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MAXIMAL OPERATORS CONCERNING THE
DIFFERENTIABILITY OF FUNCTIONS

YOUNG-HWA HA* AND Do YOUNG KWAK

1. Introduction

In this paper we will introduce certain maximal operators in terms
of which we will characterize the first order Sobolev functions.
The first order Sobolev space Lf(R") is defined to be the set of all
functions f belonging to V(R") whose distributional derivatives

~f ,j=1, ''', n, also belong to V(R"). It is well known that if a
vXj

function f and its distributional derivative ~f are locally integr-
vXj

able then f (possibly modified on a set of measure zero) is in fact
partially differentiable with respect to Xj almost everywhere. For
this and other properties of Sobolev functions we refer the readers
to [IJ and [4J. The differentiability of a function at almost every
point in a given set has been studied by many persons. We refer
the readers to Stein [3J, which shows a systematic approach to the
problem, and also to Neugebauer [2J for a succinct condition for
the differentiability property. In their studies the even part of a
function played an important role. We are, however, concerned
with the odd part. The even and odd parts of a function f on RI
at x are defined to be the functions ([J and cjJ, respectively, given

by ([J(t) = ~(f(x+t) +f(x-t)) and cjJ(t) = ~(f(x+t) - f(x-t)).

2. Definitions

For a function fECI(Rn) and for j=l, "', nand h>O we define
the mean difference quotient oj.d(x) of f at xER" by the equation
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(1) o· f(x) = _1Jh f(x+tej) - f(x-tej) dt
1.

h h 0 2t '
where ej is the j-th standard basis element of R". The maximal
derivate Djf(x) is then defined to be the associated maximal
function given by the equation

(2) Di/(x) =sup I01,hf(x) I.
o<h";;l

We interpret the singular integral in (l) as the limit of the
following integrals when E-+O:

-.L.Jh f(x+teJ - f(x-tej) dt
h • 2t .

LEMMA 1. Let fEL~(R"). Then for every j = 1, "', n and every
h>O, the integral defining OJ.h!(X) converges and is finite for
a. e. xERn, and so Dd(x) is a well-defined measurable function.

Proof. Suppose first n=landfixh>O. The Junction. (j)h defined.
to be 1/s if Is I-s,h and zero otherwise is a Calder6n-Zygmund
kernel, and so for every gED(Rl) the singular integral g*(j)h(X)
exists for a. e. xERl. Now for each positive integer N let fN(x)
to be f(x) if. Ixl-s,N and zero otherwise. Then since !NEV(Rl),
!N*(j)h(X) exist for a. e. xERl. If Ixl-s,N-h, then !*(j)h(X)=
fN*(j)h(x) , and so !*(j)h(X) exists for a. e. x with Ixl -s,N-h. Letting
N-+(X) we now see that !*(j)h(X) exists for a. e. xERl. But,

Ol,h!(x) = - 2~ !*(j)h(X). The assertion for oj,d is thus proved for

the case n = 1.
Suppose now n>l, and fix j=l, "', n. Let Vj be the. hyperplane

of Rn perpendicular to ej, andforeachx'EVj let fAt) =f(x'+tej) ,
tER\ By the Fubini's theorem it follows that f",'ELI~c(Rl) for
a. e. x'E Vj. The previous case then implies that !",'*(j)h (t) exists
for a. e. X'E V j and for a. e. tERl, But, oj,d(x) = OJ.hf(x'+tej) =

1 . .
-----zJl!",'*(/>h(t). Thus OJ,h!(X) exists for a. e. xERn.

The measurability of Dj! follows from the equation sup {OJ.h!(X) :
O<h-s,l} =sUP{Oj,T!(X) : O<r-s,l, r rational}, which in turn follows
from the fact that for each fixed X,Oj,h!(X) is continuous in h.

Note that Dd is well-defined in particular for every !ELP(R") ,
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ls;,ps;,=. The readers are referred to [4J for the Calder6n-Zygmund
kernel.

3. Main results

THEOREM 1. Let fEf(Rn) , ls;,ps;,=. Then for j = 1, "', n
(a) if 1<ps;,=, then DJEV(Rn) and

IIDJI/ps;,cpll ~~J lip;

and
(b) if p=l, then for every r>O

I {x : DJ(x) >r} Is;, ; I1 ~~j Ill'

where I· I denotes the Lebesgue measure on Rn. The constants cp
depend only on the parameters p and n.

We need the following lemma for the proof of the above theorem.

LEMMA 2. Let fELf(Rn), ls;,ps;,oo. Then for j = 1, "', nand h>O

1 Ih

( 1 It of )OJ,h!(X) =T 0 2F -I OXj (x+sej)ds dt

for a. e. xERn.

Proof. By the Fubini's theorem we may assume n=1. Fix h>O
and let

lex) =ol,hf(x)-+I:( ~t [I'(x+s)ds)dt.

It suffices to show that for every cpEC';(Rl)

(3) II(x)cp(x)dx=O.

Setting

we get

But

j(t) = I (f(x+t) - f(x-t) - [I' (x+s)ds)cp(x)dx,

JI(x)cp(x)dx=+J: it j(t)dt.

jet) = ff(x) (cp(x-t) -cp(x+t) +[ICPI (x-s)ds)dx

=0.
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Now (3) follows from this.

PROOF OF THEOREM 1. Let Mj be the Hardy-Littlewood maximal
operator acting in the direction of eh defined by the equation

~g(x) =SUPt>0 ~t [tlg(x+sej) lds. Then by Lemma 2

1 Jh 1 Jt Ia! IIOj,h!(X) I~h oY -t aXj (x+se) dsdt

~+J:~( ~~j )(x)ds=M{ ~~j )(x).

Hence DJ(x)~Mj( ~~j )(x) for a. e. xERn. Now the inequalities

for Dj follows from the corresponding inequalities for Mj.

We refer readers to [4J for the properties of the Hardy-Littlewood
maximal operators.

REMARK. The weak-type boundedness of the maximal operators
Dj on L~(Rn) is the best we can expect. There are indeed functions
in L~(Rn) whose maximal derivates do not belong to V(~). An
example can be constructed as follows. For each positive integer m
define a function gm on R1 by setting gm(X) =m-2 for 2-m-2~x~1+
2-m-2, gm(X)=O for x~O or x>1+2-m-1, and linear otherwise.

Then, IIgmI11~2m-2 and 11 ix gmlll~2m-2, where ix gm is the

distributional derivative of gm. Furthermore, if -1 ~x~ _2-m
-

2
,

then

Hence,

Jo . 1 J-2
-

m
-. 1 C

D1gm(x)dx> 16 ·2·· -'--Idx>-·. ,
-1 m -1/4 x m

co

where c=log2/16. Now letting g(x) = L: gm(x-4(m-l)) we obtain
m=l

a desired function. It follows that
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00 00

Ilg!ll:::;::L !Igm!ll:::;::2Lm-2<00,
m=1 m=l

and

111flll:::;::f;lll-1xgm lll:::;::2~lm-2< 00,

and so gELt(Rl). But, since D1g(x) =Dlg m(x-4(m- 1) for
4(m- 1) -15:x5:4(m-l),

IIDIg!lI~f;J:::~::_lDIg(x)dx
00 r 00 1=fl _lD1gm(t)dt>cf1m'

Thus D l g$V CRI) since the last series diverges to 00.

An immediate consequence of Theorem 1 is

COROLLARY. Let fELfR"), and j = 1, "', n. Then oj,hfCx) - ~{j (x)

as h-O for a. e. XE~. Futhermore, the convergence is also in
the V-norm provided l<P5:oo •

As a converse of Theorem 1 we have

THEOREM 2. Let fEV(~), 15:P5:00 • If DJEV(R") for some

j =1, "', n, then ~{j EVCR") and I1 ~{j IL5:IIDJIIt>. Hence, if DJ

EV(R") for every j = 1, "', n, then fELf(R").

The following lemma will be used to prove the above theorem in
the case p= 1.

LEMMA 3. Let {fk} be a sequence of functions VCR"), gEV(~),
and p. a finite Borel measure on R". Suppose Ifkl5:g for every k

and fh converges weakly to p., i. e., Jf.#-Jq>dp. for every q>E

Co(R"). Then p. is absolutely continuous.

Proof. We may assume each of fh and p. is real-valued (by
splitting them into the real and imaginary parts, and by apylying
the following arguments to each part.) It suffices to show each of
p.+ and p.- is absolutely continuous. The absolute continuity of p.+
(or p.-) is obtained once we show that p.+ (E) >0 (or p.- (E) >0)
implies IEl >0 for every Borel set E.
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By the Hahn's decomposition theorem there exist Borel sets P
and N such that pnN=f/J, pnN=R", and p+(E) =p(Enp) and
p-(E) =-p(EnN) for every Borel set E.

To prove the absolute continuity of p+ suppose E is a Borel set
and E=p+(E»O. We may assume EcP (otherwise we can consider
Enp). Choose a compact set KcE (and so KcP) with p+(Er-v
K)<E/4, and an open set V~E with Ipl (Vr-vE) <E/4. Such sets
can be chosen by the regularity of p+ and Ip I. Note that p+ (K)
>3E/4. Let G be an arbitary open set such that EcGc V, and
choose (jiECo(R") such that 0~(ji~1, (ji(x)"=1 for xEK, and
supp (jicG. Then for k= 1,2, "',

Lg>Jlg~J(jilfkl~IJ(jifkl·

Since J~fk~J(jidp, it now follows that Lg> IJ(jidp I· On the other

hand,

IJ(jidpI= ILdp+L_K(jidPI> Ip(K) I-Ip I(Gr-vK)

~p+(K) -Ipl (Vr-vK) > ~ E-l E= ~ >0.

Thus we get Lg>E/2. Now

Lg=inf{Lg : EcG, G open}

=inf{Lg : EcGc V, G open}~ ~ >0,

and this implies IEI >0. We thus obtain the absolute continuity of
p+. Similary we see that p- is also absolutely continuous.

Proof of THEOREM 2. Suppose first I<P~(X), and choose qsuch
that I/P+ l/q=1. From the hypothesis we see that each Oi.hf
belongs to the ball of radius IIDi fllp in the space V(R") , which is
the dual space of D(R:'). By the weak-compactness of balls in
dual spaces it then follows that there exists a function gEV(Rn)
with lIgllp~IIDifllp and a sequence {hk} with hk~O as k~(X) such
that· .

(4) JOj.hkf(x)(ji(x)dx~ Jg (x)cp (x)dx
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as k~= for every cpEV(Rn). This is a fortiori true for cpE
C;"(Rn). Then, for cpEC;"(Rn) it is easy to see that

(5) JOj,hk/(x)cp(x) dx = - J/(x) OJ,hkCP (x) dx.

Since rpEL <X> (Rn), Theorem 1 implies DjcpEL<X> (Rn). Observe that
Djcp has compact support. Hence DjCPEL'(~) for every r with
l::;::r::;::=. In particular, DjrpEV(~). Thus we get

I/(x)Oj,hkCP(X) I::;:: II(x) Djcp(x) IELt (~)
for every k, and

I(X)Oj,hkrp(X)-~/(x) ~~. (x)
J

as k-·=. It now follows from the Lebesgue's dominated convergence
theorem that

(6) J/(X)Oj'hkCP(x)dx~J/(x) ~~j (x)dx

as k~oo. from (4), (5), and (6) we now get

Jg(x)cp(x)dxc:-- - J/(x) ~~j (x)dx

for every rpEC;"(R"), which indicates ~I ~gEU(Rn) and comp]­
uXj

etes the proof for the case 1<p::;::=.
Suppose next p= 1. Considering Lt (Rn) as a subspace of the

space of all finite Borel measures on Rn, which is the dual space
of Co (Rn) consisting of all continuous functions vanishing at
infinity, and applying the weak-compactness argument as above,
we get a sequence {hk} with hk~O as k~= and a finite Borel
measure /-l on Rn with 11/-l11::;::IIDJIII such that for every rpECo(~)

JOj'hkl(x)cp(x)dx~Jcp (x) df-l (x)

as k~=. But, OJ,hJ, DJELt (Rn) and IOJ,hJI ::;::DJ Hence it follows
from Lemma 3 that /-l is absolutely continuous, that is, there exists
a function gELt (Rn) such that d f-l = g dx We thus obtain, by the

same argument as above, ~~j =gELt(Rn) and 11 ~~j 1I1=11f-l11::;::
IIDJllh and finish the proof.
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