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ASYMPTOTIC DECAYS OF PAIR CORRELATION
FUNCTIONS FOR SELF-AVOIDING

RANDOM SURFACES *

BUM SOO LEE+, HVUN WOO LEE* AND YONG MOON PARK+

1. Introduction

In this paper, we study the truncated pair correlation functions for a
class of self-avoiding random cylinder surfaces in d-dimensionallattice
space Zd. There has been considerable interest in mathematical theories
of random surfaces [1,3,4,6]. Such theories appear to play an important
role in quantum field theory, statistical physics and percolation theory
[4]. Recently Abraham, Chayes and Chayes [1] have studied the trun­
cated pair functions for the solid-on-solid surfaces. Our main purpose
is to extend their results to a more wider class of surfaces.

The correlation functions of lattice gauge theories, three-dimensional
spin systems and models of crystalline interfaces have natural expression
as weighted sums over surfaces. However, such expressions are difficult
to analyze due to both the combinatoric problems introduced by large
number of surfaces, and the intractability of explicit forms for the as­
sociated weights (See [3] and the references therein). It is therefore of
interest to study models of correlation functions which are defined as
sums over restricted classes of surfaces with relatively simple weights.

We analyze the behaviour of correlation functions of the form

(1.1) QC({3) = L e-.BISI
SEC

where {3 is a positive parameter (the inverse temperature). C denotes
some prescribed class of surfaces on the lattice Zd, and 151 is the area
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(i.e., the number of plaquettes (unit squares» of the surfaces SEC.
Our principal results concern the truncated pair function (i.e. glue­
ball propagators), QCL U~) =QL(fJ). Here, C = CL denotes some set
of tubular surfaces which have as their boundary the edges of the two
plaguettes (elementary unit squares) separated by a distance L lattice
units along Xl-axis. These surfaces defined only on ~ ~ Xl ~ L+~ so ~e
called it cylinder model. The quantity QL(fJ) serves as an approximation
to the low temperature expansion of the truncated pair correlation in a
three-dimensional ferromagnet. Such random surface approximations
are quite accurate in the low temperature regime [5].

Analogues of QL(fJ) may be defined for classes of surface oth~r than
CL. For a subclass SL of CL, solid-on-solid model have been studied
in detail by Abraham, Chayes and Chayes [1]. Indeed, in this paper, we
extend the restricted class of surface of [1]. By improving the methods
used in [1], we will get the results similar to those in [1].

In Section 2, we show that for sufficiently large fJ

(1.2) QL(fJ) '" L~ e-M(P)L as L -+ 00

for the constrained surfaces where M(fJ) is the glue-ball mass or the
inverse correlation length. Two ingredients are necessary for the proof
of (1.2). First we show that M(fJ) exists and is strictly positive above
some melting point fJe. We then develop a random surface Ornstein­
Zernike equation which enables us to establish the power law correlations
indicated in (1.2). In Section 3, we extend the result to the unconstrained
surfaces. Our main results are stated in Theorm 2.4 and Theorem 3.5
respectively.

2. Asymptotic decay of cylinder pair correlation for con­
strained surfaces

In this section we study a truncated pair correlation of the form (1.1)
for the subclasses of surfaces of CL and CL defined below. The principal
result (Theorem 2.4) of this section is a proof of Ornstein-Zemike scaling
(Eq.(1.2» of the pair function for constrained surfaces.

Our method relies on the approach initiated in [1] which shows that
the original ideas of Omstein-Zernike [8] may be implemented whenever
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one can define a directed correlation function with a ~trictly large decay
rate than that of the two point function (see [1] for the details). For
clarity of exposition, throughout the analysis we restrict our attention
to the three- dimensional cubic lattice Z3. The surfaces in CL and Ct
will be constructed from plaquettes (unit squares: 2-cells) on the dual
lattice {x + (!,!,!) :x E Z3} of Z3. We denote by Po the edges of the
plaquette centered at (!, 0, 0) and by PL the translation of Po through L
units in the x-direction. The plane x = k will be denoted by Pk.

DEFINITION. Ct is the set of all connected, self-avoiding surfaces S
with boundazy as = Po UPL, satisfying the condition that the intersec­
tion of S with each of the plane Pk, 1 S k S L is a set of disjoint closed
curves ')'k = S n Pk and ')'k == 0 for k < 1 or k > L.

Thus any surface in Ct can have overhangs and handles. For conve­
nience, we will study the subclass CL c Ct of surfaces for which the sets
of closed curves, ')'1 and ')'L, are required to be the only one elementary
square. In other words, the surfaces in CL begin and end on open boxes of
four plaquettes surrounding the points (1,0,0) and (L, 0, 0), respectively.
Such boxes will be called ele.mentary chimneys. The restriction of CL
causes no loss of generality, since the pair correlations QL = ~ e-P1s1

SECL

and Q~ = ~ e-P1s1 are related by
SEC~

(2.1)

In this section, we will be concerned with surfaces in CL C CL which
satisfy the additional restriction that among each of the set of rings ')'k,

there is a ring ')'2 which surrounds the origin of Pk. For obvious reason,
this subclass will be called the set of constrained surfaces. The associated
constrained pair correlation will be denoted by qL.

We now establish some elementary results on the asymptotic behaviour
of QL({3) for large L.

PROPOSITION 2.1.

(2.2)

For a1l{3

lim [ogQL({3) = -M({3)
L-oo L
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exists (in the extended real line).

Proof. This follows from subadditivity [5]. Indeed, those surfaces
composed of a tube in CLll joined to a tube in CL 2 (which has been
translated L 1 units in the x-direction) form a subset of CL1+L2 • Thus

(2.3)

and so -log QL (13) /L satisfies the subadditivity.

COROLLARY. -M(f3) provides a uniform upper bound on 10gQL/L,
I.e.

(2.4)

In particular, since QL(f3) ~ e-4j3L ,

(2.5) M(f3) ::; 413·

PROPOSITION 2.2. The mass M(f3) is a concave and nondecreasing
function of 13. Furthermore, 3 °< f3c < 00 such that M(f3) > 0, for all
13 > f3c and M(f3) < 0, V13 < f3c.

Proof. The result follows from Proposition 2.1 and the above corollary.
For the details, see [4].

REMARK. The concavity of M(f3) implies that it can have at most a
single jump discontinuity. Should this occurs at some p, then M(f3) =
-00 for all 13 < p.

We note that Propositions 2.1 and 2.2 are basic consequences of the
form of the pair correlation (1.1), and are not sensitive to the class of sur­
faces under consideration, provided they are subadditive. In particular,
the results obviously hold for constrained cylinder surfaces.

We will now establish that the pair correlation qL(f3) for constrained
surfaces decays via a pure exponential. In order to prove the result, we
introduce the direct correlation function. Recall that the surfaces in CL

must begin (and end) on an elementary chimney. We may classify the
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surfaces in CL according to the location of their next elementary chimney.
Consider, then, the correlation function dL({3) obtained by summing over
surfaces tL C CL which contains no elementary chimneys other than the
first and last;

(2.6) dL ({3) = L e-,8I S I
SEtL

(2.7) tL = {S E CL : Ilk I > 4 for all k except k = 1,L}

The following proposition shows that dL should have a shorter range (i.e.
a larger mass) than qL.

PROPOSITION 2.3. For all {3,

(2.8)

exists. Moreover, for sufficiently large (3, md({3) > m({3), where m({3) is
the mass of constrained surfaces.

Proof. The limit exists from another subadditivity estimate of the
form

(2.9)

where the constant is independent of the lengths L 1 and L2 •

We may bound md({3) below by, say, a Peierl's argument: For a given
plaquette there are 11 ways to attach another plaquette and so

I{S E tL : ISI = n}1 ~ 11n = enlog11

which implies
00

dL :5 L e-n (,8-log 11)

n=6L

and so

(2.10) md({3) ~ 6({3 - log 11)
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for (3 > log 11. Comparing this with the a priori upper bound on m({3)
given by (2.5), the result is seen to hold for (3 large enough.

THEOREM 2.4. Whenever md({3) > m({3), :3 K 1({3), K 2({3) > 0 such
that

(2.11)

uniformly in L.

Proof. Partitioning the set CL according to the scheme outlined above,
it is seen that the contribution from all surfaces which do not have an
elementary chimney until the Nth step (2 ~ N ~ L - 1) is given by

(2.12)

We may therefore write

(2.13)

To complete the argument, we will exploit the fact that (2.18) is of the
form of a convolution. Consider the discrete Laplace transform

(2.14)

(2.15)

q(z) = LqLzL
L

d(z) = LdLZL
L

Here we define qI = d1 = g4. Evidently q(z) is analytic in the region
Izl < em, while d(z) admits the larger region of analyticity Izl < em".

Taking the transform of Eq. (2.16), a little algebra yields

(2.16)
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(2.17)

for Izj < em. Note however that the right-hand side of (2.16) makes
sense in the larger region Izl < em". Indeed using the bound (2.4),
and nonnegativity of dL it is easy to show that the function K(z) =

2 - ~d(z) has a simple zero at z = em and no other zeroes within some

larger disk Izl < emj>", >.. < 1. Thus zg4jK(z) defines a meromorphic
extension for q(z) in the region Izl < em j>" with a simple pole at z = em.
We may therefore write

~ F(z)q(z) - -:---.:.....:---,­- (1- ze-m )

with F(z) analytic for Izl < em j >... Noting that qL is simply the coeffi­
cient of zL in the expansion of the above equation, we obtain

(2.18)

Finally, recalling the Cauchy bound

(2.19)

the desired result follows easily.

3. Ornstein-Zernike decay for unconstrained surfaces

We now treat the case where the surlace is permitted to wander from
the x-axis. The main idea we will use is essentially same as that used
in the proof of Theorem 2.7 of [1]. To make the paper self-contained,
as much as possible, we will produce the proofs in details. In order to
facilitate our analysis, we introduce a generalization of the correlation
QL({3), which we denote byQL,(a,b)({3). The latter function is defined
by summing over all cylinder tubes which begin and end in elementary
chimneys, and have as their boundary Po UPL,(a,b). Here PL,(a,b) denote
the translate of PL by a unit in the y-and b units in the z-direction.
Thus QL = QL,(O,O)' Finally, we also define the master junction,Q, to
be the sum over all cylinder tubes which begin at Po and end somewhere
in the plane x = L + ~, i.e.

(3.1) QL({3) = L QL,(a,b)({3).
(a,b)



40 Bum 800 Lee, Hyun Woo Lee and Yong Moon Park

All of the above have direct correlation counterparts; DL,(a,b), DL =

DL,(o,o) and DL = L DL,(a,b).
(a,b)

As will become apparent, the master functions QL and DL behave
similarly to the constrained correlations qL and dL discussed in subsec­
tion (i). We shall exploit this analogy to prove the desired scaling for
QL({3). First we note that, by standard subadditivity arguments, the
master function has well-defined masses:

PROPOSITION 3.1. The limits

(3.2)

and

(3.3)

M({3) = lim [-logQL({3)/L]
L-+oo

exist (in the extended real line).

REMARK. Our use of M({3) to denote the limit in (2.2) and that in
(3.2) will be justified by the latter results (Theorem 3.5).

Next, following the argument of Eqs. (2.12)-(2.13), we observe that
the correlations are related by an Ornstein-Zemike equation:

(3.4A)

(3.4B)

1 L-l

QL,(a,b) = DL,(a,b) + 94 L L D N ,(a',b,)QL+I-N,(a-a',b-b')
N=2 a',b'

Equation (3.4B) may be obtained simply by summing (3.4A) over a and
b.
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The relevant transforms are given by
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(3.5A)

(3.5B)

Qp(z, (Wl ,W2» = L QL,(a,b)(f3)zLeiwlaeiw2b
L,(a,b)

Qp(z) = L QL(f3)ZL = Qp(Z, (0, 0»
L

and similarly for D. In the above, z is a complex number (presumably
of modulus smaller than eM(P», and -1r < W},W2 ~ 1r. As before, we
use the convolution form of (3.4A) to write

(3.6)

The corresponding equation for the master function is obtained by set­
ting Wl = W2 = o.

We regain the quantities Q L by means of the inversion formula

(3.7)

However, in order to analyze the above integral, we must establish that
Q and b have certain continuity properties. In this paper, it is con­
vinient to regard 6 = eiW1 and 6 = eiW2 as complex variables restrict to
the unit circle. Although a weaker result would suffice for the purpose
of this section, we show below that those values of z at which the trans­
formed correlation functions are (separately) regular in 6 and 6 in a
neighborhood of 161 = 1 and 161 = 1. We state the lemma for direct
functions, the analogous result holds for the Q's.

LEMMA 3.2. Take Izl < eMd(P), f3 > 71. Then, provided that 16/ and
161 are sufficiently close to one, the function

(3.8)
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is regular in 6 (6) for fixed 6 (6)·

Proof. See [1].

For latter use, we analyze the integral

We first demonstrate that as L -+ 00, the only significant contribution
to the integral is from an infinitesimal neighborhood of Wl = W2 = O.

LEMMA 3.3. VfJ > 0, 3€,v > °such that unless IWll = IW21 < fJ

(3.10)

vz with Izl ~ eM +€.

Proof. It is convenient to express D(z, (WI,W2)) as a power series in z
with coefficients DL(Wl,W2)

(3.11) D(Z,(Wl,W2» = L DL,(a,b)e,aw1e,bw2zL
L,(a,b)

= L D L(Wl,W2)zL
L

(i.e. DL(WI,W2) = LDL,(a,b)eiaw1eibw2)
a,b

By the a +-+ -a, a +-+ -b symmetry, each DL(Wl,W2) is of the form
of cosine series with positive coefficients, and hence is maximized by
Wl = W2 = o. Thus, given fJ > 0, there exists v > °such that

(3.12) sup ID3(wI,W2)1 < D3(0, 0) - 2v .
IW 11>6
IW 21>6
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H follows that, for IWll, IW21 > 6
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(3.13)
ID(z,(wl,w2))1 :5 D1lzI +D21z12 + IDa(Wl,W2)llzla +D4 1z1

4 + ...
A a= D(lzl) + Izl [Da(Wl,W2) - Da(O,O)]

:5 D(lzl) - 2vlzla.

Next, we find an € > 0 small enough so that

(3.14)
ve2M

<2+-­g4

[Recall that D(eM )JeM g4 = 2 and that [D(x)Jx]' > 0 for x real and
positive.] Since the coefficients, D L, are non-negative

(3.15) ID(z) I D(lzl) 2 ve2M
-- < < +--
zg4 - IzIg4 g4

whenever eM $; Izl :5 eM+E
• When Izl < eM, we have the (stronger)

bound.

(3.16) ID(z) 1< D(lzl) < 2
zg4 - IzIg4

(3.17)

I
1 A D(lzl) 2vlzl2

2 - -4D(z,(Wl,W2))1 ~ 2 - I I 4 +-4-
zg Z 9 9

2vlzl2 ve2M
~ 4 - xClzl ~ eM)ve2M - 4-

9 9

vlzl2>--- g4

In the above x(lzl ~ eM) = 1 if Izl ~ eM, and zero otherwise.
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(3.18)

(3.19) L DL(eM+A)L+
L>Lo

LEMMA 3.4. For any A > 0 satisfying eM + A < eM/A, 36 > 0 such
that for all IWll, IW21 < 6, [2 - D(z, (WI,W2))j zg4] and [2 - D(z)jzg4]
have the same number of zeroes inside the disk Izl < eM + A.

Proof. Define k = min 12 - D(Z)jzg41 > O. By choosing Lo and
Izl=eM+A

Ko sufficiently large, we may ensure that

L DL,(a,b)(eM+A)L < ~(eM+A)g4
L>Lo

lal,lbl>Ko

An analogous estimate holds for nonzero Wl and W2. Thus, on the circle
Izl = eM + A, we have

L
L<Lo

lal,lbl<Ko

(3.20) I
1 A 1 A

-4D(z) - -4D(Z,(Wl,W2»1
zg zg

2 1
<-k+-3 zg4

Since the second term on the right-hand side of the above is a finite
sum, we may find a 6 > 0 so that it is bounded above by i when­
ever IWll, IW21 < 6. Applying the theorem of Rouche, the desired result
follows.

We can now establish the Omstein-Zernike scaling.

THEOREM 3.5. Whenever M({3) < Md({3) , QL has the asymptotic
form

(3.21)
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Proof. Q(z) has a simple pole at z = eM and no other poles in the
larger disk Izl < eMlA. This is done by following the steps for the proof
of Theorem 2.4.

Next, a Rouche argument (lemma 2.8) established that when WI and
W2 are sufficiently small, Q(z, (W}'W2)) has a simple pole and no other
poles in the larger disk Izl < eM + A < eMlA. Since D(z, (WI,W2)) is
smooth (indeed, analytic) in (WI,W2), there is a function eM(W1 ,W2) which
describes the motion of simple pole for small (W},W2), by the implicit
function theorem. This pole is, of course, the principle contribution to
the integral (3.7) for (WI,W2) sufficiently small. Therefore we have

(3.22) QL(f3) = f &u1&u2e-LM(wl,W2)F(WI,W2)[l+0(e-EL)].
J1W ll.lw 21<6

In the above, 8 is some suitably chosen constant which ensures that
both the Rouche argument in lemma 3.4 and the use of the implicit·
function theorem are legitimate. The function F(W},W2) is continuous
in (WI,W2) and independent of L. Because all the coefficients DL,(a,b)
are non-negative and symmetric in a +-t -a, a +-t -b, it follows that

(3.23)

(That the coefficients of wi and w~ are identical follows from the a +-t b
symmetry.) The standard asymptotic analysis may now be applied to
the W integrations from which the desired result follows easily.

REMARK. Tbe analysis above is easily extended to cylinder tubes in
bigber dimensions. It is easy to see tbat each extra dimension provides
an additional transverse degree of freedom, and tbus anotber factor of
Jr in tbe generalization of tbeorem 3.5. One must, ofcourse, modify tbe

constants in tbe bounds whicb guarantee a region wbere M(fJ) < Md(fJ).
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