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GAUSSIAN MEASURES ON REARRANGEMENT INVARIANT
FUNCTION SPACES ON [0,1] AND ON SEPARABLE
o-COMPLETE BANACH':LATTICES

Hi Ja Sonc

1. Introduction

In 1977 S. Chobanjan and V. Tarieladze[3] showed that the ne-
cessary and sufficient condition for a nonnegative symmetric bounded
linear operator R from X* into X, where X is a Banach space
which has cotype p for some p<co and an unconditional basis
{x:}:2,, to be a covariance operator of a Gaussian measure on X is

o 1
that the series EZ {Rx¥, x¥>?x, is convergent in X, where {xF} is the
=1

sequence of biorthogonal functionals associated with the basis {x.}.

As we know, if {x.} is an unconditional basis of a Banach space
X then we can always define on X an equivalent norm so that the
unconditional constant becomes one. Further every Banach space
with an unconditional basis {x.}, whose unconditional constant is

equal to one, is a Banach lattice when the order is defined by Zla,,

%.20 if and only if @,=0 for all ».

The natural question is how to extend the above theorem(on the
characterization of Gaussian measures) to a general Banach lattice,
which is of cotype p for some p<co. Here, we describe the Gaussian
measures on the following Banach lattices: (a) Rearrangement in-
variant function spaces on [0,1] of cotype p for some p<co and,
(b) separable o-complete Banach lattices of cotype p for some p<lco,

Let ([0,1], Z, ) be the Lebesgue measure space. Suppose that f
is an integrable function on [0,1] and that < is a o-algebra of
measurable sets in [0,1]. There exists a unique, up to equality
almost everywhere, c#-measurable integrable function E, f so that

Received September 10, 1988.
This research is supported by KOSEF research grant 1988.

— 43 —



Hi Ja Song

L E, f(w) dy:L f() dg for every gp-measurable set . E, fis

called the conditional expectation of f with respect to &z.
" Let ce be the g-algebra generated by a sequence {4;},2, of disjoint
measurable sets in [0, 1]. Let X be a rearrangement invariant func-
tion space on [0, 1]. It follows from theorem 2. a. 4 of [10] that the
conditional expectation Ee is a prOJectlon of norm one from X onto
the subspace of X consisting of all the oe—measurable functions. It
follows easily that if a nonnegative symmetric bounded linear oper-
ator R from X* into X is a Gaussian covariance, then the nonne-
gative symmetnc bounded linear operator E. RE . * from (E.(X))*

into B (X) is a Gauss1an covariance, Let f ” x"” and g;=

W for all i, Smce { fv} is a 1—uncond1t1onal basis of EQ(X )

and {g;} is the sequence of b10rthogona1 functlonals assoc1ated Wlth

” ‘the basis- { f }, by the theorem of [3] the series Z (Ec,e REoe i

g.>7f,- converges in Eoe(X ). Moreover, we show that there eXlsts a
constant K such that HZ: {Ee RE:* g, g,>7 FIZK for every o-

algebra. e generated by a sequence {A4,;} of disjoint measurableé sets
in [0, 1]. : '
Next by using the defmltlon of a rearrangement invariant func--
tion space X on [0,1] we find o-algebras ce generated by f1n1te
sequences {A4;} of disjoint measurable sets in [0,1] such that Fe
is not uniformly y-summing when A*: H—X is not 7—summmg
By using the above result we find a suff1c1ent condition for R to
be a Gaussian covariance. Hence we prove the followmg result‘
(Theorem 1) : Let X be’ a rearrangement invariant function space
on [0,1] ‘which has’ cotype p for some p<loo, A nonnegatlve sym-
metric bounded linear ooperator R from X* into X is a Gaussian
covariance if and only if there exists a constant K such that for
every c-algebra ce generated by a sequence {A,,} = of disjoint mea-

surable sets in [0, 1], IIZ <Eca R Eo* gz,gi>7fll<K where fs—

'_lL Xas ‘ | R
Mogallx HXA e Ee is ‘thecondltlonal expectation and E(,e
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E<* is the induced map from (Fo(X))* to Ex(X).

In the case of a separable g-complete Banach lattice £, which is
of cotype p for some p<loo, we show the following result (Theorem
2) : A nonnegative symmetric bounded linear operator R from E¥*
into E is a Gaussian covariance if and only if there is a constant
K such that for all finite disjoint sequences {g;} in E and {g¥} in

E* with <g¥, g>=0, |T(QRQ*gr, gHQ(g)lI<K, where @ is
the canonical map of E onto E/[g¥]. and
(g1 1. ={fEE : (f, f*=0 for all fre[gt]).

In fact, the idea of the proof of Theorem 2 is essentially the
same as that of Theorem 1. In proving Theorem 2 we use the
following : Let {g;}CFE and {gFf}CFE* be finite disjoint sequences
with <g;*, g;>~0,. Then {Q(g:)} is an unconditional basis for E,
[g.*]. and {g:*} is the sequence of biorthogonal functionals associ
ated to the basis {@(g:)}.

2, Definitions and notation

Here are some of the definitions and notation we use.
The canonical Gaussian cylindrical measure 7y, on a Hilbert

space H is the cylindrical measure with characteristic functional
2
Futhy —expf~ A peH.

A cylindrical measure ¢ on a Banach space X is called a Gaussian
cylindrical measure if there exists a Hilbert space H and a conti-
nuous linear map T from H into X such that g=yu-T

Let X be a Banach space, X* its dual. For any nonnegative
symmetric bounded linear operator R from X¥* into X there exists
a Hilbert space H and a bounded linear operator A from X* into
H such that R=A*:A. A is uniquely defined up to isometry(cf.
[12]). Thus every nonnegative symmetric bounded linear operator
R from X* into X determines a cylindrical Gaussian measure yy e

(A*)™! with characteristic functional 7o (A*) 7 (x*) :exp{~%—— {Rx*,

x*>}, x*<=X* If a cylindrical Gaussian measure yuo(A*)™! admits
extension to a tight Borel measure then R is called a Gaussian
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covariance.

A bounded linear operator T from a Hilbert space H into a Banach
space X is -called - y-Radonifying if -yy°T~' admits extension to a
tight Borel measure on the Borel field.

A bounded linear operator T from a Hilbert space H into a Banach
space X is called y-summing if there exists C=>0 such that for any

finite subset () CH, (Bl %, ThanI7)<C sup {( 1<, mo12)},

where {y;} is a sequence of identically distributed independent stan-
dard Gaussian random variables. The infimum of such C is denoted
by I,(T).

The sequence of Rademacher functions {e,(#)}.=; on [0, 1] is defined
by &.(#) =sign sin2"zf and is a sequence of independent identically
distributed random variables taking the values 41 with probability
1

A Banach space X is of cotype p for some p=2 if there exists a
constant C such that for any finite subset {x;}.%,.CX, (;‘;’lllxkll’)%gc

(BNE 5 el ).

Let (Q, 2, p) be-a o-finite measure space. Let X be a Banach
space whose elements are (equivalence classes modulo equality almost
everywhere) measurable functions on Q. X is called a Kothe func-
tion space if the following conditions hold.

(1) For every o2 with u(e)< oo, the characteristic function %,

of ¢ belongs to X. '

) If | f(w)|<|g(w)| almost everywhere on 2 with f measurable

and gEX then fEX and || flI<ligll.

3) If féX then f%,&X and j | f(w)¥,(w) |dp<oo for every o2

with g(g)<lco.
Let (@, 2, p) be a o-finite measure space. Let X be a Banach
space whose elements are measurable functions on Q. X’ is the

space of all measurable functions g such that jl flw)g(w) | duoo
for each f&X. X’ is a norming subspace of X* if for every fEX,

1 £ t=sup {I[ #@) g(@) dul : gX', lig =1},
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A map 7 from a measure space (Q,2, p) into (Q,2, p) is called
an automorphism of @ if ¢z is one-to-one, 7 and ¢7! are measurable
and u(o)=p(r(o)) for every measurable subset o of Q.

Let ([0,1], 2, #) be a Lebesgue measure space. A rearrangement
invariant(r.i.) function space X on [0, 1] is a Kéthe function space
X on [0, 1] such that

(1) If ¢ is an automorphism of [0, 1] into [0,1] and f is a mea-

surable function on [0, 1] then f&X if and only if ferleX
and if this is the case then || f = fez7%|.

(2) X’ is a norming subspace of X *.

(3) L.([0,11)cXCL,([0,1]) with norm-one inclusions,

Notation. Let X be a Banach space, M be a subspace of X and
N be a subspace of X*.

(1) N.={x=X: {x,x*>=0 for all x*&N}

Q) M*={x*&X*: {x,x*>=0 for all x&M }

A Banach lattice X is said to be g-complete if every order bounded
sequence in X has a least upper bound. A Banach lattice X is said
to be o-order continuous if for every downward directed sequence
{x.} in X with Ax,=0, lim || x,||=0.

3. Results

The proof of Theorem 1 is obtained by means of a few lemmas
and the known results from [3] and [4]. We begin with a few
lemmas,

Lemma 1. Let X be a separable Banach space. 1f a bounded
linear operator T from a Hilbert space H into X is y-Radonifying

then([xllxllz d)u(x))%zll,( T), where p=yy-T is the (extension)

Gaussian measure on X.

Proof. Let {A}:, be a finite sequence in H. Since for every

220 there exists a finite dimensional subspace F of X* such that
WQr, wllxe, Zltlix < (1+€) |QF . ullx/r, for all us{ Thy],, where F. =
{x&X : {x*, x>=0 for all x*<F} and @r., is the canonical map of
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X onto X/F., we have that (E’Ilé:lQnThla Tkﬂz)%

n 1 n 1
<(B1E, That)* <a+o(BIE Q. Thrd? ). (O
By (1) and the definition of a y-summing operator @, 7T, we get
L ' 1 n 1
that (Enkgl Thi nllz)f_:g% (1% Q. Thrir)H}

<sup {7,(Qr.T) s, (&1 me)].

dun F <oo

Hence we have 1T (T)<sup {(I,(Q:.T)} (2) from the def1n1t10n of

dlmF<ao
Io(T).
Since Q-, T : H»X/F,, where FCX* and dim F<co, is a finite
rank operator, it follows from lemma 3 of [4] that Z,(Qr.T)

=(] 1Qe.ThII2d 7a i) )}
= meranm)=(] med, @)

The last equality is due to the fact that rﬂoT‘l is a Gaussian mea-
sure, Together with (2), we have that

I(D(f, e @) @

By the separability of X, there exists a countable subset {x:;}.2,
of X such that X=[x;];=,. For 1<k<n, suppose that we have chosen
a finite dimensional subspace F, of X ¥ such that

1@, sl Nl < (144 )1Qes, #llesmy, for all ux]d, and FrC
F,c---CF,. Now we choose a finite dimensional subspace F,.; of
X* such that Tule <(1+ 52 ) 1Qs,0.] sl s, for all wLalsth
If we let F,.,=F,+F,., then F,CF,,, and

e <(1+ 52 1@, #lesn,, Tor all uexdz

Therefore there exists an increasing sequence {F,},2; of finite di-
mensional subspaces of X* such that for each 7, |Qs,  #llx», <llullx

<(1+2)19s,, tlin,, for all uslxls.

Now by Fautou’s lemma and the normed operator ideal property of
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the class of all y-summing operators, we get that
(Juste dyae T2 )e=([ 1THE 2 7))

=(Jlim inf 1r,, T d 7 () ) <lim int ([1Q0,, THI® d 7 () ¥
=lim inf (1.(@s,, T)}<I(T). (&)

(3) and (4) conclude the proof.

It should be noted that Linde and Pietsch [8] have proved the
analogous result for y-summing operators. There, however, one
gets that ﬂ,(T):(jx** ||¢1|2dﬂ(¢))’1’, where p=yyo(JT)™ is the
Gaussian measure on X** and J: X—X** is the canonical embed-
ding of a space X into its bidual.

Lemma 2. Let X be a Banach space with a 1-unconditional basis
{x}:21 and let {x:*}.2, be the sequence of biorthogonal functionals
associated with the basis {x:};2, If R: X*—>X is a Gaussian cova-

3 1 1
riance then || ;,Z {R x¥, x,:*)?xkllxg(%)f .(A*), where A*: H—
=1
X is the operator in the representation R=A%*-A,
Proof. Let x be a Gaussian random element in X with expectation

zero, g be the distribution of x and R be its covariance operator,
Then for each k&, <{x*, x> is a Gaussian random variable in R and

so we have E |{x*, x| :(—725—)% (R x.*, x,,*>%. By the 1-uncondi-
tionality of the basis {x.} and Holder's inequality, we get that

- oo 1
1B (S <o, 1)< Bl 1<, 2 bl =EI<(E I1217)".

=1 k=1

Since X has a basis {x;}, X is separable and since R=A%-A4 is a
Gaussian, A* is y-Radonifying. Therefore, by Lemma 1 we have
that

I3 Rer, 2 inll=(5)E 1B (S 1<a, o la)I=(Z)H(E 1)
=(%)’}H,(A*), which completes the proof,

Lemma 3. Let X be an r.i. function space on [0,1]. If f is an
element of X then for any €>0 there exists an algebra o whih is
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generated by a finite sequence of disjoint measurable sets in [0,
1] such that |Ee f—f [I<e.

Proof. Let Ai=[t<[0,1] : keZ f()<<(k+1De], ge—f:ikexak and

N

gs"':k:Z_NkexAk. Then || ga_f”nge and ”ga_geN“fXte:|f<t)lz(N+1)s]“Lw§3-
It follows from the definition of an r.i. function space X that L.,
([0,1)cXcL,([0,1]) with norm one inclusions and so we have
that || g.—f Ix<<e and || g.—g¥ —f Xesmzavina llx<e. (1)

Let g be an element of X* such that || gllx*=1. Since f&L,([0,
1]), we get that |flxwirei=nlgl goes to 0 almost everywhere as
A—oo and is dominated by |f| |gl. This fact and the fact that
| fllgleL,([0,1]) allow us to use the dominated convergence theorem

to conclude that llim j;] F® 1 tro=at) |g@® |dt=0. Now X' is a

norming subspace of X * by the definition of an r.i. function space
X. So ‘

I f Yoo 5enzallx :fel}{P {U:f(t) Yeiron=a(E) g (D dt| }.

HElTy*=1
Hence for any ¢>0, we have that || f %uiro=e+a llx e for large
N. (2 m
From (1) and (2), for any e>0 we get that || f—gMlx<3e for
large N.

Now we take ce as the algebra generated by {A4:},-t». Since the
conditional expectation F, is a projection of norm one by Theorem
2.a.4 of[10], we have the following : ||Bef—fllx=|(Fef—g))+
(g¥— HIx=NE(f—gDlix +llgd— fllx L2l fF—gllIx<6e.

This completes the proof of the lemma, because ¢ is an arbitrary
positive number.

Levmma 4. Let X be an r.i. function space on [0,1]. If the o-
algebra e, is contained in the o-algebra e, and if f is an element
of X then || f—Ew, f Ix<2 | f —Ew; fllx.

Proof. Let g=f—FE. f. By the definition of the conditional ex-
pectation, we get that
g—FEx,g=g—Eq, f+Es f=f—E, f. Since E,, is a projection of
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norm one, it follows that
N f—Ee, fll=ll g—Ee, g 122l gl =211 f —Ee, f Il

We are now prepared to prove Theorem 1.

Tueorem 1. Let X be a rearrangement invariant function space
on [0,1] which has cotype p for some p<co. A nonnegative sym-
metric bounded linear operator R from X* into X is a Gaussian
covariance if and only if there exists a constant K such that for
every o-algebra ce generated by a sequence {A,}:2 of disjoint mea-
surable sets in [0, 1],

| 5<Ba RE g, £ f: |SK, where fi= LTS 7.
HXA ”x |!XA|-IIX* ’
E. is the conditional expectation and E.REZ is a map from

(Ee(X))* to Ex(X).

Proof. Necessity.

Let ce be a o-algebra generated by the sequence {A,},>, of disjoint
measurable sets in [0,1]. Let A* : H—X be the operator in the
representation R=A%-A, Suppose that R is a Gaussian covariance.
Then by the definition of y-Radonifying operators, yuo(A*)™! ex-
tends to a tight Borel measure 7.:(A*)~!. That is, for every ¢>0
there exists a compact subset K of X so that 7x#(A*)7 (K )>1—e.
It follows from Theorem 2. a.4 of [10] that the conditional expecta-
tion F, is a projection of norm one from X onto the subspace of
X consisting of all the ee-measurable functions. Hence E (K ) is a
compact set and so the cylindrical Gaussian measure yyeo (EeA*)™!
has a tight extension to a Borel measure on E(X). In other words,
EREF is a Gaussian covariance,

Now let fi=-—2% _ and g;= — X% for all 7. Since {f}} is a

fl llx [lya; [1x*
sequence of rnutually disjoint elements of a Banach lattice X (with
respect to the pointwise order), we have | za,- il :Zl la;l| f;] for
every sequence of scalars {«]} and hence
I X afill=Il1 4 afilll=iXlall fill=lIXalfil for every sequence

of scalars {a:}. Therefore { f;} is a 1-unconditional basis of EFe(X)
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and {g:} is the sequence of the biorthogonal functionals associated
with the basis-{ f;}. By lemma 2 and the normed operator ideal
property of the class of all y-summing operators, we get that

| 5 <BuREZ g g3* ll<(Z)* I,(Bw A9 <(F)F T,(4%).

If we write K for the constant (—2—)’5 II.(A*) then this proves the

necessity.

Sufficiency.

Assume that R is not a Gaussian covariance. Then the operator
A* : H-X in the representation R=A4%-A is not r—Radomfymg
Therefore it follows from Theorem 1 of [4] that A* is not y-sum-
ming, because X doesn’t contain a subspace isomorphic to C,. Since
A¥* is not y-summing, by definition, for any constant M >>(Q there
exists a finite orthonormal sequence {/}, in H so that.

(E Il ;A*h,- 7;HZ)%>M. By Lemma 3, for any &>0 there exists an

algebra ce; generated by a finite sequence {A4;;}}%, of disjoint mea-
surable sets in [0, 1] such that ||Ee., (A* k) — A* hillx<e for i=1, 2,
.-+, n. Let the sequence {4} be the common refinement of all of
the A;;’s, i=1, 2, ---, #, j=1, -, N, and let ce be the o-algebra
generated by {4:}. Then ce;Cce for 7=1, 2, --, # and hence by
Lemma 4, we have [|[Ee(A* k) —A* I||<2 ||Ee, (A% k,)—A* b, || for
i=1, 2, -, n.

. We get the following estimate by Minkowski's inequality.

(B0 5 Bo d* hupde)i=(BU § A% hipt § (B A% B~ A*)?)E
2(B1 5 A% k) (B 5 (Be A* b 4% h)rl?)*
(B0 5, 4% bl o5 1w 4* e 2 1) (B (S, 7))
=>M-—2 ne, .
M

Since e is an arbitrary positive number, we can take ¢ as ——1”— and

then (E I Z E. A* I 1: HZ)?>M for any constant M >>0. Hence FE,

A¥* is not 7—summ1ng(*). Next we show that (%) is impossible and
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this contradiction proves the sufficiency. Since EL(X) is a subspace
of X and X has cotype p for some p<co, E.(X) also has cotype

p. By hypothesis, the series

et 1

2. {ExRE} &, g,>7 f;, where f,-:¢"——— X
i=1 HXA,-”X ||XA,.||X*
converges in E.(X). Therefore according to Theorem 2. 1, of [3],
we have that E. R E# is a Gaussian covariance. Thus F. 4% should
be y-summing. That is, (*) is impossible. This completes the proof
of sufficiency.
we need the following lemma which is needed in proving the su-
fficiency of Theorem 2,

and g;=

»

Lemma 5. Let E be a separable o-complete Banach lattice, which
is of cotype p for some p<loco, If f is an element of E then for
any €>0 there exists a simple function f such that || f—flI<Ze.

Proof. Since E is a o-complete Banach lattice with cotype p for
some p<loco, K is a o-complete Banach lattice which doesn’t contain
a subspace isomorphic to C,. Hence it follows from Proposition 1. a.
7 of [10] that £ is o-complete and o-order continuous, Moreover,
E has a weak unit because E is separable., Therefore, by Theorem
1.b. 14 of [10], there exist a probability space (€, X, ), an ideal
E of Ly(Q,2, ) and a lattice norm || ||z on E so that

(i) E is order isometric to E

(ii) E is dense in L;(Q, 2, #) and L.(Q, 2, p) is dense in E

Gin I fFih=l =2l f l. whenever fEL.(Q, 2, ).

Hence we can consider £ as L.(2,2, u)) CE CL(Q, 2, ) with dense
inclusions,

o0

Let di=[w: k< f (@)<(E+Del, g.=3 ke¥, and ggvk:_sz ke s .

k=—oco
E*=F"', since E is o-order continuous. Just as above, then, for
any ¢>0 we get || f—gM|<5¢ for large N. 1If we write f for a

N
simple function g¥=3 ke Xa, then this completes the proof of the
k=—N

lemma, because ¢ is an arbitrary positive number.

Now we prove Theorem 2. The proof of Theorem 2 is nearly
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identical to the proof of Theorem 1.

Treorem 2. Let E be a separable o-complete Banach lattice,
which is of cotype p for some p<loo. A nommegalive symmetric
bounded linear operator R from E* into E is a Gaussian covari-
ance if and only if there is a constant K such that for all finite
disjoint sequences {g:} in E and {gF} in E* with {gF, g=0;,

I 2KQRQ*gF, g;-*)é Q(g)IILK, where Q is the canonical map of E
. onto E/[ gFl..

Proof. Necessity

Let { g} CE and {g¥}CE* be finite disjoint sequences with { g¥,
gi>=0;;. Suppose that R is a Gaussian covariance. Let A* : H—>FE
be the operator in the representation R=A%*-A, Then, by defini-
tion, the cylindrical Gaussian measure ygz°(4*)™! extends to a tight
Borel measure yu:(A*)™! as above. Since @ is a continuous map of
E onto E /[ gfl., Q(K) is a compact set and hence the cylindrical
Gaussian measure 7yo(QA*)™ has a tight extension to a Borel me-
asure on E /[ gF1.. In other words, QRQ* is a Gaussian covariance.

Now <Q(g), g;*>=0; and since [ g*] is a finite dimensional sub-
space of E*, (E/[g*].)*=[g*1.=[g*]" =[g*]. Since {g#} is an
unconditional basis for [ g*] and has coefficient functionals {@(g:)}
c[g*]*, {Q(g)} is an unconditional basis for [@(g;]. But dim
(E/[g*])=dim[ g*]*=dim[@(g)] and so {Q@(g)} is an un-
conditional basis for £/[ g*].. By Lemma 2 and the normed opera-
tor ideal property of the class of all y-summing operators, we get
that

| 5KQRQ g, g A I=(Z) I@an<(Z) 1.

If we write K for the constant (%)% II.(A*) then this proves the
necessity.
Sufficiency

As we mentioned in the proof of Lemma 5, since E is a ¢-comp-
lete and o-order continuous Banach lattice which has a weak unit,
by Theorem 1.b.14 of [10] we can consider E as L.(Q,2, w) CEC
L,(Q,2, ) with dense inclusions.
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Assume that R is not a Gaussian covariance. Then the operator
A* : H-E in the representation R=A*-A is not y-Radonifying.
Therefore it follows from theorem 1 of [4] that A* is not y-sum-
ming, because E doesn’t contain a subspace isomorphic to C,. Since
A* is not y-summing, by definition, for any constant M >0 there
exists a finite orthonormal sequence {/,},-, in H so that

(El] Z"} A* iyl 2)%>M. By lemma 5, for any >0 there exists a

N;
such that || A* h,--;Z' @i, A4, <e for
=1

i=1,2, -, 7 Let the sequence {A;} be the common refinement of

simple function Z a1 Ka,,

N;
{A; }i-..Yi. Then a simple function I_Z; @i1 Xa,, can be written as

M; My
> B %y, and for any €>0, we also have || Zl B i Xa,— A*hil|<e for
=1 7=
i=1,2,---n. Now we define a map A* from [A]:l, into E by A*

u;
=X Biix,, 1=1,2,+,n Again, as above by Minkowski's inequa-
=1 #
n ~ 1
lity, we get (E[l Y A* iy HZ)E >M-ne. Since ¢ is an arbitrary
i=1
positive number, we can take ¢ as 4—% and then we get

(E I é]l A* Iy Hz>%gi—M for any constant M >0.

Now we choose a finite dimensional subspace F' of E* such that
for every >0, g1+ Q. gll for all g&[X,;], where Qr,
is the cannoical map of £ onto E/F,. We can assume without loss
of generality that I’ is a subspace of [X.], where {C,} is a finite
sequence of disjoint measurable sets. Since the space [X.]. is a sub-
space of the space F,, we have [|Qr, gller, Sl|@exens, glle cxern, and
hence for every >0, |l gil<(1+e) Qe gll for all g&[X,,]. Since

:V_,’ A* h;y; is an element of [X,,], for every e>0 we have

IIQ‘,,C,,,L(Z D = L L V13 A il and so

(B % Qo 2 hirll) (2 NE 1 E 2% )iz (fh)- S
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for any constant M >0. Since |
“Q:chzl_y. A* hi_chcku_ A* hi “<_Z]‘i_ for i:l, 21 .”n’ by MinkOWSkl,S
inequality we get that

‘ S ® g 112)3 1 By M tant
(B11 % Quew, A hil?)* = (2 ) S-M——- for any constan
M >0. Hence Q.. A* is not y-summing (*). Next we show that(x)
is impossible and this contradiction proves the sufficiency. Let { g}
be the sequence of elements of E such that {g; X¢;>=0:; Then
{Qxers, (Gw), %> =0, and since [X;,;] is a finite dimensional subspace
of E*, we have (E/[Xc,].)*=[%c,]t=[X,]" =[X;,]. Since {Xc} is
an unconditional basis for [Xc] and has coefficient functionals
Q(g)IC[%]*, {Q(gy)} is an unconditional basis for [Q(gn].
But dim (E/[¥.,].) =dim[¥.,]*=dim [Q(g)] and so {&(g»} is an
unconditional basis for E/[X,].. By hypothesis, the series }{&R

QF %o,y xc,;>%~ (g converges in E/[X;].. Therefore according to
Theorem 2.1 of [3], we have that QRQ* is a Gaussian covariance.
Thus QA* should be y-summing. That is, (*) is impossible, This
completes the proof of sufficiency.

Remark. We wanted Theorem 2 as follows : Let £ be a separable
o-complete Banach lattice, which is of cotype p for some p<oo.
A nonnegative symmetric bounded linear operator R from E * into E
is a Gaussian covariance if and only if there exists a constant K
such that for all disjoint sequences { g;} in EF and {g*} in E* with

(g g»=0u || 5 <QRQ*g* g** &I <K. But by finding the

following example we know that the above statement is false.

Let us take the separable o-complete Banach lattice E as [P/,
Since [,DI; is a direct sum of a cotype 2 space and a cotype 2
space, [P, is of cotype 2. Let y;=(e;, J;), where {e¢;} is the unit
vector basis of , and {;} is the unit vector basis of /,, and yF¥=
ei*. Now define an operator A :[,—E by A(e)=pe with {g}<i,
—[;. Then

15 A4 37, 398 3y ls=1Z 14% 37 1 5= 115 8,9l
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Gaussian measures on rearrangement invariant function spaces on [0, 1]
and on separable ¢-complete Banach lattices

oo o = 1
=l & Bieili, 1% 8 ill, =co. That is, the series 3. (AA* v, 7
iz if1 i=

y; does not converge,
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