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MAXIMAL OPERATORS CONCERNING THE
DIFFERENTIABILITY OF FUNCTIONS

Younc-Hwa Ha* anp Do Youneg Kwak

1. Introduction

In this paper we will introduce certain maximal operators in terms
of which we will characterize the first order Sobolev functions,
The first order Sobolev space L!(R") is defined to be the set of all
functions f belonging to L?(R*) whose distributional derivatives
gﬁ ,7=1, -, n, also belong to L*(R"). It is well known that if a

j

function f and its distributional derivative g}’: are locally integr-
f)

able then f (possibly modified on a set of measure zero) is in fact
partially differentiable with respect to x; almost everywhere. For
this and other properties of Sobolev functions we refer the readers
to [1] and [4]. The differentiability of a function at almost every
point in a given set has been studied by many persons. We refer
the readers to Stein [3], which shows a systematic approach to the
problem, and also to Neugebauer [2] for a succinct condition for
the differentiability property. In their studies the even part of a
function played an important role. We are, however, concerned
with the odd part. The even and odd parts of a function f on R!
at x are defined to be the functions ¢ and ¢, respectively, given

by p(t) =5 (F(x+D+F(x—1) and §(&) =L (F G+ —Fx—1)).

2. Definitions

For a function f&C*(R") and for j=1,---,# and >0 we define
the mean difference quotient d;,f(x) of f at x&R" by the equation
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h — —_— .
) 5i.hf(x)=7lz-J- f(x+te;) —f(x—te;) dt,
0 2t
where ¢; is the j-th standard basis element of R". The maximal
derivate D;f(x) is then defined to be the associated maximal
function given by the equation .
2) D;f(x)=sup|&isf ().
We interpret the singular integral in (1) as the limit of the
following integrals when e—0:
‘ 1 flxtte) —fx—te)
h L 2t dt.
Lemma 1. Let f€L,(R"). Then for every j=1,--,n and every
k>0, the integral defining ;.1 (x) converges and is finite for
a.e. x=R", and so D;f(x) is a well-defined measurable function.

-Proof. Suppose first n=1 and fix -£>0. The function ¢, defined = =

to be 1/s if |s|<h and zero otherwise is a Calderébn-Zygmund
kernel, and so for every g=L!(RY) the singular integral g+g,(x)
exists for a.e. x=R'. Now for each positive integer N let fy(x)
to be f(x) if |x|<<N and zero otherwise. Then since fyeIL(RY),
ferou(x) exist for a.e. x=R'. If |x|<N—h, then frp,(x)=
furon(x), and so fx@.(x) exists for a.e. x with |x|<N—#h. Letting
N—co we now see that fxp,(x) exists for a.e. x&=R!'. But,
o f(x)=— 21h f*p,(x). The assertion for §;,f is thus proved for
the case n=1.

Suppose now #>1, and fix j=1, -, n. Let V; be the hyperplane
of R, perpendicular to ¢;, and for each x’'€V; let f..({)=f(x"+1e;),
tcR'. By the Fubini’s theorem it follows that f.=LL(R!) for
a.e. '€V, The previous case then implies that f.=p,(f) exists
for a.e. x’EVj and for a.e. teR, But, 5,-,;,f(x)=5,-,hf(x’+l‘e,-):

~—Zlﬁ-f,f*goh(t). Thus 5,-,h f(x) exists for ‘a. e. xER,.

The measurability of D, f follows from the equation sup{d,,f(x) :
0<h<1}=sup{d;,f(x) : 0<r<1, r rational}, which in turn follows
from the fact that for each fixed x,d;,f(x) is continuous in %.

Noté that D;f is well-defined in particular for every feL*(R"),
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1< p<oo. The readers are referred to [4] for the Calderén-Zygmund
kernel,

3. Main results

Tusorem 1. Lef fEH(RY), 1< p<Loo, Then for j=1,,n
(a) if 1< p<oo, then D,feLR") and

1D, fll,<cpl|-2L

ox’

?

and
(b) if p=1, then for every r>0
. D. Ol of l
s 1 Duf ) >n) 1 <9 20|
where |-| denotes the Lebesgue measure on R". The constants c,
depend only on the parameters p and n.

We need the following lemma for the proof of the above theorem.
Lemma 2, Let feLi(R"), 1<p<co, Then for j=1, -, nand 2>0

Binf(x) = —;}‘M%‘J%ﬁ_ (x+se,)ds)dt

for a.e. x&R"

Proof. By the Fubini’s theorem we may assume n=1. Fix 2>0
and let

1) =8 f @ ——[((L- [ @rds)ar.
It suffices to show that for every o=Cr(RY)
(3) : [1mewas=o.
Setting
JO=[(fa+D—fa= [ f x+5)ds)e@adx,

we get \
jl(x)¢(x) dx:—lll——j(,% J@®at.
But t
J® :_[f(x) (p(x—8) —p(x+1) +J_.¢/ (x—s)ds)dx
=0.
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Now (3) follows from this.
Proor or Tueorem 1. Let M; be the Hardy-Littlewood maximal

operator acting in the direction of e¢;, defined by the equation

M; g (x) =supeorr j [g(x+se)|ds, Then by Lemma 2

2t
[0;0f(2) 1< h.'. o7 ' T (x+se,-)idsdt

< P oasm( 2o

Hence D;f(x) <M; ( of )(x) for a.e, x=R", Now the inequalities

for D; follows from the corresponding inequalities for M;.

We refer readers to [4] for the propertles of the Hardy thtlewood
maximal operators

Remark. The weak-type boundedness of the maximal operators
D; on LI(R") is the best we can expect. There are indeed functions
in L}(R") whose maximal derivates do not belong to L!(R"). An
example can be constructed as follows. For each positive integer m
define a function g, on R' by setting g.(x)=m"2% for 2™ *<x<{1+
22 g(x)=0 for x<0 or x>1+2™" and linear otherwise.

—2 d s d .
Then, ||gall,<2m™% and ”_dx gn 1£2m , where T 8n 1S the

distributional derivative of g,. Furthermore, if —%gxg—z—ﬂ,
then

4%} gm(x+f)
D, g4 (%) >0, 45184 (%) > ‘Hxl e oF dt
_ 1 ‘4lxl m~2 1
~ 4)x] Lm 2t = 16m2%| x|
Hence,
I D.g.(x)dx> J“z_m—z 1 gx>_C.
1&m 16m2 ‘ Ix] T m’

where c=log2/16. Now letting g(x) :Z gn(x—4(m—1)) we obtain
m=1
a desired function. It follows that
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lglh< T lgwlh <2Em < oo,
and
|| < <Fmi<oo,
and so gL} R‘) But, since D, g(x)=D,g.(x—4(m—1)) for
4(m—1) - 1<x<4(m—1),
IDglh>E [ Digdx

-1
3 o 1
=3[ Digu®dr>cy L

Thus D, g<£ L' (R'Y) since the last series diverges to oo,
An immediate consequence of Theorem 1 is

CoroLLarYy., Let feLtR™), and j=1, ---,n. Then ¢;

as h—0 for a.e. x&R". Futhermore, the convergence is also in
the L*-norm provided 1< p<co.
As a converse of Theorem 1 we have

Tueorem 2. Let feLr(RY, 1< p<Loo, If D, feL?(R") for some

1. of " |8/ . if D,
=1,--,m, then 5% <L*(R") and I’ o, ngD,fH,,. Hence, if D;f

eL*(R") for every j=1, -, n, then feL{(R").

of
3%, €9

The following lemma will be used to prove the above theorem in
the case p=1.

Lemma 3. Let {fi} be a sequence of functions L'(RY), g L'(R"),
and p a finite Borel measure on R*. Suppose |fi.|<g for everyk

and f. converges weakly to p, i.e., _[f,,goﬂjrpd;z for every o<
Co(R"). Then p is absolutely continuous.

Proof. We may assume each of f, and g is real-valued (by
splitting them into the real and imaginary parts, and by apylying
the following arguments to each part,) It suffices to show each of
#T and p~ is absolutely continuous. The absolute continuity of u*

(or x7) is obtained once we show that ug*(E)>0 (or g (E)>0)
implies |E| >0 for every Borel set E.

— 163 —



Young-Hwa Ha -and Do Young Kwak

By the Hahn's decomposition theorem there exist Borel sets P
and N such that PNN=¢, PNN=R", and p*(E)=p(ENP) and
pw (E)=—u(ENN) for every Borel set E.

To prove the absolute continuity of g* suppose E is a Borel set
and e=p*(E)>0. We may assume ECP (otherwise we can consider
ENP). Choose a compact set KCFE (and so KCP) with pf(E~
K)<e/4, and an open set VOFE with |u|(V~E)<e/4. Such sets
can be chosen by the regularity of g* and |g|. Note that p*(K)
>3¢/4. Let G be an arbitary open set such that ECGCYV, and
choose @=Co(R") such that 0<p<l, o(x)=1 for x<K, and
supp ¢G. Then for £=1,2, -,

f ngLsogzjso |fil=> ”sof,,

Since Iqﬁfhﬁj‘goa’y, it now follows that Lg2”¢dp‘. On the other
hand,

|[ode|=|[ du+ | _pdu| =101 - 181 G~
>t (E) — | pl (VB> S e fe=5>0.
Thus we get Lg>e/2. Now
IEgéinf{J‘G;g : ECG, G open}
:inf{J-Gg : EcGcV, G open}2%>0,
and this implies [£]>0. We thus obtain the absolute continuity of

p*. Similary we see that g~ is also absolutely continuous.

‘Proof of Tueorem 2. Suppose first 1< p< oo, and choose g such
that 1/p+1/g=1. From the hypothesis we see that each §;.f
belongs to the ball of radius [|D;f]l, in the space L?(R*), which is
the dual space of L‘(R*). By the weak-compactness of balls in
dual spaces it then follows that there exists a function g&L*(R")
with || gll,<IID;fll, and a sequence {#} with Z#—0 as k—oo such
that :

@ [ @em@d[e@ewds
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as k—oo for every o= L(R"). This is a fortiori true for p&
CZ(R"). Then, for o=CZ(R") it is easy to see that

(5) [o,nf@owdr= )8, np@ax.

Since ¢p&L*(R"), Theorem 1 implies Djp=L”(R"). Observe that
D;p has compact support. Hence Dpe=L'(R") for every r with
1<r< oo, In particular, Dp=L*(R"). Thus we get

| f(2)0; () | <1 f () Dip(x) | €L (R

for every k, and

F )8 p() =S (D32 (x)

as k—oo, It now follows from the Lebesgue's dominated convergence
theorem that

®) [r s @ds—[r@)-22-(max
as k—oc, from (4), (5), and (6) we now get
f[ewowar=~[ru)-2-(xdx

for every ¢&CZ(R"), which indicates gf =g l?(K") and compl-

1

etes the proof for the case 1< p< oo,

Suppose next p=1. Considering L'(R") as a subspace of the
space of all finite Borel measures on R", which is the dual space
of C,(R") consisting of all continuous functions vanishing at
infinity, and applying the weak-compactness argument as above,
we get a sequence {h) with 4—0 as k—oo and a finite Borel
measure £ on R* with {|ul|<|ID;fll; such that for every o=C,(R")

[, Fe@ax—[p()du)
as k—oo, But, 9;,..f, D;feL'(R") and |d;,, f|<D;f Hence it follows
from Lemma 3 that g is absolutely continuous, that is, there exists
a function g&L'(R") such that du=g dx We thus obtain, by the

same argument as above, of =g&L*(R") and “-—Q—f— =|lpll<
0x; 0x; 1

IID; fll;, and finish the proof.
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