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BOUNDARY VALUE PROBLEM FOR
NON-LINEAR DISSIPATIVE HYPERBOLIC EQUATIONS

WITH SUPERLINEAR GROWTH NONLINEARITY *

WAN SE KIM AND OUI YOON WOO

1. Introduction

Let Z+, Z and R be the set of all positive integers, integers and real
numbers, respectively, and let 11 = [0,271"] X [0,71"] and 1= [0,71"].

Let p E [1,00[. By Y(11) we denote the space of all measurable real
valued functions u : 11 ---+ R for which lu(t, x) IP is Lebesgue integrable.
The norm is given by

IlullLP = [fL (t,x)IPdtdx]}.

In particular, L 2 (11) is a space having usual inner product ( , ) and usual
norm 11·11 L2. Let Loo(11) be the space of measurable real valued functions
u : 11 ---+ R which are essentially bounded with the norm

lIullLoo = esssup lu(t,x)1 .
(t,z)EO

Let Ck(11) be the space of all continuous functions u : n ---+ R such
that the partial derivatives up to order k with respect to both variables
are continuous on 11, while C(11) is used for CO(11) with the usual norm
11 1100 and we write C OO(11) = n~oCk(11).

Let W k '2 (11) be the Sobolev space of all functions u : 11 ---+ R in L2 (11)
such that all distributional derivatives DfD~ (0 ~ p + q ~ k) belongs to
L 2 (11) and the norm is given by
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In this note, we will investigate the existence of weak solution of the
periodic-Dirichlet problem for non-linear dissipative hyperbolic equa­
tions of the form

(1.1) {3Ut + Utt - Uxx + g(x, 1£) = het, x) in 0

where {3(=f 0) E R, 1£ = u(t,x), h E L2(0) and 9 : I x R ~ R is a
Caratneodory function, that is, g(', 1£) is measurable on I for each 1£ E R
and g(x,') is continuous on R with the continuity uniform with respect
to a.e. x E I. This holds, for example, if 9 is continuous on I ~ R,
but it also holds in many other case j e.g., if g(x, 1£) = p(x )F(1£) where
p E LOO(I) and F is continuous. Moreover, we assume that for each
d > °there exists a constant Md > °such that Ig(x, 1£)1 $ Md for all
(x,u) E I x R with 11£1 $ d.

A weak solution of the periodic-Dirichlet problem on 0 for (1.1) will
be a 1£ E Loo(O) such that

(1.2) fL u(t,x)[-{3Vt(t,x)+Vtt(t,x)-vxx(t,x)]dtdx

+ fL g(x, u(t, x))v(t, x)dtdx = fL h(t, x)v(t, x)dtdx

for every v E C2 (0) satisfying boundary conditions

v(t,O) = v(t,1I") = 0, t E [0,211"]

v(O,x) - v(211",x) = Vt(O,x) - vt(211",x) = 0, x E [0,11"].

Here we remark that a necessary condition for (1.2) to have a meaning
is that 9 be such that g(., u(', .)) E L2(0) when 1£ E L2(0).

Our results lie in that we allow g(x, 1£) to grow superlinearly in 1£
when 9 satisfies a sign condition. The rate of growth allowed in 9 is any
polynomial growth j i.e., there exist a(x), b(x) in Loo(O)

(HI) Ig(x,u)1 $ alulP + b for x E I and 11£1 ~ do and for p > 0.

We don't need any restriction on h except h E L2(0).
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As an example, we have the following as a corollary of our main result.
The periodic-Dirich1et boundary value problem

(3Ut + Utt - Uzz + F(x)sgn(u)luIP = h(t,x), FE £00(1), (3 f- 0, p> 0,

and u = u(t, x), has a weak solution for each h E £2(0).
Our condition used here is a kind of sign conditions; i.e., there exists a

function1/;: R -+ R such that limsup.,p(lul)/lul = lto, (-00 < lto < 00)
lul-+oo

with ugCx, u) ::::: -1/;( lu I) for all (x, u) E 1 x R. This condition is a
weakening of the condition that ugCu) ::::: 0 for large lul and is a strong
tool in our proof of the main theorem. The latter condition is used
by several authors. For example, in [3], Brezis and Nirenberg prove
the existence of solutions for the periodic-Dirichlet problem for non­
linear dissipative hyperbolic equations with sublinear growth in g and
a Landesman-Lazer type condition and the same sign condition which
we will impose. In [12], Mckenna and Rauch study elliptic boundary
problems with a sign condition and a Landesman-Lazer type condition
and without any restriction of the growth in g. For ordinary differential
equations, Ward [18] used a sign condition for Duffing equations with
no assumption on the growth of g, improving a result of Lazer [7]. Our
main result improve a result of Haracek in [9], [10] when n = 1, and
author's results in [11].

Several authors deal with the periodic-Dirichlet problem for this kind
of non-linear dissipative hyperbolic equations or more generalized forms
of non-linear dissipative hyperbolic equations. For example, Felmer and
Manasevich [4], Haraux [6], Prodi [14], Biroli [2], Honicek [9], [10], Brezis
and Nirenberg [3], Nkashama and Willem [13], and Rabinowitz [15], [16]
discuss the existence of periodic-Dirich1et solutions for non-linear dis­
sipative hyperbolic equations. Felmer and Manasevich, Haraux, Brezis
and Nirenberg, and Nkashama and Willem allow 9 to grow at most lin­
early and Brezis and Nirenberg assume a Lendesman-Lazer type condi­
tion relating the forcing term to the non-linear term. Felmer and Man­
asevich, and Biroli assume a monotonicity condition on the non-linear
term. Prodi imposes a Lipschitz condition on the non-linear forcing
term. In Rabinowitz's work, he discusses equations having a non-linear
term with parameter f and his existence theorem quite depends on to, for
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example, for sufficiently small €. In our results, we have no need of such
smallness conditions, and we allow 9 to grow superlinearly in u provided
it satisfies a sign condition. The rate of growth allowed in 9 is arbitrary
polynomial growth. We impose no monotonicity condition on 9 and we
have no restriction on the forcing term h except that h is a measurable
real valued Lebesgue square integrable function.

We derive an abstract realization of the linear dissipative hyperbolic
differential operator and set up an associated abstract operator equation
by using Fourier series. We represent the inverse of the linear hyperbolic
operator by means of an integral operator with a kernel. We also note
that the kernel of the linear operator of this equation is trivial ; i.e.., the
linear part is bijective. The compactness of this operator is treated and
norm is also estimated.

Our proof is based on use of Fourier series and Leray-Schauder's con­
tinuation theorem. The use of Leray-Schauder's continuation theorem
is based on the compactness of the inverse of the linear dissipative hy­
perbolic operator and bijectiveness of that linear dissipative hyperbolic
operator. The main difficulty is to :find an a'priori bound for all possible
solutions of the associated non-linear equations. It is essential to our
argument that {3 =I o.

2. Preliminary results

Now consider the equation

(2.1) (3Ut + Utt - Uzz = h(t,x) where (3 =I 0, U = u(t,x).

H U and hE L2(Q), we may write

u(t,x) = L Ulm exp(ilt)sin(mx),
(l,m)EZxZ+

h(t,x) = L him exp(ilt) sin(mx)
(l,m)EZxZ+

with Ulm = U-Im and him = h_1m since u and h-are real.
The proof of the following lemma is clear and will be omitted.
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LEMMA 2.1. U E L2(n) is a weak solution to (2.1) if and only if

u(t,x) = L [,8li + (m2
_/2)] -1 him exp(ilt)sin(mx)

(l,m)EZxZ+

Let

DomL = {u E L2(0) : L [,82/2 + (m2 - [2)2] IUlm l2 < OO}.
(l,m)EZxZ+

Define an operator L : Dom L ~ L2(0) -+ L2(0) by

(Lu)(t,x) = L [,8li + (m2
-/

2)]ulm exp(ilt)sin(mx).
(l,m)EZxZ+

Then DomL is dense in L 2(0), Ker L = {O}, ImL = L2(n). Hence
L-1 : L2(n) -+ DomL exists and

(L-1h)(t,x) = L [,8li+(m2 -/2)]-lh'mexp(ilt)sin(mx).
(l,m)EZxZ+

Therefore, by lemma 2.1, if h E L2(0), then U is a weak solution of the
periodic-Dirichlet problem on 0 for the equation

,BUt + Utt - Un = het, x), ,8 =1= 0 and U = u(t, x),

if and only if u E Dom L, Lu = h, or U = L-1h.

REMARK 2.1. L: DomL ~ L2(n) -+ L2(0) is closed.

LEMMA 2.2. H hE L2(n) then there exists a constant c > 0 indepen­
dent of h such that IIL-1hlloo ~ cllhll L 2. The operator L~1 : L2(n) -+

C(n) is compact.

Proof. See [11], [12].

Combining the facts in [5], [8] and lemma 2.2, we have the following
lemma.
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LEMMA 2.3. DomL=L-1(L2(n)) ~ w1.2(n)nC(n) and L-1 [Wk .2(n)]
~ wk+1.2(n) for k = 0,1,2,3,···. Moreover, I\L-1 hllw1.2 ~ C111hllp

wbere hE L2(n) and Cl (> 0) is a constant independently of h.

3. Main results

THEOREM. Let hE L2(n) and suppose foat

(HI) is satisfied and
(H2) for all (x,u) E I x R, ug(x,u) ~ -tf(lul) wbere tf : R -+ R is a

function such tbat limsuptf(lul)/lul = 00.
lu\-oo

Tben tbe periodic-Diricb1et problem on n for equation (1.1) bas at least
one weak solution.

Proof. Now we see that L-1 ; L 2(n) -+ C(n) is a continuous and
compact operator as a mapping into C(n). Define a substitution oper­
ator N : C(n) -+ L2(n) by Nu = -g(., u(·,·)) + h(·,·) for all u E C(n).
Then u is a weak solution of the periodic-Dirichlet problem for (1.1) if
and only if u E DomL and satisfies

(3.1)

(3.2)

Lu = Nu, or equivalently

u=L-1 Nu.

IT u E C(n) solves the operator equation (3.2), then u E C(n) is a
weak solution to the periodic-Dirichlet problem. Since L -1 is compact,
and N is continuous and maps bounded sets into bounded sets, the
composition L-1N : C(n) -+ C(n) is continuous and compact. By
using Leray-Schauder theory if all solutions u to the family of equations

(3.3) u=>.L-1 Nu, 0~>'~1,

are bounded in C(n) independently of>. E [0,1] then (3.1) has a solution.
IT (u, >.) solves (3.3), then (u, >.) solves

(3.4) Lu = >'Nu

and u is a weak solution to the periodic-Dirichlet problem of the equation
f3Ut + Utt - U xx + >.g(u) = >.h(t,x). Thus the proof will be completed if
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we show that the solutions to (3.4) for 0 :::; ). :::; 1 are bOlL.'1.ded in C(f2)
independently of ). E [0,1]. Since, if ). = 0, we have only the trivial
solution u =0, it suffices to show our assertion for °< ). :::; 1. To this
end, let (u,).) be any solution to (3.4) with °< ). :::; 1. By taking the
inner product with Ut on the both sides of (3.4), we obtain

(Lu, Ut) +).fl g(x, u(t, x»Ut dtdx = ).fl het, x)Ut dtdx.

Since Lu E L2 (f2), there exists a sequence {Yn} ~ C OO(f2) such that
Yn -+ Lu in L2 (f2) as n -+ +00.

Let Un = L -lYno By lemma 2.3 and the Sobolev embedding theorems;
i.e., Wi +2,2(f2) ~ Ci(f2), j = 0,1,2,· .. , Un E COO(f2) also. Since L -I is
continuous from L2(f2) into each of W1.2(f2) and C(O), we also have that
Un -+ L-I(Lu) = u in each of these spaces as n -+ +00. Thus Unt -+ Ut in
L2(f2). Now integration of these smooth functions, using the boundary
conditions, shows that for each nE Z+, (Lun,unt) = ,Blluntll1,2. Letting
n -+ +00 we obtain (Lu, Ut) = ,BIIUtll1,2. Moreover, since for each n E Z+
the periodicity of un(t,x) in t implies (q(·,un),Unt) = 0, we also obtain
(g(·,u),u) = 0. From this we can see that Lu = ).Nu, °<).:::; 1, implies

and thus

(3.5)

We next prove that lIull£2 :::; M for some M > °independently of
). EJO, 1J.

Since limsuptjJ(lul)/lul = 0:0, for 0: ~ °with 0: > 0:0, there exists
lul--oo

ro > °such that tjJ(lul)/lul :::; 0: for all u with lul > ro. So tjJ(lul) :::; o:lul
for all u with lul > ro. Since 9 is Caratheodory function on I X R, there
exists a constant Mro > °such that Ig(x,u)1 :::; Mro for u with lul :::; ro
for x E 1. Hence
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j
rr Ug(x,u)dtdx=jrr ug(x,u)dtdx+jrr ug(x,u)dtdx
10 l lul>ro llul5:ro

1 2
;:::: -220!7I"IIUIlL2 -271" roMro .

By taking the inner product with u on each side of (3.4), and an argument
similar to that used to establish (3.5) shows

Thus,

Hence, for 0 <,X ~ 1 we have, by (3.5)

Therefore, there exists a constant Mt independently of ,X E ]0,1] such
that lIullL2 ~ Mt.

Again, let (u,'x) be any solution for (3.4). By taking the inner product
with u on the both sides of (3.4), we have
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agam Slnce

lIu:r:lli2 ~ lIutlli2 + IIhllL2I1UIIL2 + 21Q1rMl + 21r2 roM ro

~ 1;1211hllh + [2! Q1r + IIhllp] Ml + 21r
2roM ro •

Thus, lIu:r:IIL2 ~ M 2 for some M 2 > 0 independently of A E ]0, 1]. There­
fore, we have U E w1.2(n) and IIUllw1.2 ::; L l where L l is a constant that
may depend on {3,h,Ml ,M2 ,Q,TO,Mro but is independent of A E]O,l].
Since L2(n) S; Lq(n) where 1 ::; q ::; 2 and since wl .2 (n) is embedded
in Lq(n) where 2 ~ q < 00 (see, e.g., [1], [17]), lIullL9 ~ L2(q) where L2
may depend on L l and q ~ 1 but is independent of AE ]0, 1].

Next, we will estimate the L2-bound for g(., u ).

For lul ~ do + 1, x E I, we have

Ig(x,u)1 ~ sup Ig(x,u)1 ~ M3
:r:EI

lul~do+I

since 9 is a Caratheodory function,and for lul ~ do + 1, x E I, we have

Ig(x,u)1 = 1/Iullug(x,u)1 ~ lido + l(a(x)luIP+l + b(x)lul)·

Therefore, we have

Ig(x,u)1 ~ sup Ig(x,u)+l/lullug(x,u)1
:r:EI

lul~do+l

~ lido + l(a(x)luIP+l + b(x)lul) + M 3 •

Hence

IIg(·, U )lIi2 ~ M4I1ull~t~2 + M511u1l1t~2 + M6I1uIl1~;1

+ M711ullh + MsllullLi + Mg
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for some appropriate constants M4 ,'" , Mg • Since lIul/Lt ~ L2 (q) for
q ~ 1, I/g(·,U)I/£2 ~ L o for some L o where L o may depends only on
M 4 , ••• , Mg and p > O. So if (u, A) is any solution to (3.3), then using
Lemma 2.3.,

lIulloo = AIIL-1Nu 1/00 ~ G(lIg(·, U)I/L2 + I/hl/£2)

~ G(Lo + I/ h ll£2)

and this completes our proof.
Now, we define g(x,±oo) by g(x,+oo) = liminf g(x,u) and g(x,-oo)

8-+00

= limsup g(x,u), where g(x,+oo), g(x,-oo) are in Loo(1) and holdtI.-+oo
uniformly in the following sense ;

For any € > 0, and S E Loo(1) with g(x, +(0) > sex) for all x E I,
there is TO > 0 such that for all x E I, and u ~ TO, g(x,u) + € > sex).
And if g(x, -00) < sex), then g(x, -u) - € < sex) for all x E I, and
u ~ TO.

COROLLARY. Let h E L 2 (Q) and suppose that

(HI) is satisfied and
(H3 ) g(x,-oo) < g(x,+oo) and g(x,+oo) - g(x,-oo) has a positive

inflmum on I. Then the periodic-Dirich1et problem on Q for the
equation (1.1) has at least one weak solution.

Proof. By the definition of g(x, ±oo) and (H3 ), there exist TO> 0 and
sex) in L oo(1) such that g(x, -u) ~ sex) ~ g(x, +u) for alllul ~ TO and
all x E I. IT we define h by h(t,x) - sex) and 9 by g(x,u) - sex), then
9 still satisfies the growth condition and g(x, -u) ~ 0 ~ g(x, u) for all
lul ~ TO and all x E I. Thus ug(x, u) ~ 0 for all lul ~ TO and for all
x E I and this proves our corollary.
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