K)

commutes. Now for V € Con(det(E),det(h)), let f*(V) = (det f~1)o
Vo(det f). Then

f* : Con(E, h,V)/SU(E, h) ~ Con(E, f*(h), f*(V))/SU(E, f*(h)).
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KV € ASD(det(E),det(h)), then f*(V) € ASD(det(E), det(f*(h)) and
£* s M(E, b, V) & M(E, f*(h), £*(V)).
Now to complete the proof, we consider two connections Vy,V, €

Con(det(E),det(h)). Then V, = V; + /—1¢ for some real 1-form ¢ on
M. Now the translation -

+v=1(¢/r) - 1g : Con(E,h,V}) = Con(E, h,Vy)

commutes with the action of the gauge group SU(E, k) and hence we
obtain the identification

Con(E,h,V,)/SU(E,h) ~ Con(E,h,V3)/SU(E, ).
If V1,Vy € ASD(det(E),det(h)), then we obtain the identification
M(E, h, V1) ~ M(E,h, V).
This completes the proof. |i

3. Elliptic complex

The space Con(E,h,V) of connections is a ‘parallel translation’ of
A'(su(E, b)), where su(E, h) is the real vector bundle of trace free skew-
hermitian endomorphisms of (E, k) so that

su(E,h)® C = sl(E),

and A%(su(E, h)) is the Lie algebra of the gauge group SU(E, h). For any
connection D on E, the induced connection on su(E, k) is still denoted
by D;

D : A%(su(E,h)) — Al(su(E, h)).

Now if D is anti-self-dual, i.e., D € ASD(E, h,V), then

D+ a, a € A'(su(E, h))
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is anti-self-dual if and only if

(3.1) p+(D(@) + 3l,a]) =0,

where py : A2 — A2 is the projection. The linearization of the above
equation gives rise to a map

(3.2) D, = py o D : A'(su(E,h)) — AL (su(E, h)).
Now we define
(3.3) D, : A2 (su(E, k)) — A*(sl(E))

as the following composition

A2 (su(E, h)) — A%(su(E, h)) — A%(sl(E))
— AV (SI(E)) —» A (sUE)),

Po,2

where pg 2 is the projection and D" is the (0,1)-part of the connection
D.

b

D=D+D".
Now we have

THEOREM 3.4 [K1]. Let D be an anti-self-dual connection on a her-
mitian vector bundle (E,h) over a hermitian manifold M. Then the
sequence

0 — A(su(B, ) > AN (su(E, b)) —» A% (su(B, h)) > A%%(sl(E))

A% (SIE A%"(SI(E 0
—> AHGUE)) — -+ — A% (l(E)) -

is an elliptic complex with the index equal to
2ch(sl(E)) Utodd(M)

evaluated on the fundamental cycle of the manifold M, where todd(M)
denotes the Todd class of M.
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Moreover, its cohomology groups H* satisfy

H°® C~ H(M,sl(€)) H'~ HY(M,sl(£))
H? ~ H°@ H}(M,sl(£)) H* ~ H¥(M,sl(€)) fork >3,

where £ = EP is the holomorphic structure associated with D.
The proof may be also found in [Kob, p.248).
4. Anti-self-dual connections on a complex homology 6-sphere

It is known that S°® is Yang-Mills instable [KOT]. On the other hand,
anti-self-dual connections on a Kahler manifold are absolute minima of
the Yang-Mills functional.

Now let (M, ®) be a hermitian manifold of (complex) dimension 3 with
the trivial canonical line bundle K)s such that

H*(M;Z) ~ H*(5%2).

Let (E, h) be a smooth hermitian vector bundle of rank 3 with c3(E) # 0.
Note that if £ = E, @ E; with rank(E;) = 1, then

C3(E) = C](El) U 62(E2)

and hence c3(E) # 0 insures that E is smoothly indecomposable. There-
fore, every connection on ( E, h) is irreducible and hence any holomorphic
structure on E is simple, i.e., H*(M, sl(€)) = 0 and, by Serre duality,
HY(M,sl(§)) ~ H*(M, sl(€)) and H3(M,sl(€)) =0.

Therefore, if D is an anti-self-dual connection, the cohomology groups
of the elliptic complex (3.4) satisfy

H°=0, H'~H? H)®=0

and the index of the elliptic complex is zero. Note that H'(M, si(£)) is
the tangent space of the moduli space when H2(M, sl(€)) = 0 [K1] and
hence in this case the moduli space is discrete.
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