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GAUSSIAN MEASURES ON REARRANGEMENT INVARIANT
FUNCTION SPACES ON [0, IJ AND ON SEPARABLE

q-COMPLETE BANACH'· LATTICES

HI JA SoNG

1. Introduction

In 1977 S. Chobanjan and V. Tarieladze[3J showed that the ne­
cessary and sufficient condition for a nonnegative symmetric bounded
linear operator R from X* into X, where X is a Banach space
which has cotype p for some p<00 and an unconditional basis
{XI} I':" to be a covariance operator of a Gaussian measure on X is

00 1

that the series I: <Rx"t, X:,> "2XI is convergent in X, where {x:J is the
k=1

sequence of biorthogonal functionals associated with the basis {XI}.
As we know, if {XI} is an unconditional basis of a Banach space

X then we can always define on X an equivalent norm so that the
unconditional constant becomes one. Further every Banach space
with an unconditional basis {XI}, whose unconditional constant is

00

equal to one, is a Banach lattice when the order is defined by L;an
n=1

xn>O if and only if an>O for all n.
The natural question is how to extend the above theorem(on the

characterization of Gaussian measures) to a general Banach lattice,
which is of cotype p for some p<00. Here, we describe the Gaussian
measures on the following Banach lattices: (a) Rearrangement in­
variant function spaces on [0, 1] of cotype p for some p<00 and,
(b) separable q-complete Banach lattices of cotype p for some p<oo.

Let ([0,1], Z, p) be the Lebesgue measure space. Suppose that f
is an integrable function on [0, 1] and that gg is a q-algebra of
measurable sets in [0, 1]. There exists a unique, up to equality
almost everywhere, gg-measurable integrable function Bsi! f so that
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IIx:Jlx * ' Ere is the conditional expectation and Ere R
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LEa few) dp,=Lfew) dp. for everYY9-measurable set (7. Eaf is

called the conditional expectation of f with respect to Y9.
Let re be the (7-algebra generated. by a sequence {AkJ k':l of disjoint

measurable sets in [0, IJ. Let X be a rearrangement invariant func­
tion space on [0, IJ. It follows from theorem 2. a. 4 of [lOJ that the
conditional expectation Ere is a projection of norm one from X onto
the subspace of X consisting of all the re-measurable functions. It
follows easily that if a nonnegative symmetric bounded linear oper­
ator R from X* into X is a Gaussian covariance, then the nonne­
gative symmetric bounded linear operator Ere REre* from (Ere(X) ) *

into Ere (X) is a Gaussiancovariance. Let li II;A:ilx and gi =

XA,IIxA,I'x* for all i. Since {fa is a I-unconditional basis of Ere(X)

and {giJ is the sequence of biorthogonal functionals associated ·with
00

the basis L{;}, by the theorem of [3J the series L: <Ere REre* gi,
i=l

1

gi>2 fi converges in Ere(X) . Moreover, we show that there exists a
00 1

constant K such that ilL: <Ere REre* gi, gi)2 fdl<K for every (7-
i=l

algebra re generated by a sequence {AkJ of disjoint measurable sets
in [0, IJ.

Next by using the definition of a rearrangement invariant func­
tion space X on [0, IJ we find . (7-algebras re generated by finite
sequences {Ak} of disjoint measurable sets in [0, IJ such that EreA*
is not uniformly r-summing When A*: H~X is not r-summing.
By using the above result we find a .sufficient condition for R to
be a Gaussian covariance. Hence we· prove the following re~mlt
(Theorem 1).: Let X be·a rearrangement invariant function space
on [0,1] which has cotjrp~ P forsomep<=. A nonnegative sym­
metric bounded linear operator R from X* into X is a Gaussian
covariance if and only if there exists a constant K such that for
every (7-algebra re generated by a sequence {AkJ k':l of disjoint mea-

00 1

surable sets in [0, IJ, Ilk <Ere R E re* gi, gi)7£ /;11<1(, where fi=
i=l '

XA,
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Eae* is the induced map from (EcAX» * to Ere(X).
In the case of a separable a-complete Banach lattice E, which is

of cotype p for some p<=, we show the following result (Theorem
2) : A nonnegative symmetric bounded linear operator R from E*
into E is a Gaussian covariance if and only if there is a constant
K such that for all finite disjoint sequences {g;} in E and {g;*} in

1

E* with <g7, gj)=Oij, II 2: <QRQ* g7, gt):fQ(g;)II<K, where Q is
the canonical map of E onto El [g7 le and
[gtlL={/EE: <I, 1*)=0 for all I*E[gnJ.

In fact, the idea of the proof of Theorem 2 is essentially the
same as that of Theorem 1. In proving Theorem 2 we use the
following: Let {g;} cE and {g,*} cE* be finite disjoint sequences
with <g;*, gj)--ou. Then {Q(g;)} is an unconditional basis for El
[g;*].!- and {g;*} is the sequence of biorthogonal functionals associ
ated to the basis {Q(g; )}.

2, Definitions and notation

Here are some of the definitions and notation we use.
The canonical Gaussian cylindrical measure rlf on a Hilbert

space H is the cylindrical measure with characteristic functional

f If(h) =exp{ - Ilht }, lzEH.

A cylindrical measure f1 on a Banach space X is called a Gaussian
cylindrical measure if there exists a Hilbert space H and a conti­
nuous linear map T from H into X such that f1 =rHoT-l.

Let X be a Banach space, X* its dual. For any nonnegative
symmetric bounded linear operator R from X* into X there exists
a Hilbert space H and a bounded linear operator A from X* into
H such that R=A*cA, A is uniquely defined up to isometry (cf.
[l2]). Thus every nonnegative symmetric bounded linear operator
R from X* into X determines a cylindrical Gaussian measure rH C

(A*)-l with characteristic functional fIfO(A*)-l(x*)::....cexp{-~ <Rx*,

x*)}, x*r:::::=X*. If a cylindrical Gaussian measure rH ° (A*)-l admits
extension to a tight Bore! measure then R is called a Gaussian
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covariance.
A bounded linear operator T from a Hilbert space H into a Banach

space X is called· r-Radonifying if - rH 0 T-1 admits extension to a
tight Borel measure on the Borel field.

A bounded linear operator T from a Hilbert space H into a Banach
space X is called r-sutnming if there exists C>O such that for any

finite subset {hi} /;1 cH, (E 11 tl Thkrk W)i<C I~R}~l {(~ll <h, hk> \2)i},
where {rk} is a sequence of identically distributed independent stan­
dard Gaussian random variables. The infimum of such C is denoted
by Ur(T).

The sequence of Rademacher functions {e,,(t) }n~l on [0,1] is defined
by e,,(t) =sign sin2nnl and is a sequence of independent identically
distributed random variables taking the values + 1 with probability
1
2·

A Banach space X is of cotype p for some P>2 if there exists a

constant C such that for any finite subset {X;}i~lCX, (~lHxkW) ~ <C

(Ell ~l Xk Ck liP) ~ .
Let (D, 2, p) bea a-finite measure space. Let X be a Banach

space whose elements are (equivalence classes modulo equality almost
everywhere) measurable functions on Q. X is called a Kothe func­
tion space if the following conditions hold.

(l) For every O'E2 with p(O')<oo, the characteristic function 'XJ

of 0' belongs to X.
(2) If If(cv) I<Ig(cv) I almost everywhere on D with I measurable

and gEX then fEX and 1I/11<lIg 11.

(3) If lEX then !'X3 EX and JI/(cv)'X.,(cv) Idp<oo for every O'E2

with p(O')<oo.
Let (D, 2, p) be· a a-finite measure space. Let X be a Banach

space whose elements are measurable functions on D. X' is the
space of all measurable functions g such that JI f(cv)g(cv) I dp<oo

for each lEX. X' is a norming subspace of X* if for every fEX,

llfll=sup {IJf(cv)g(cv) dpl :gEX' , Ilgllx*=l}.
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A map '[ from a measure space (Q, 2, p) into (Q, 2, p) is called
an automorphism of Q if '[ is one-to-one, '[ and '[-I are measurable
and p(a) =p('[(a) for every measurable subset a of Q.

Let ([0, 1], 2, p) be a Lebesgue measure space. A rearrangement
invariant(r. i.) function space X on [0, 1] is a Kothe function space
X on [0, IJ such that

(l) If '[ is an automorphism of [0,1] into [0, 1] and I is a mea­
surable function on [0,1] then lEX if and only if lo'[-IEX
and if this is the case then 11 I 11 = 11 I 0'[-; 11.

(2) X' is a norming subspace of X *.
(3) L",([O, 1])cXcL1 ([0, 1]) with norm-one inclusions.

Notation. Let X be a Banach space, M be a subspace of X and
N be a subspace of X*.

(l) NJ.. = {XEX: <x, x*) =0 for all x*EN}
(2) M J.. = {X*EX * : <x, x*) =0 for all xEM}
A Banach lattice X is said to be a-complete if every order bounded

sequence in X has a least upper bound. A Banach lattice X is said
to be a-order continuous if for every downward directed sequence
{xn} in X with ;\xn=O, lim 11 Xn 11 =0.

n

3. Results

The proof of Theorem 1 is obtained by means of a few lemmas
and the known results from [3J and [4]. We begin with a few
lemmas.

LEMMA 1. Let X be a separable Banach space. 11 a bounded
linear operator T Irom a Hilbert space H into X is r-Radonilying

then(J)IxW dp(x»)i =Dr ( T), where p=rH ° T-l is the (extension)

Gaussian measure on X.

Proof. Let {hk} k';j be a finite sequence in H. Since for every

e>O there exists a finite dimensional subspace F of X* such that
IIQF.J.ullxIF.J.<llullx<C1+e)IIQF.J.ullxlF.J. for all uE[ThkJk';h where F.J.=
{XEX: <x*, x)=O for all x*EF} and QF.J. is the canonical map of
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X onto XjFJ.., we have that (Ell ktl QF.1.Thkrkllz}}

« E 11~1 Thkrkllz)} <(1 +c)(E 1I~1 QF.1. Thkrkllz)}. (l)

By (1) and the definition of a r-summing operator QF.1. T, we get

that (E 1I~1 Thkrkll z)} =:=~~R {(Ell ~l QF.1. Thk rkll z)}}
dimF<co

<sup {HrCQF.1.T) sup {(t l<h,hk)lz)}}}.
FcX" Ilhll=l k=l

dimF<co hEH

Hence we have Hr(T)<sup {Hr(QF.1.T)} (2) from the definition of
FcX"

dim F <00
HrCT).
Since QF.1.T: H--+-XjF.J.., where FcX* anddimF<oo, is a finite
rank operator, it follows from lemma 3 of [4J that HrCQF.1. T)

=(t 11 QF.1. Th II z d rH (h) )}

«JH11 Th 11 Z d rH (h))i=(Jx IIxllz d rH 0T-' (x) )i.

The last equality is due to the fact that rHO T-1 is a Gaussian mea­
sure. Together with (2), we have that

HrCT)«L IIxllz d rHOT-' (x) )~. (3)

By the separability of X, there exists a countable subset {x;} i:1
of X such that X = [Xi];~l. For 1<k<n, suppose that we have chosen
a finite dimensional subspace Fk of X* such that

IIQFk.1. UllX/Fk.1. <llullx«l + 1)lIQFk.1. ullX/Fk.L for all UE[X;]i~1 and FIc

Fzc···cFn. Now we choose a finite dimensional subspace Fn+r of

X* such that Ilullx~(1+ n~ 1 )IIQi?n+,: ullx/Fn+•.1. for all UE[XiJi~t
If we let Fn+r=F,,+Fn+I then F"cF"+I and

lIullx« 1+ n~ I )IIQFn+•.1. ullx/Fn+,.J. for all UE[XiJi~~
Therefore there exists an increasing sequence {F,,}n~I of finite di­
mensional subspaces of X* such that for each n, IIQFn.1. ullx/Fn.1.<lIull x

«1+ ~ )IIQFn.1. ullx/Fn.J.. for all UE[X;]i';l.

Now by Fautou's lemma and the. normed operator ideal property of
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the class of all r-summing operators, we get that

(Jllx11 2 drHOT-1(x»)!=(L 11 Thl1 2 d rH (h»)!

=(JI~ inf IIQFn.L Thl1 2 d rH (h) )!<li;n inf (JIIQFn.L Thll 2 d rH (h) )!

=liminf {Dr(QFn.L T)}<DrCT). (4)
n

(3) and (4) conclude the proof.
It should be noted that Linde and Pietsch [8J have proved the

analogous result for r-summing operators. There, however, one

gets that DrCT)=(L** II(jSWd,u«(jS»)!, where ,u=rHo(JT)-l is the

Gaussian measure on X** and] : X~X** is the canonical embed­
ding of a space X into its bidual.

LEMMA 2. Let X be a Banach space with a I-unconditional basis
{Xi}/::\ and let {Xi*};'::l be the sequence of biorthogonal functionals
associated with the basis {Xi};'::h If R : X*~X is a Gaussian cova-

= I (1C)1riance then 11 f;I <R xt, xt)"2Xk IIx~ 2 "2 Dr(A*), where A*: H~

X is the operator in the representation R=A*oA.

Proof. Let x be a Gaussian random element in X with expectation
zero, ,u be the distribution of x and R be its covariance operator.
Then for each k, <x/, x) is a Gaussian random variable in Rand

so we have E I<Xk*, x) I =(;)! <R Xk*' x/)!. By the I-uncondi­

tionality of the basis {Xk} and Holder's inequality, we get that

IIE(tI I<Xk*' x) IXk)lI< E 11 tll<Xk*' x) IXkl1 =E IlxlI~(EIIXII2)i.
Since X has a basis {x;}, X is separable and since R=A*oA is a
Gaussian, A * is r-Radonifying. Therefore, by Lemma 1 we have
that

11 I.l <RXk*, xk*)ixkll=(~)! IIE(~l I<x/, x>lxk)II«~)!(Ellxln!

=( ~)!Dr(A*), which completes the proof.

LEMMA 3. Let X be an r. i. function space on [0, 1]. If f is an
element of X then for any e>O there exists an algebra re whih is
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generated by a finite sequence of disjoint measurable sets in [0,
1] such that IIEre f- f lI<e.

00

Proof. Let Ak=[tE[O, 1] : ke<fCt)«k+I)e], g.=I: keXA and
k=-co k

g/=E keXA . Then 1I g.-filL :=::;:e and IIg.-g.N-fx[t:l!ct)I~(N+D.JIILoo<e.
k=-N k 00

It follows from the definition of an r. i. function space X that Loo
([0, 1])cXcLl ([O, 1]) with norm one inclusions and so we have
that IIg.-fllx<e and IIg.-g~-fXct:,!(t)'~(N+I).Jllx<e. (1)

Let g be an element of X' such that 11 gllx*=l. Since fELl([O,
1]), we get that IfIXct:I!Ctl,:<:.lJlgl goes to °almost everywhere as
A-H)() and is dominated by IfI Igl. This fact and the fact that
Ifll g IELl ([0, 1]) allow us to use the dominated convergence theorem

to conclude that lim Jll f(t) IX[t:I!Ctll2:.l](t) Ig(t) Idt=O. Now X' is a
.l-oo 0-

norming subspace of X* by the definition of an r. i. function space
X. So

11 f X[t:I!Ctll2:AJllx =su:p f \Jl f(t) X[t:l!Ctll2:AJ(t)g(t)dtl}.
gEX' 1. 0

IlgIIX*~1

Hence for any e>O, we have that 11 f XCt:I!Ct)J2:CN+D.J Ilx <e for large
N. (2)
From (l) and (2), for any e>O we get that 11 f-g:llx<3 e for
large N.

Now we take re as the algebra generated by {Ak}k=N_N. Since the
conditional expectation Ere is a projection of norm one by Theorem
2. a. 4 of[lO], we have the following: IIEre f- f IIx = 11 (Ecef-g~) +
(g:- f)lIx<IIEreCf-g:)llx +lIg~- f Ilx:S:211 f-g:llx:S:6e.
This completes the proof of the lemma, because e is an arbitrary
positive number.

LEMMA 4. Let X be an r. i. function space on [0,1]. If the q­
algebra reI is contained in the q-algebra re2and if f is an element
of X then 11 f-Erezf Ilx:=::;:211 f -Erel fllx.

Proof. Let g=f-Erelf. By the definition of the conditional ex­
pectation, we get that
g - E re2 g = g - E rez f +E..EI f = f - E rez f. Since Ecez is a projection of
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norm one, it follows that
I1 f-Ere2 f 11 =11 g-Efe2g 11<211 g I1 =211 f -Erelf 11.

We are now prepared to prove Theorem 1.

THEOREM 1. Let X be a rearrangement invariant function space
on [O,IJ which has cotype p for some P<=. A nonnegative sym­
metric bounded linear operator R from X * into X is a Gaussian
covariance if and only if there exists a constant K such that for
every a-algebra m generated by a sequence {Ak}k":l of disjoint mea­
surable sets in [0,1],

= I X X
11 r.<Ere R E,; gi, g)"'l fi II<K, where fi= 11 Aill ' g.= 11 ii

I~I XA, x XA, x*

Ere is the conditional expectation and Ere RE'; is a map from
(Ere(X))* to Ere(X).

Proof. Necessity.
Let re be a a-algebra generated by the sequence {Ak}k":l of disjoint

measurable sets in [0,1]. Let A*: H---->X be the operator in the
representation R=A*oA. Suppose that R is a Gaussian covariance.
Then by the definition of r-Radonifying operators, rHo(A*)-l ex­
tends to a tight Borel measure rHO (A*)-l. That is, for every c>O
there exists a compact subset K of X so that rHO (A*)-l (K) >I-c.
It follows from Theorem 2. a. 4 of [IOJ that the conditional expecta­
tion Ere is a projection of norm one from X onto the subspace of
X consisting of all the m-measurable functions. Hence Ere(K) is a
compact set and so the cylindrical Gaussian measure rHo(EreA*)-l
has a tight extension to a Borel measure on Ere(X). In other words,
EreR E,; is a Gaussian covariance.

Now let f.= 11 XA;II and g. I1 XA
il

for all i. Since {f} is a
XA, x XA, x*

sequence of mutually disjoint elements of a Banach lattice X (with
= 00

respect to the pointwise order), we have I L: a. fi 1= L: Ia. I I f. I for
i=1 i=1

every sequence of scalars {a;} and hence
00 00 00 00

I1 L: ad. 11 = III L: ad. I11 = 11 L: 1ai I1 fd 11 = /1 L: 'ai Ifill for every sequence
i=1 i=l i=1 i=1

of scalars {a.}. Therefore {fJ is a I-unconditional basis of Ere(X )
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and {gi} is the sequence of the biorthogonal functionals associated
with the basis· {f;} . By lemma 2 and the normed operator ideal
property of the class of all r-surnrning operators, we get that

11 ~ <Ere RE,1 gi, gy} fi 11« ~)! DrCEreA*)« ~)j DrCA*).

If we write K for the constant (~)i DrCA*) then this proves the

necessity.

Sufficiency.
AssUme that R is not a Gau~sian covariance. Then the operator

A* : H-+Xin the representation R=A*oA is not r-Radonifying.
Therefore it follows from Theorem 1 of [4J that A* is not r-sum­
ming, because X doesn't contain a subspace isomorphic to Co. Since
A* is not r-surnrning, by definition, for any constant M >0 there
exists a finiteorthonarmaI sequence {hk} k"=.l .in H.so that.

(E 1I ~ A*hiriI12){>M. By Lemma 3, for any e>O there exists an

algebra rei generated by a finite sequence {A,Jf~1 of disjoint mea­
surable sets in [0, 1] such that IIEre; (A* hi) - A * hillx<e for i = 1, 2,
"', n. Let the sequence {A} be the common refinement of all of
the A,/s, i=l, 2, "', n, j=l, "', Ni, and let re be th~ a-algebra
generated by {A}. Then reiCre for i=l, 2, "', n and hence by
Lemma 4, we have lIEc,,(A* h;)-A* h;1I<2 lIEre . (A* h.) -A* h.11 for

- a: I •

i=l, 2, "', n.
. We get the following estimate by Minkowski's inequality.

(.B 11 i~ Ere A* hi TiW:)i =(E 11 ~ A* hi ri+ i~ (Ere A* hi- A*hi)riI12)i

>(E 1I i~ A* hi7iI12)i_(EII i~ (EreA* hi-A* h;)riW)}

>(EII ~A* hiri1l2)i_(tt \IEre A* hi-A* hi1l2)i(E(~Ird 2))i
>M-2ne.

Since e is an arbitrary positive number, we can take e as ~ and

(
n )1 Mthen E 1I i~ Ere A* hi ri 1I 2 2>2 for any constant M >0. Hence Ere

A* is not r-summing(*). Next we show that (*) is impossible and
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this contradiction proves the sufficiency. Since Ere(X) is a subspace
of X and X has cotype p for some P<=, Ere(X) also has cotype

p. By hypothesis, the series

i: <Ere R B1 gi, g)~ fi, where fi= IIXAil1 and gi= 11 XII '
'=1 XA i X XA i x*

converges in Ere(X). Therefore according to Theorem 2. 1. of [3J,
we have that Ere R Er: is a Gaussian covariance. Thus Ere A * should
be r-summing. That is, (*) is impossible. This completes the proof
of sufficiency.

we need the following lemma which is needed in proving the su­
fficiency of Theorem 2.

LEMMA 5. Let E be a separable (J-complete Banach lattice, which
is of cotype p for some P<=. If f is an element of E then for
any e>O there exists a simple function J such that 11 f - J I1 <c.

Proof. Since E is a (J-complete Banach lattice with cotype p for
some p<=, E is a (J-complete Banach lattice which doesn't contain
a subspace isomorphic to Co. Hence it follows from Proposition 1. a.
7 of [IoJ that E is (J-complete and (J-order continuous. Moreover,
E has a weak unit because E is separable. Therefore, by Theorem
1. b. 14 of [1OJ, there exist a probability space (0, L:, f.l), an ideal
it of L l (0, Z, f.l) and a lattice norm 11 11£ on it so that

(i) E is order isometric to it
(ii) it is dense in L l (D, Z, f.l) and L= (D, Z, f.l) is dense in it
(iii) Ilflll<llfll£<21Ifll= whenever fEL=(D,Z,f.l).

Hence we can consider E as L= (D, Z, f.l) eE eLl (D, Z, f.l) with dense
inclusions.

= N
Let A k = [w : ke< f (w) <(k+ 1)eJ, g.= L: ke XA and g~= L: ke XA •

k=-= k k=-N k

E * =E', since E is (J-order continuous. Just as above, then, for
anye>O we get I1f-g~II~5e for large N. If we write J for a

N

simple function g~= L: ke XA then this completes the proof of the
k=-N k

lemma, because e is an arbitrary positive number.

Now we prove Theorem 2. The proof of Theorem 2 is nearly
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identical to the proof of Theorem 1.
THEOREM 2. Let E be a separable (J-complete Banach lattice,

which is of cotype p for some p<co. A nonnegative symmetric
bounded linear operator R from E * into E is a Gaussian covari­
ance if and only if there is a constant K such that for all finite
disjoint sequences {g;) in E and {gf} in E * with (g;, gj) =Oij,

1

ilL: (QRQ*g;, gt>2 Q(gi)II<K, where Q is the canonical map Of E
onto E/[g;*]-L.

Proof. Necessity
Let {gi} cE and {gn cE * be finite disjoint sequences with ( g;,

gj) =Oij. Suppose that R is a Gaussian covariance. Let A* : H~E
be the operator in the representation R=A*oA. Then, by defini­
tion, the cylindrical Gaussian measure rHO (A*)-l extends to a tight
Borel measure rHO (A*) -1 as above. Since Q is a continuous map of
E onto E /[g7]-L, Q(K)· is a compact set and hence the cylindrical
Gaussian measure rHO (QA*)-l has a tight extension to a Borel me­
asure on E / [ g; J-L. In other words, QRQ* is a Gaussian covariance.

Now (Q(gi),g/)=Oij and since [gi*J is a finite dimensional sub­
space of E*, (E/[g;*J-L)*=[gi*J~=[g;*JW*=[gi*J. Since {gi*} is an
unconditional basis for [g;*J and has coefficient functionals {Q ( gi) }
c [ g;*J *, {Q ( gi)} is an unconditional basis for [Q ( gi) J. But dim
(Ej[gi*J-L)=dim[g;*J*=dim[Q(gi)J and so {Q(gi)} is an un­
conditional basis for E/[gi*J-L' By Lemma 2 and the normed opera­
tor ideal property of the class of all r-summing operators, we get
that

11 L:(QRQ*g;*, gi*)~ Q(gi) 11« ~)i Ur(QA*)S:( ~)1 UrCA*).

If we write K for the constant (~ )1 Ur(A*) then this proves the

necessity.

Sufficiency
As we mentioned in the proof of Lemma 5, since E is a (J-comp­

lete and (J-order continuous Banach lattice which has a weak unit,
by Theorem 1. b.14 of [1OJ we can consider E as Loo(Q, 2, p)cEc
L l (D, 2, p) with dense inclusions.
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Assume that R is not a Gaussian covariance. Then the operator
A* : H~E in the representation R=A*oA is not ,-Radonifying.
Therefore it follows from theorem 1 of [4J that A* is not ,-sum­
ming, because E doesn't contain a subspace isomorphic to Co. Since
A * is not ,-summing, by definition, for any constant M >0 there
exists a finite orthonormal sequence {hh} hn=1 in H so that

(E 11 tl A* hi li 11 2)i>M. By lemma 5, for any e>O there exists a

Ni Ni

simple function f;1 ai, 1XA ill such that 11 A* hi- &;1 ai" XA j " 11 <e for

i = 1, 2, "', n. Let the sequence {A} be the common refinement of
N j

{Ai, 1}~1,/~:. Then a simple function L; ai, 1 XA j " can be written as1=1
Mi M i

L; j3i,i X and for any e>O, we also have 11 L; j3i,i XAj-A*hill<e for
i=1 Aj i=1

i=l, 2, "·n. Now we define a map ..4.* from [hiJi:l into E by ..4.* hi
Mj

=L; j3i,jX. i=l, 2, ''', n. Again, as above by Minkowski's inequa-
j=l A)'

lity, we get (E 11 it ..4.* hi ,i W}~ > M -n e. Since e is an arbitrary

positive number, we can take e as ~ and then we get

(E 11 it ..4.* hi li W)i> ~ M for any constant M>O.

Now we choose a finite dimensional subspace F of E * such that
for every e>O, 1I g 11<(1 +e) IIQF.L gll for all gE[XAj ], where QF.L
is the cannoical map of E onto EIF.L. We can assume without loss
of generality that F is a subspace of [XcJ, where {Ch} is a finite
sequence of disjoint measurable sets. Since the space [Xc,J.L is a sub­
space of the space F.L' we have IIQF.LgIIE/F.L <IIQ,xckJ.LgIIE/,xck'.L and
hence for every e>O, I1 gll< (1 +e) IIQ,xck'.L gll for all gE [XA}]. Since

t ..4.* hi li is an element of [XAjJ, for every e>O we have
z=l

IIQ,xc".LCtl ..4.* hi 'i)II>( 1~e ) 11 it ..4.* hi li 11 and so

(E 11 ~IQ'XCkl.L..4.* hi ,d/2)i >( l~e )(E 111;1..4.* hili W)i>(l~e)' ~ M
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for any constant M >0. Since

IIQ,xck, ... A* hi-Q,xck'''' A* hi 11< ~ for i=l, 2, ···n, by MinkoiWski's

inequality we get that

(Ell it Q,XCk'J. A*hiriIl2)~>( l~e) ~ M- Af for any constant

M>o. Hence Q,XCk'... A* is not r-summing(*). Next we show that(*)
is impossible and this contradiction proves the sufficiency. Let {gk}
be the sequence of elements of E such that <gk, Xc) =Ok j. Then
<Q,XCk' ... (gk), Xc) =Okj and since [XciJ is a finite dimensiQnal subspace
of E *, we have (El [XcJ.L) *= [XciI:: [Xe;Jw* = [XCi]. Since {XCk } is
an unconditional basis for [Xc"J and has coefficient functionals
{Q(gk)}C[XCkJ*, {Q(gk)} is an unconditional basis for [Q(gk)].
But dim (El [XcJ.L) =dim [XcJ *=dim [Q( gj)J and so {Q(gk)} is an
unconditional basis for El [XcJ.L. By hypothesis, the series 'L,<QR

1

Q* XCk, Xc)"'l: Q( gk) converges in E/eXciJ.L. Therefore according to
Theorem 2.1 of [3J, we have that QRQ* is a Gaussian covariance.
Thus QA* should be r-summing. That is, (*) is impossible. This
completes the proof of sufficiency.

REMARK. We wanted Theorem 2 as follows : Let E be a separable
O'-complete Banach lattice, which is of cotype p for some p<co.

A nonnegative symmetric bounded linear operator R from E * into E
is a Gaussian covariance if and only if there exists a constant K
such that for all disjoint sequences {g;} in E and {g;*} in E * with

= 1

<g;*, gj)=Oij, 11 'L, <QRQ* g;*, g;*)2 gi 11 <K. But by finding the
i=1

following example we know that the above statement is false.
Let us take the separable O'-complete Banach lattice E as 12ffi/1.

Since 12ffi/1 is a direct sum of a cotype 2 space and a cotype 2
space, 12ffi/1 is of cotype 2. Let Yj= (ej, OJ), where {eJ is the unit
vector basis of 12 and {OJ} is the unit vector basis of 11> and Y/ =
e/. Now define an operator A: 12-E by A(ei) =f3iei with {f3;} E/2

-/1• Then
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OD OD

=II?: ;3jejlll,+II?: ;3jOjlll,=OO.
J=I J=I

Yj does not converge.

OD 1

That is, the series L <AA* yt, yt)'l
j=1
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