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ALGORITHMS FOR CONSTRAINED OPTIMIZATION
USING DIFFERENTIABLE PENALTY FUNCTIONS *

C.W. KIM, C.R. LEE, K.G. CHO, AND G.M. LEE

O. Introduction

The constrained nonlinear programming problem is generallyexpress­
ed as follows; [minimize f(x), x E Rn, subject to Ci(X) = 0, i E
E, Ci(X) ~ 0, i E 1]. The main purpose is to obtain the local and
global solutions of this problem. In 1943, R. Courant [6] first consid-

ered a penalty function </>(x,J.L) = f(x) + ~J.L L[Ci(X)]2 and showed that
iEE

constrained problems are reduced to unconstrained problems. Since the
beginning of 1960's, this penalty method has made a great progress and
has been studied. C.W. Caroll [2], A.V. Fiacco and G.P. McCormick
[9] have researched interior penalty methods and their penalty function

is </>(x,J.L) = f(x) + J.L L[l/ci(x)]. On the other hand, exterior penalty
iEI

methods have been investigated by K.Truemper [15]. P.Loridan and
J.Morgan [13], and their penalty function is </>(x,J.L) = f(x) + JlP(x) (if
x is feasible, P(x) = 0, and if x is not feasible P(x) > 0).

Recently, many authors ([3], [4], [5], [10], [12]) have studied exact
penalty methods which change the constrained nonlinear programming
problem to a single unconstrained nonlinear programming problem. We
can divide the methods largely in two in which utilize either the non­
differentiable exact penalty function or the differentiable exact penalty
function. Of the two methods, we are more interested in the second
methods.

We will describe in detail the results of many authors' researches.
By using the nondifferentiable exact penalty function </>( x, J.L) = f (x)
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+p.max{O, Iql, Cj : i E E, j El}, D.P. Bertsekas [1] and D.G.
Luenberger [14] obtained the following consequences;

1. Let x* be an isolated local minimum satisfying together with corre­
sponding Lagrange multiplier vectors A* and JL*, the following assump­
tion.

Assumption; j, Ci E C2 and zT['\72 j(x*)
+ :LiEE AiV'2q (X*) + :LjEI' aiV'2ci(x*)]z > 0 for all z of 0 with

V'Ci(X*)Z = O(i E E) and V'Cj(x*)z = 0 (j El' = {j El: Cj(x*) = O}).
In addition, p.* satisfies the strict complementarity assumption. Then,
if p. > L IAil + L lail, x* is an isolated unconstrained local minimum

iEE jEI

of 4>(x, p.).

2. Let X ~ Rn be a compact set such that, for all x EX, the set of
gradients {V'Ci(x)} is linearly independent. Then, there exists a p.* > 0
such that for every p. > p.*, (a) H x* is a critical point of 4>(x, JL) and
x* E X, there exist a*, A* such that (x*, a*, A*) is a Kuhn-Tucker
point. (b) H (x*, a*, A*) is a Kuhn-Tucker point and x* E X, then
x* is a critical point of 4>(x,p.).

M.R.Hestness [11] considered the penalty function(for 1= 4». 4>( x, A, p.)
= j(x) + :LiEE AiCi(X) + ~p. :LiEE[Ci(X)]2 and obtained solutions by un­
constrained minimization problems. In 1979, G.Dipillo and L.Grippo [7]
pointed out the defects on the Hestness' method and proposed their own
exact method to utilize the differentiable penalty function. For I = 4>,
their penalty function is 4>(x, A, p.) = ATc(x)+p.l/c(x)1/2+IIM(x)(V'f(x)+
V'c(X)A) 1/2 and their result is as follows;

1. Let (x*, A*) be a critical point of L(x,).). Assume that M(x*).
[Bc(x*)JBxf has full row rank and xTV';L(x*, A*)X > 0 for all x, with
x of 0 and [Bc(x*)JBx]x = 0 where L(x,A) = f(x) + ).Tc(x). H x*
is a local minimu_n, then there exists a p.* > 0 such that for all p. ;:::
p.*, (x*, A*) is an isolated local minimum of 4>(x,A,p.)

2. Let X x 1\ be a compact subset of X* x Rn and assume that
M(x)V'c(x) is nonsingular for all x E X. Then there exists a p.* > 0
such that for all p.;::: p.*, if (x*, A*) is an unconstrained local minimum
of 4>(x, A, p.) belonging to X x 1\, then x* is a local minimum.
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G.Dipillo, L.Grippo [8], C.Vinante, and S.Pintos [16] extended those
results to the case that I =f if> and E = if>.

C.Vinante and S.Pintos utilize the differentiable exact penalty func­
tion if>(x, >., Il, a) = f(x) +>.Tc(x) +IlI!Vf(x) +Vc( X )>'11 2

- Illldll 2
, where

dj = -min[O,cj(x) + (-f;>'j/2, (1 + 4d>'j)].
In this paper, we obtain a new penalty function by which the con­

strained minimization problem is converted into the unconstrained min­
imization problem. From this penalty function, we generate a differen­
tiable penalty function which is applicable to practical problems, and
show that the constrained problem is equivalent to the unconstrained
problem under certain assumptions. On the basis of this equivalence, we
make our penalty method.

1. Preliminaries

We consider the constrained problem ;
[1.1] minimize f(x), subject to x E S = {x : g(x) = O}, where f is a

continuous function from Rn to R and 9 is a continuous function from
Rn to R. And, we introduce well-known optimality conditions which
we are going to make use of in section 2 and section 3.

THEOREM 1.1. (first-order necessary conditions)
Let f E C~ and 9 E Cl. Suppose that x is a local minimum for [1.1].

Then there is a>. E Rn such that I'(x) - >.Tg'(x) = o.

THEOREM 1.2. (second-order sufficient conditions)
Let 1 E C 2 and 9 E C 2 • Let x be a point feasible to the constraints

of [1.1]. Suppose that the first-order necessary conditions are satisfied
m

at x and that zT[/"(x) - L >'jgj(x)]z > 0 for all z, where g'(x)z = O.
j=l

Then, x is an isolated local minimum for [1.1].

In the sequel, the column of the matrix P will be denoted by pi, and
the jth row of P will be denoted by Pj •

2. The inequality-constrained problem
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We consider the inequality-constrained nonlinear programming prob­
lem;

(2.1] minimize J(x), subject to x E S = {x : g(x) ~ O}, where f is a
continuous function from Rn to R and 9 is a continuous function from
Rn to R, and assume that 0 E int S.

For each x ERn, we let A* be the optimal solution of the maximization
problem;

[maximize J(x), subject to AX E S, 0 ::; A ::; 1], and h(x) = A*X. We
put d(x) = x - h(x) and P(x) = j[x - d(x)] + qlld(x)1I 2 (q > 0). P(x) is
our penalty function.

THEOREM 2.1. Hx is a local unconstrained minimum for P(x), then
it is a local minimum for (2.1J.

Proof. We assume that d(x) =1= 0 and h(x) = ,X*x. For c with 0 < c ::;
1, x - cd(x) = [cA* + (1 - c)]x. By the definition of h, h[x - cd(x)] =
A*X. d[x - cd(x)] = x - cd(x) - h[x - cd(x)] = (1 - c)(1 - ,x*)x.

P[x - cd(x)] = J{x - cd(x) - d[x - cd(x)]} + qlld[x - cd(x)]W

= J(A*X) + qll(1 - c)(1- A*)xI1 2

= j[x - d(x)] + (1 - c)qll(1- 'x*)xIl 2

< f[x - d(x)] + qll(1 - A*)xIl 2

= f[x - d(x)] + qlld(x) 11
2

=P(x).

Thus, P[x - cd(x)] < P(x). If d(x) =1= 0, P[x - cd(x)] < P(x) for c with
o < c ~ 1. This contradicts to the assumption. Hence, d(x) = 0 and
J(x) = P(x). By the assumption, there is a neighborhood N(x j 8) such
that P(x) > P(x) for all x E N(x; 8). Let x E S n N(x; 8). Then,
f(x) = P(x) 2:: P(x) = J(x). Hence, the above theorem holds.

THEOREM 2.2. Suppose that h is continuous. Ifx is a local minimum
for [2.1}, then it is an unconstrained local minimum for P(x)

Proof. If the theorem is not true, there is an infinite sequence of points
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{Xk} such that Xk -+ x and P(Xk) < P(x).

f[Xk - d(Xk)] < f[Xk - d(Xk)] +qd(Xk)T.d(X1c)
= P(XA;)
<P(x)

=f(x)

9

Hence f[XA; - d(Xk)] < f(x). By the continuity of h, h(x/c) -+ h(x) = x.
Hence, Xk - d(Xk) = h(XA;) -+ x. This contradicts the assumption that
x is a local minimum for [2.1]. Hence, the above theorem holds.

3. The equality-contrained problem

We consider the equality-constrained nonlinear problem; [3.1] mini­
mize f(x), subject to x E S = {x : g(x) = O}, where f is a continuous
function form Rn to R and 9 is a continuous function form Rn to R.
Let h(x) be the optimal solution of the minimization problem; [3.2] min­
imize IIx - z1l2, subject to g(z) = O. Usually the vector h(x) is unique,
but if it is not, to complete the definition of h, the following is used ;
Define H(x) = {h : x - h solves [3.2] }. Let h(x) be a vector from
H(x) such that f[h(x)] is minimal. And we let d(x) = x - h(x) and
P(x) = f[x - d(x)] + qlld(x)1I2

, (q > 0). P(x) is our penalty function.

THEOREM 3.1. Ex is a local unconstrained minimum for P(x), it is
a local minimum for [3.1J.

Proof. By the same method of Theorem 2.1, we can prove the above
result.

THEOREM 3.2. Suppose that h(x) is unique and continuous. Ex is a
local minimum for [3.1J, it is a local unconstrained minimum for P(x).

Proof. By the same method of Theorem 2.2, we can prove the above
result.

THEOREM 3.3. Suppose that f E C3 and 9 E C3 • Suppose that x is
a point such that g'(x) has full row rank, and that h(x) is unique and
continuously differentiable in a neighborhood of x. E x is an isolated
unconstrained minimum for P(x), that is, if P'(x) = 0 and PII(x) is
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a positive definite matrix, then x satisnes the second-order sufficient
conditions for an isolated local minimum for [3.1].

Proof. P'(x) = f'[x - d(x)][I - d'(x)] + 2qd(x)Td'(x).

P"(x) = t 8f[x - d(x)] ·[-d~'(x)]+[I-d'(xf]f"[x-d(x)][I -d'(x)]
i=l 8[Xi - di(x)]

n

+2qd'(x)Td'(x) +2q L di(X)d~'(x).
i=l

Consider any point x near x. Clearly h(x) is close to x and the matrix
g'[h(x)] has rank m. By the first-order necessary conditions for [3.2],
there exists a,\ E Rn such that 2[x - hex)] - g'[h(x)]T = o.

g'[h(X)]T,\ = -2[h(x) - x].

{g'(h(x)]g'[h(x)]T} -1g'[h(x)]g'[h(x)]T,\

= -2{g'[h(x)]g'[h(x)]T} -1g'[h(x)][h(x) - x].

Hence, ,\ = -2{g'[h(x)]g'[h(x)]T}-lg'[h(x)][h(x) - x].

Therefore, d(x) - g'[h(x)]T{g'[h(x)]g'[h(x)]T}-lg'[h(x)] = O.

Let G(x) =1- g'[h(x)jT{g'[h(x)]g'[h(x)jT}-lg'[h(x)].

Then,

(1) G(x)d(x) = 0,

By differentiating (1), we have

(2)

(3)

n

G(x)d'(x) + L di(x)[Gi(x)]' = 0
i=l

g[x - d(x)] = g[h(x)] = O.
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By differentiating (3), we have

11

(4)
[

gHx - d(X;][I - d'(x)] ] = 0

g~[x - d(x)][I - d'(x)]

When d(x) = 0, (3) implies that g'(x) - g'(x)d'(x) = O.
Hence

(5) g'(x) = g'(X )d'(x).

From (2) and (5),

0= G(x)d(x)

= d'(x) - g'[h(x)f{g'[h(x )]g'[h(x)f} -1 g'[h(x )]d'(x)

= d'(x) - g'(x)T[g'(x)g'(x)T]-lg'(x)d'(x)

=d'( x) - g'(X)T[g'(x )g'(x)T]-lg'(x).

Hence

(6)

By differentiating (4), we have

(7)

Because d(x) = 0, the formula (6) can be used.

0= P'(x)

= f'(x)[I -'- d'(x)] + 2qd(x)Td'(x)

= f'(x)[I - d'(x)]

= f' (x) - f' (x)d' (x)

= f'(x) - f'(x)g(xf[g'(x)g'(xf]-lg'(x).
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Let u(x)T = f'(x)g'(x)T[g'(x)g'(x)T]-l.
Then,

(8) f'(x) - u(x)Tg'(x) = o.

Hence, the first-order necessary conditions are satisfied at x for a COI}­

strained minimum.
From (7) and (8),

t 8f(x) [-di (x)]" = t u;(xHt 8gi(x) [-di(x)]"}
. 8Xi . . 8Xi
1=1 1=1 1=1

m

= -[I - d'(x)T][I: u;(x)gj(x)][1 - d'(x)]
;=1

Hence,

P"(x)
m

=-[1- d'(x)T][L Uj(x)gj'(x)][1 - d'(x)]+[1 - d'(x)T] f"(x) [I- d'(x)]
;=1

+ 2qg'(x)T[g' (x)g' (x)T] -1g'(x)g' (x)T [g' (x)g' (x)T]
m

= [I- d'(x)T][fll(X) - L Uj(x)gj(x)][1 - d'(x)]
;=1

+2qg'(x) [g' (x)g' (x)T] -1g'(x)
m

=G(X)[f"(X) - L Uj(x)gj(x)]G(x) +2qg'(xf[g'(x)g'(x)T]-lg'(x).
;=1

By the positive definiteness of P"(x),

m

zTG(x)[f"(x) - L u;(x)gj'(x)]G(x)z
;=1

m

= zT[f"(x) - L u;(x)gj(x)]z > 0
;=1
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for all z where g' (x)z = O.
Thus the second-order sufficient conditions are satisfied.
We consider the following penalty function M (x) using approximation

and assume that g' (x) has full row rank.

M(x) =f(x) - 1'(x)g'(x)T[g'(x)g'(xf]-lg(x)
1 _

_ _1'(x)g'(x)T[g'(x)g'(x)T] 1
2

[

g(x )T[g'(X)g'(X)1']-1g'(xM'~x )g'(x )T[g'(x)g'(x )TJ-1 g(x) ]

g( X )T[g'( X )g'(x )T]-lg'( X )g~( X )g' (x frg' (x )g'(X )T]-l g( x)
1+ 2g(x )T[g'(x )g'(x)T]-lg'(x )f"(X )g'(x f[g'(x )g'(x )T]-l g(x)

+ qg(x )[g'(x )g'(x )T]-l g'(x )[g'(x)g'(x )Trl g( x)

THEOREM 3.4. Suppose that f E C 2 and 9 E C 2
. Let x be an uncon­

strained local minimum for M(x). H g(x) = 0, then x is a constrained
local minimum for (3.l].

Proof. Let x E S be any point close to x.
Since hex) = 0, f(x) = M(x).
Since x is a local minimum for M(x), M(x) ~ M(x) = f(x).
Hence f(x) ~ f(x).

THEOREM 3.5. Suppose that f E C 3 and 9 E C 3
. Suppose that x is

a point where g' (x) has full row rank, and that x satisfies the second­
order sufficiency conditions for an isolated local minimum. Then x is an
isolated unconstrained local minimum for M(x) for any value of q > O.

Proof. Because x is feasible,

(1) g(x) = 0

By the first-order necessary condition,

(2) 1'(x) - J'(x)g'(x)[g'(x)g'(Xf]-Ig'(x) = 0
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Hence M ' (x) = O.
From (1) and (2),

M"(x) = {I - gl(x)T [gl(X)gl(X)T]-lgl(X)}' [f"(X) - E:'l ui(X)g~/(X)]

. {I - gl(x)T [gl(X)gl(X)T]-lgl(X)} + 2qgl(X)T[gl(X)gl(X)T]-lgl(X).
The second-order sufficient conditions imply that M"(x) is positive

definite for every q > O.
Hence x is an isolated unconstrained local minimum for M(x) for any

q > O.
By using M(x), we obtain local minimizers for [3.1].

To get local minimizers for M(x), we make use of algorithms which
are generated by various methods.
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