A ROLE OF CURVATURES IN THE CLASSIFICATION OF MANIFOLDS *

Hong-Jong Kim

0. Introduction

The category of isomorphism classes of differentiable manifolds of dimension ≤ 3 is equal to the category of isomorphism classes of topological manifolds of dimension ≤ 3 , although for the higher dimensional case this is no longer true. For instance, there is a (unique) simply connected topological spin 4-manifold with the prescribed definite intersection form [F], but there is no such 4-manifold in the differentiable category [D]. This result is obtained by studying (nonlinear) Yang-Mills equation on an SU(2) bundle. In the bundle theoretic point of view, the real line \mathbb{R}^1 and the circle S^1 are different, since the former has only the trivial bundles and the latter has the nontrivial (Möbius) line bundle. In the cohomological theoretic point of view, real line bundles over a topological manifold X corresponds to an element, called the first Stiefel-Whitney class, in $H^1(X; \mathbb{Z}_2)$ and the Möbius bundle corresponds to the generator of $H^1(S^1; \mathbb{Z}_2) \cong \mathbb{Z}_2$. The same type of reasoning is true for compact surfaces. For, if we denote by qX the connected sum of qcopies of a surface X, then

$$H^1(gT^2; \mathbf{Z}_2) = (2g)\mathbf{Z}_2, \qquad H^1(g\mathbf{P}^2; \mathbf{Z}_2) = g\mathbf{Z}_2$$

where T^2 is the torus, \mathbf{P}^2 is the real projective plane and $g\mathbf{Z}_2$ is the direct sum of g copies of \mathbf{Z}_2 .

In fact, the theory of vector bundles are closely related with the classification of 4-manifolds.

Received October 29, 1988 and in revised form January 10, 1989.

^{*}This research is supported by KOSEF.

THEOREM (M. FREEDMAN). Two compact simply connected 4-manifolds are homeomorphic if and only if they have the isomorphic cohomology rings.

The ring structure of the cohomology of such 4-manifold X is just the cup product

$$\cup: H^2(X; \mathbf{Z}) \otimes H^2(X; \mathbf{Z}) \to H^4(X; \mathbf{Z}),$$

where $H^2(X; \mathbf{Z})$ is equal to the isomorphism classes of complex line bundles on X and $H^4(X; \mathbf{Z})$ is equal to the isomorphism classes of quaternion line bundles on X. In this point of view, the above cup product is the following identity

$$c_1(L_1) \cup c_1(L_2) = c_2(L_1 \oplus L_2),$$

for complex line bundles L_1 and L_2 , where c_i is the *i*-th Chern class.

For the high dimensional case, we still have the concept of anti-self-dual connections when the base manifold is a hermitian manifold. Anti-self-dual connections are special types of Einstein connections [Kob]. Although many statements in this paper are true for Einstein connections, we will focus only on anti-self-dual connections.

1. Anti-self-dual connections on high dimensional hermitian manifolds

Let M be a compact complex manifold of (complex) dimension $n \geq 2$ equipped with a hermitian metric

$$(1.1) g = \sum_{\mu,\nu=1}^{n} g_{\mu\bar{\nu}} dz^{\mu} \otimes d\bar{z}^{\nu}.$$

The associated (real) fundamental 2-form is denoted by Φ ;

(1.2)
$$\Phi = \sqrt{-1} \sum_{\mu,\nu=1}^{n} g_{\mu\bar{\nu}} dz^{\mu} \wedge d\bar{z}^{\nu}.$$

The space of real differential k-forms on M is denoted by A^k for $k = 0, 1, \dots, 2n$. Then

$$A^{k} \otimes \mathbf{C} = \sum_{p+q=k} A^{p,q},$$

where $A^{p,q}$ denotes the space of complex differential forms on M of type (p,q).

DEFINITION 1.4. A primitive real (1,1)-form on M is said to be anti-self-dual.

Thus $\omega=\sqrt{-1}\sum_{\mu,\nu=1}^n\omega_{\mu\bar{\nu}}dz^\mu\wedge d\bar{z}^\nu$ is anti-self-dual if and only if

$$\Lambda\omega:=\sum_{\mu,\nu=1}^n g^{\mu\bar{\nu}}\omega_{\mu\bar{\nu}}=0,$$

where $(g^{\mu\bar{\nu}})$ is the inverse matrix of $(g_{\mu\bar{\nu}})$; $\sum_{\nu=1}^{n} g^{\mu\bar{\nu}} g_{\sigma\bar{\nu}} = \delta_{\sigma}^{\mu}$. Thus the space A^2 of 2-forms on M decomposes into two orthogonal subspaces;

$$(1.5) A^2 = A_+^2 \oplus A_-^2,$$

where

$$(1.6) A_+^2 \otimes \mathbf{C} = A^{2,0} \oplus A^{0,2} \oplus \{ f\Phi : f \in \mathcal{C}^{\infty}(M) \otimes \mathbf{C} \}.$$

If $d\Phi^{n-2} = 0$ (in particular, when M is Kähler), by Hodge theory, the above decomposition is true also in the cohomology level;

(1.7)
$$H^{2}(M; \mathbf{R}) = H_{+}^{2} \oplus H_{-}^{2},$$

where H_{\pm}^2 is the space of (anti-)self-dual closed 2-forms on the hermitian manifold (M, Φ) .

Now let E be a smooth complex vector bundle over M of rank_C = r. We denote by $A^k(E)$ (resp. $A^{p,q}(E)$) the space of differential k-forms (resp. (p,q)-forms) on M with values in E. Then

$$A^k(E) = \sum_{p+q=k} A^{p,q}(E).$$

Now a connection

(1.8)
$$D: A^0(E) \to A^1(E)$$

is said to be anti-self-dual if the associated curvature tensor

(1.9)
$$R = R_+ + R_- \in A^2(\text{End}(E)) = A_+^2(\text{End}(E)) \oplus A_-^2(\text{End}(E))$$

is anti-self-dual, i.e., $R_+=0$. In particular, every flat bundle admits an anti-self-dual connection. Anti-self-dual connections are special types of Einstein-Hermitian connections [Kob]. If E admits an anti-self-dual connection and $d\Phi^{n-1}=0$, then it is obvious that

$$c_1(E) \cup [\Phi^{n-1}] = 0 \in H^{2n}(M; \mathbf{R}).$$

Now the following proposition is trivial.

PROPOSITION 1.10. If D_1 (resp. D_2) is an anti-self-dual connection on a vector bundle E_1 (resp. E_2) over a hermitian manifold M, then

$$D_1 \oplus D_2$$
, $D_1 \otimes D_2$, D_1^*

are anti-self-dual connections on $E_1 \oplus E_2$, $E_1 \otimes E_2$ and E_1^* , respectively.

Now let h be a hermitian metric on E and let D be an anti-self-dual connection on E compatible with h. Then the curvature R of D is of type (1,1) and hence E admits a unique holomorphic structure $\mathcal{E} = E^D$ such that D is the associated Chern connection [AHS]. Recall that a holomorphic vector bundle \mathcal{E} over a complex manifold M is said to be simple [OSS] if constant endomorphisms are the only holomorphic endomorphisms of \mathcal{E} , or equivalently,

$$H^0(M, sl(\mathcal{E})) = 0,$$

where $sl(\mathcal{E})$ is the bundle of trace-free endomorphisms of \mathcal{E} ;

$$\operatorname{End}(\mathcal{E}) = sl(\mathcal{E}) \oplus \mathbf{C} \cdot 1_{\mathcal{E}}.$$

Now the following proposition is a special case of the more general vanishing principle [Kob, p.52].

PROPOSITION 1.11. Let D be an anti-self-dual connection on a unitary vector bundle (E,h). Then any holomorphic section of $\mathcal{E}=E^D$ is parallel, and \mathcal{E} is a direct sum of simple bundles. If D is irreducible, then \mathcal{E} is simple.

2. Determinant line bundle and the moduli space

Let (E, h) be a rank r hermitian vector bundle over M. Then the line bundle $\det(E) = \Lambda^r E$ is equipped with the induced metric $\det(h)$. The set of all connections on (E, h) will be denoted by Con(E, h) and the subspace of Con(E, h) consisting of anti-self-dual connections is denoted by ASD(E, h). A connection (resp. anti-self-dual connection) D on (E, h) induces a connection (resp. anti-self-dual connection) $\det(D)$ on $\det(E)$, $\det(h)$ and hence we have the following commutative diagram

$$ASD(E,h) \longrightarrow Con(E,h)$$

$$\det \downarrow \qquad \qquad \downarrow \det$$
 $ASD(\det(E),\det(h)) \longrightarrow Con(\det(E),\det(h))$

with the surjective vertical arrows [K2]. Now we define for each $\nabla \in Con(\det(E), \det(h))$,

$$Con(E, h, \nabla) = \{D \in Con(E, h) : \det(D) = \nabla\}$$

and

$$ASD(E, h, \nabla) = ASD(E, h) \cap Con(E, h, \nabla).$$

Then

$$Con(E, h) = \cup \{Con(E, h, \nabla) : \nabla \in Con(\det(E), \det(h))\}\$$

and

$$ASD(E, h) = \bigcup \{ASD(E, h, \nabla) : \nabla \in ASD(\det(E), \det(h))\}.$$

Now let U(E,h) be the group of all \mathcal{C}^{∞} isometries on (E,h) and let SU(E,h) be the subgroup of U(E,h) consisting of elements with determinant = 1. Then SU(E,h) acts on each $Con(E,h,\nabla)$ and the subspace $ASD(E,h,\nabla)$ is invariant. The quotient space

$$\mathcal{M} = \mathcal{M}(E, h, \nabla) = ASD(E, h, \nabla)/SU(E, h)$$

is called the moduli space of anti-self-dual connections on E.

PROPOSITION 2.1. M is independent of the choice (h, ∇) .

PROOF: Note that any two hermitian structures h and h' are equivalent, i.e., there exists a C^{∞} bundle automorphism $f: E \to E$ such that $h' = f^*(h)$. Now this automorphism also pulls back connections;

$$f^*: Con(E,h) \to Con(E,h'),$$

given by $f^*(D) = f^{-1} \circ D \circ f$ for $D \in Con(E, h)$. Obviously

$$f^*(ASD(E,h)) \subset ASD(E,h').$$

Note that for $g \in U(E, h)$,

$$f^*(g):=f^{-1}\circ g\circ f\in U(E,h')$$

and the diagram

$$\begin{array}{ccc} Con(E,h) & \xrightarrow{f^*} & Con(E,h') \\ & g \downarrow & & \downarrow f^*(g) \\ & & Con(E,h) & \xrightarrow{f^*} & Con(E,h') \end{array}$$

commutes. Now for $\nabla \in Con(\det(E), \det(h))$, let $f^*(\nabla) = (\det f^{-1}) \circ \nabla \circ (\det f)$. Then

$$f^*: Con(E, h, \nabla)/SU(E, h) \simeq Con(E, f^*(h), f^*(\nabla))/SU(E, f^*(h)).$$

If $\nabla \in ASD(\det(E), \det(h))$, then $f^*(\nabla) \in ASD(\det(E), \det(f^*(h)))$ and

$$f^*: \mathcal{M}(E, h, \nabla) \simeq \mathcal{M}(E, f^*(h), f^*(\nabla)).$$

Now to complete the proof, we consider two connections $\nabla_1, \nabla_2 \in Con(\det(E), \det(h))$. Then $\nabla_2 = \nabla_1 + \sqrt{-1}\phi$ for some real 1-form ϕ on M. Now the translation

$$+\sqrt{-1}(\phi/r)\cdot 1_E:Con(E,h,\nabla_1)\to Con(E,h,\nabla_2)$$

commutes with the action of the gauge group SU(E,h) and hence we obtain the identification

$$Con(E, h, \nabla_1)/SU(E, h) \simeq Con(E, h, \nabla_2)/SU(E, h).$$

If $\nabla_1, \nabla_2 \in ASD(\det(E), \det(h))$, then we obtain the identification

$$\mathcal{M}(E,h,
abla_1)\simeq \mathcal{M}(E,h,
abla_2).$$

This completes the proof.

3. Elliptic complex

The space $Con(E, h, \nabla)$ of connections is a 'parallel translation' of $A^1(su(E, h))$, where su(E, h) is the *real* vector bundle of trace free skew-hermitian endomorphisms of (E, h) so that

$$su(E,h)\otimes {f C}=sl(E),$$

and $A^0(su(E,h))$ is the Lie algebra of the gauge group SU(E,h). For any connection D on E, the induced connection on su(E,h) is still denoted by D;

$$D: A^0(su(E,h)) \to A^1(su(E,h)).$$

Now if D is anti-self-dual, i.e., $D \in ASD(E, h, \nabla)$, then

$$D + \alpha$$
, $\alpha \in A^1(su(E, h))$

is anti-self-dual if and only if

(3.1)
$$p_{+}(D(\alpha) + \frac{1}{2}[\alpha, \alpha]) = 0,$$

where $p_+:A^2\to A_+^2$ is the projection. The linearization of the above equation gives rise to a map

$$(3.2) D_{+} = p_{+} \circ D : A^{1}(su(E,h)) \to A^{2}_{+}(su(E,h)).$$

Now we define

(3.3)
$$D_2: A^2_+(su(E,h)) \to A^{0,3}(sl(E))$$

as the following composition

$$A^{2}_{+}(su(E,h)) \hookrightarrow A^{2}(su(E,h)) \hookrightarrow A^{2}(sl(E))$$

$$\xrightarrow{p_{0,2}} A^{0,2}(sl(E)) \xrightarrow{D''} A^{0,3}(sl(E)),$$

where $p_{0,2}$ is the projection and D'' is the (0,1)-part of the connection D;

$$D=D'+D''.$$

Now we have

THEOREM 3.4 [K1]. Let D be an anti-self-dual connection on a hermitian vector bundle (E,h) over a hermitian manifold M. Then the sequence

$$0 \to A^{0}(su(E,h)) \xrightarrow{D} A^{1}(su(E,h)) \xrightarrow{D_{+}} A^{2}_{+}(su(E,h)) \xrightarrow{D_{2}} A^{0,3}(sl(E))$$
$$\xrightarrow{D''} A^{0,4}(sl(E)) \xrightarrow{D''} \cdots \xrightarrow{D''} A^{0,n}(sl(E)) \to 0$$

is an elliptic complex with the index equal to

$$2 \operatorname{ch}(\operatorname{sl}(E)) \cup \operatorname{todd}(M)$$

evaluated on the fundamental cycle of the manifold M, where todd(M) denotes the Todd class of M.

Moreover, its cohomology groups H^* satisfy

$$H^0 \otimes \mathbf{C} \simeq H^0(M, sl(\mathcal{E}))$$
 $H^1 \simeq H^1(M, sl(\mathcal{E}))$ $H^2 \simeq H^0 \oplus H^2(M, sl(\mathcal{E}))$ $H^k \simeq H^k(M, sl(\mathcal{E}))$ for $k \geq 3$,

where $\mathcal{E} = E^D$ is the holomorphic structure associated with D.

The proof may be also found in [Kob, p.248].

4. Anti-self-dual connections on a complex homology 6-sphere

It is known that S^6 is Yang-Mills instable [KOT]. On the other hand, anti-self-dual connections on a Kähler manifold are absolute minima of the Yang-Mills functional.

Now let (M, Φ) be a hermitian manifold of (complex) dimension 3 with the trivial canonical line bundle \mathcal{K}_M such that

$$H^*(M; \mathbf{Z}) \simeq H^*(S^6; \mathbf{Z}).$$

Let (E, h) be a smooth hermitian vector bundle of rank 3 with $c_3(E) \neq 0$. Note that if $E = E_1 \oplus E_2$ with rank $(E_i) = i$, then

$$c_3(E) = c_1(E_1) \cup c_2(E_2)$$

and hence $c_3(E) \neq 0$ insures that E is smoothly indecomposable. Therefore, every connection on (E,h) is irreducible and hence any holomorphic structure on E is simple, i.e., $H^0(M,sl(\mathcal{E})) = 0$ and, by Serre duality, $H^1(M,sl(\mathcal{E})) \simeq H^2(M,sl(\mathcal{E}))$ and $H^3(M,sl(\mathcal{E})) = 0$.

Therefore, if D is an anti-self-dual connection, the cohomology groups of the elliptic complex (3.4) satisfy

$$H^0 = 0, \quad H^1 \simeq H^2, \quad H^3 = 0$$

and the index of the elliptic complex is zero. Note that $H^1(M, sl(\mathcal{E}))$ is the tangent space of the moduli space when $H^2(M, sl(\mathcal{E})) = 0$ [K1] and hence in this case the moduli space is discrete.

REFERENCES

- [AHS] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425-461.
- [D] S. K. Donaldson, An application of gauge theory to four dimensional topology,
 J. Differential Geometry 18 (1983), 279-315.
- [F] M. H. Freedman, The topology of four dimensional manifolds, J. of Differential Geometry 17 (1982), 357-453.
- [K1] H.-J. Kim, Moduli of Hermite-Einstein Vector Bundles, Math. Z. 195 (1987), 143-150.
- [K2] _____, Reduced gauge groups and the moduli space of stable bundles, J. Korean Math. Soc. 25 (1988), 259-264.
- [Kob] S. Kobayashi, "Differential Geometry of Complex Vector Bundles," Publ. Math. Soc. Japan 15, Iwanami Shoten and Princeton Univ. Press, Tokyo, 1987.
- [KOT] S. Kobayashi, Y. Ohnita and M. Takeuchi, On Instability of Yang-Mills Connections, Math. Z. 193 (1986), 165-189.
- [OSS] C. Okonek, M. Schneider and H. Spindler, "Vector Bundles on Complex Projective Spaces," Progress in Math. 3, Birkhäuser, Boston, Basel, Stuttgart, 1980.

Seoul National University Seoul 151–742, Korea