GAUSSIAN MEASURES ON REARRANGEMENT INVARIANT FUNCTION SPACES ON [0,1] AND ON SEPARABLE σ -COMPLETE BANACH LATTICES

HI JA SONG

1. Introduction

In 1977 S. Chobanjan and V. Tarieladze[3] showed that the necessary and sufficient condition for a nonnegative symmetric bounded linear operator R from X^* into X, where X is a Banach space which has cotype p for some $p < \infty$ and an unconditional basis $\{x_k\}_{k=1}^{\infty}$, to be a covariance operator of a Gaussian measure on X is that the series $\sum_{k=1}^{\infty} \langle Rx_k^*, x_k^* \rangle^{\frac{1}{2}} x_k$ is convergent in X, where $\{x_k^*\}$ is the sequence of biorthogonal functionals associated with the basis $\{x_k\}$.

As we know, if $\{x_k\}$ is an unconditional basis of a Banach space X then we can always define on X an equivalent norm so that the unconditional constant becomes one. Further every Banach space with an unconditional basis $\{x_k\}$, whose unconditional constant is equal to one, is a Banach lattice when the order is defined by $\sum_{n=1}^{\infty} a_n x_n \ge 0$ if and only if $a_n \ge 0$ for all n.

The natural question is how to extend the above theorem(on the characterization of Gaussian measures) to a general Banach lattice, which is of cotype p for some $p < \infty$. Here, we describe the Gaussian measures on the following Banach lattices: (a) Rearrangement invariant function spaces on [0,1] of cotype p for some $p < \infty$ and, (b) separable σ -complete Banach lattices of cotype p for some $p < \infty$.

Let ([0, 1], Σ , μ) be the Lebesgue measure space. Suppose that f is an integrable function on [0, 1] and that \mathscr{B} is a σ -algebra of measurable sets in [0, 1]. There exists a unique, up to equality almost everywhere, \mathscr{B} -measurable integrable function $E_{\mathscr{B}}f$ so that

Received September 10, 1988.

This research is supported by KOSEF research grant 1988.

 $\int_{\sigma} E_{\omega} f(\omega) d\mu = \int_{\sigma} f(\omega) d\mu \text{ for every } \mathscr{B}\text{-measurable set } \sigma. E_{\omega} f \text{ is called the conditional expectation of } f \text{ with respect to } \mathscr{B}.$

Let \mathfrak{C} be the σ -algebra generated by a sequence $\{A_k\}_{k=1}^{\infty}$ of disjoint measurable sets in [0,1]. Let X be a rearrangement invariant function space on [0,1]. It follows from theorem 2. a. 4 of [10] that the conditional expectation $E_{\mathfrak{C}}$ is a projection of norm one from X onto the subspace of X consisting of all the \mathfrak{C} -measurable functions. It follows easily that if a nonnegative symmetric bounded linear operator R from X^* into X is a Gaussian covariance, then the nonnegative symmetric bounded linear operator $E_{\mathfrak{C}}RE_{\mathfrak{C}}^*$ from $(E_{\mathfrak{C}}(X))^*$ into $E_{\mathfrak{C}}(X)$ is a Gaussian covariance. Let $f_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X}$ and $g_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X}$ for all i. Since $\{f_i\}$ is a 1-unconditional basis of $E_{\mathfrak{C}}(X)$

 $\frac{A_i}{\|\chi_{A_i}\|_{X^*}}$ for all i. Since $\{f_i\}$ is a 1-unconditional basis of $E_{\infty}(X)$ and $\{g_i\}$ is the sequence of biorthogonal functionals associated with the basis $\{f_i\}$, by the theorem of [3] the series $\sum_{i=1}^{\infty} \langle E_{\infty} R E_{\infty}^* g_i, g_i \rangle^{\frac{1}{2}} f_i$ converges in $E_{\infty}(X)$. Moreover, we show that there exists a constant K such that $\|\sum_{i=1}^{\infty} \langle E_{\infty} R E_{\infty}^* g_i, g_i \rangle^{\frac{1}{2}} f_i \| \leq K$ for every σ -algebra G generated by a sequence $\{A_i\}$ of disjoint measurable sets in [0,1].

Next by using the definition of a rearrangement invariant function space X on [0,1] we find σ -algebras æ generated by finite sequences $\{A_k\}$ of disjoint measurable sets in [0,1] such that $E_{\infty}A^*$ is not uniformly γ -summing when $A^*: H \rightarrow X$ is not γ -summing. By using the above result we find a sufficient condition for R to be a Gaussian covariance. Hence we prove the following result (Theorem 1): Let X be a rearrangement invariant function space on [0,1] which has cotype p for some $p<\infty$. A nonnegative symmetric bounded linear operator R from X^* into X is a Gaussian covariance if and only if there exists a constant K such that for every σ -algebra æ generated by a sequence $\{A_k\}_{k=1}^{\infty}$ of disjoint measurable sets in [0,1], $\|\sum_{i=1}^{\infty} \langle E_{\infty} R E_{\infty}^* g_i, g_i \rangle^{\frac{1}{2}} f_i \| \leq K$, where $f_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X}$, $g_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X^*}$, E_{∞} is the conditional expectation and $E_{\infty} R$

 E_{α}^* is the induced map from $(E_{\alpha}(X))^*$ to $E_{\alpha}(X)$.

In the case of a separable σ -complete Banach lattice E, which is of cotype p for some $p < \infty$, we show the following result (Theorem 2): A nonnegative symmetric bounded linear operator R from E^* into E is a Gaussian covariance if and only if there is a constant K such that for all finite disjoint sequences $\{g_i\}$ in E and $\{g_i^*\}$ in E^* with $\langle g_i^*, g_j \rangle = \delta_{ij}$, $\|\sum \langle QRQ^*g_i^*, g_i^*\rangle^{\frac{1}{2}}Q(g_i)\| \le K$, where Q is the canonical map of E onto $E/[g_i^*]_{\perp}$ and $[g_i^*]_{\perp} = \{f \in E : \langle f, f^* \rangle = 0 \text{ for all } f^* \in [g_i^*]\}.$

In fact, the idea of the proof of Theorem 2 is essentially the same as that of Theorem 1. In proving Theorem 2 we use the following: Let $\{g_i\} \subset E$ and $\{g_i^*\} \subset E^*$ be finite disjoint sequences with $\langle g_i^*, g_j \rangle = \delta_{ij}$. Then $\{Q(g_i)\}$ is an unconditional basis for $E/[g_i^*]_{\perp}$ and $\{g_i^*\}$ is the sequence of biorthogonal functionals associated to the basis $\{Q(g_i)\}$.

2, Definitions and notation

Here are some of the definitions and notation we use.

The canonical Gaussian cylindrical measure γ_H on a Hilbert space H is the cylindrical measure with characteristic functional $\hat{\tau}_H(h) = \exp\left\{-\frac{||h||^2}{2}\right\}$, $h \in H$.

A cylindrical measure μ on a Banach space X is called a Gaussian cylindrical measure if there exists a Hilbert space H and a continuous linear map T from H into X such that $\mu = \gamma_H \circ T^{-1}$.

Let X be a Banach space, X^* its dual. For any nonnegative symmetric bounded linear operator R from X^* into X there exists a Hilbert space H and a bounded linear operator A from X^* into H such that $R = A^* \circ A$. A is uniquely defined up to isometry(cf. [12]). Thus every nonnegative symmetric bounded linear operator R from X^* into X determines a cylindrical Gaussian measure $\gamma_H \circ (A^*)^{-1}$ with characteristic functional $\hat{r}_H \circ (A^*)^{-1}(x^*) = \exp\{-\frac{1}{2}\langle Rx^*, x^* \rangle\}$, $x^* \in X^*$. If a cylindrical Gaussian measure $\gamma_H \circ (A^*)^{-1}$ admits extension to a tight Borel measure then R is called a Gaussian

covariance.

A bounded linear operator T from a Hilbert space H into a Banach space X is called γ -Radonifying if $\gamma_H \circ T^{-1}$ admits extension to a tight Borel measure on the Borel field.

A bounded linear operator T from a Hilbert space H into a Banach space X is called γ -summing if there exists $C \ge 0$ such that for any finite subset $\{h_i\}_{i=1}^n \subset H$, $\left(E \parallel \sum_{k=1}^n Th_k \gamma_k \parallel^2\right)^{\frac{1}{2}} \le C \sup_{\|h\|=1} \left\{\left(\sum_{k=1}^n |\langle h, h_k \rangle|^2\right)^{\frac{1}{2}}\right\}$, where $\{\gamma_k\}$ is a sequence of identically distributed independent standard Gaussian random variables. The infimum of such C is denoted by $\Pi_T(T)$.

The sequence of Rademacher functions $\{\varepsilon_n(t)\}_{n=1}^{\infty}$ on [0,1] is defined by $\varepsilon_n(t)$ = sign $\sin 2^n \pi t$ and is a sequence of independent identically distributed random variables taking the values ± 1 with probability $\frac{1}{2}$.

A Banach space X is of cotype p for some $p \ge 2$ if there exists a constant C such that for any finite subset $\{x_i\}_{i=1}^n \subset X$, $\left(\sum_{k=1}^n ||x_k||^p\right)^{\frac{1}{p}} \le C$ $\left(E \|\sum_{k=1}^n x_k \varepsilon_k\|^p\right)^{\frac{1}{p}}$.

Let $(\mathcal{Q}, \mathcal{Z}, \mu)$ be a σ -finite measure space. Let X be a Banach space whose elements are (equivalence classes modulo equality almost everywhere) measurable functions on \mathcal{Q} . X is called a Köthe function space if the following conditions hold.

- (1) For every $\sigma \in \Sigma$ with $\mu(\sigma) < \infty$, the characteristic function \mathcal{X}_I of σ belongs to X.
- (2) If $|f(\omega)| \le |g(\omega)|$ almost everywhere on Q with f measurable and $g \in X$ then $f \in X$ and $||f|| \le ||g||$.
- (3) If $f \in X$ then $f \mathcal{X}_{\sigma} \in X$ and $\int |f(\omega)\mathcal{X}_{\sigma}(\omega)| d\mu < \infty$ for every $\sigma \in \Sigma$ with $\mu(\sigma) < \infty$.

Let (Q, Σ, μ) be a σ -finite measure space. Let X be a Banach space whose elements are measurable functions on Q. X' is the space of all measurable functions g such that $\int |f(\omega)g(\omega)| d\mu < \infty$ for each $f \in X$. X' is a norming subspace of X^* if for every $f \in X$, $\|f\| = \sup \{|\int f(\omega)g(\omega)| d\mu| : g \in X'$, $\|g\|_{X^*} = 1\}$.

A map τ from a measure space $(\mathcal{Q}, \mathcal{\Sigma}, \mu)$ into $(\mathcal{Q}, \mathcal{\Sigma}, \mu)$ is called an automorphism of \mathcal{Q} if τ is one-to-one, τ and τ^{-1} are measurable and $\mu(\sigma) = \mu(\tau(\sigma))$ for every measurable subset σ of \mathcal{Q} .

Let ([0, 1], Σ , μ) be a Lebesgue measure space. A rearrangement invariant(r.i.) function space X on [0, 1] is a Köthe function space X on [0, 1] such that

- (1) If τ is an automorphism of [0,1] into [0,1] and f is a measurable function on [0,1] then $f \in X$ if and only if $f \circ \tau^{-1} \in X$ and if this is the case then $||f|| = ||f \circ \tau^{-1}||$.
- (2) X' is a norming subspace of X^* .
- (3) $L_{\infty}([0,1]) \subset X \subset L_{1}([0,1])$ with norm-one inclusions.

Notation. Let X be a Banach space, M be a subspace of X and N be a subspace of X^* .

- (1) $N_{\perp} = \{x \in X : \langle x, x^* \rangle = 0 \text{ for all } x^* \in N\}$
- (2) $M^{\perp} = \{x^* \in X^* : \langle x, x^* \rangle = 0 \text{ for all } x \in M\}$

A Banach lattice X is said to be σ -complete if every order bounded sequence in X has a least upper bound. A Banach lattice X is said to be σ -order continuous if for every downward directed sequence $\{x_n\}$ in X with $\bigwedge x_n = 0$, $\lim \|x_n\| = 0$.

3. Results

The proof of Theorem 1 is obtained by means of a few lemmas and the known results from [3] and [4]. We begin with a few lemmas.

L_{EMMA} 1. Let X be a separable Banach space. If a bounded linear operator T from a Hilbert space H into X is γ -Radonifying then $\left(\int_{X} ||x||^2 d\mu(x)\right)^{\frac{1}{2}} = II_{\tau}(T)$, where $\mu = \gamma_H \circ T^{-1}$ is the (extension) Gaussian measure on X.

Proof. Let $\{h_k\}_{k=1}^n$ be a finite sequence in H. Since for every $\varepsilon \ge 0$ there exists a finite dimensional subspace F of X^* such that $\|Q_{F_\perp}u\|_{X/F_\perp} \le \|u\|_X \le (1+\varepsilon)\|Q_{F_\perp}u\|_{X/F_\perp}$ for all $u \in [Th_k]_{k=1}^n$, where $F_\perp = \{x \in X : \langle x^*, x \rangle = 0 \text{ for all } x^* \in F\}$ and Q_{F_\perp} is the canonical map of

$$X$$
 onto X/F_{\perp} , we have that $\left(E \| \sum\limits_{k=1}^{n} \mathbb{Q}_{F_{\perp}} T h_{k} \gamma_{k} \|^{2}\right)^{\frac{1}{2}}$

$$\leq \left(E \|\sum_{k=1}^{n} T h_{k} \gamma_{k}\|^{2}\right)^{\frac{1}{2}} \leq (1+\varepsilon) \left(E \|\sum_{k=1}^{n} Q_{F} T h_{k} \gamma_{k}\|^{2}\right)^{\frac{1}{2}}. \quad (1)$$

By (1) and the definition of a γ -summing operator $Q_{F\perp}T$, we get that $\left(E \|\sum_{k=1}^{n} T h_k \gamma_k\|^2\right)^{\frac{1}{2}} = \sup_{\substack{F \subseteq X^* \\ \text{dim} F < \infty}} \left\{ \left(E \|\sum_{k=1}^{n} Q_{F\perp} T h_k \gamma_k\|^2\right)^{\frac{1}{2}} \right\}$

$$\leq \sup_{\substack{F \subset X^* \\ \dim F < \infty} \\ \dim F < \infty}} \left\{ II_{\tau}(Q_{F\perp}T) \sup_{\substack{||h||=1 \\ h \in H}} \left\{ \left(\sum_{k=1}^{n} |\langle h, h_k \rangle|^2 \right)^{\frac{1}{2}} \right\} \right\}.$$

Hence we have $II_{\tau}(T) \leq \sup_{F \subset X^* \atop \dim F < \infty} \{II_{\tau}(Q_{F_{\perp}}T)\}$ (2) from the definition of $II_{\tau}(T)$.

Since $Q_{F_{\perp}}T: H \rightarrow X/F_{\perp}$, where $F \subset X^*$ and dim $F < \infty$, is a finite rank operator, it follows from lemma 3 of [4] that $II_r(Q_{F_{\perp}}T)$

$$= \left(\int_{\mathbb{H}} \| Q_{F_{\perp}} Th \|^2 d \gamma_{\mathbb{H}}(h) \right)^{\frac{1}{2}}$$

$$\leq \left(\int_{H} || Th ||^{2} d \gamma_{H}(h)\right)^{\frac{1}{2}} = \left(\int_{X} ||x||^{2} d \gamma_{H \circ T^{-1}}(x)\right)^{\frac{1}{2}}.$$

The last equality is due to the fact that $\gamma_H \circ T^{-1}$ is a Gaussian measure. Together with (2), we have that

$$II_r(T) \leq \left(\int_X ||x||^2 d_{\gamma_H \circ T^{-1}}(x) \right)^{\frac{1}{2}}.$$
 (3)

By the separability of X, there exists a countable subset $\{x_i\}_{i=1}^{\infty}$ of X such that $X = [x_i]_{i=1}^{\infty}$. For $1 \le k \le n$, suppose that we have chosen a finite dimensional subspace F_k of X^* such that

 $||Q_{F_{k_{\perp}}}u||_{X\nearrow F_{k_{\perp}}} \le ||u||_X \le \left(1+\frac{1}{k}\right) ||Q_{F_{k_{\perp}}}u||_{X\nearrow F_{k_{\perp}}} \text{ for all } u \in [x_i]_{i=1}^k \text{ and } F_1 \subset F_2 \subset \cdots \subset F_n.$ Now we choose a finite dimensional subspace \widetilde{F}_{n+1} of

 X^* such that $||u||_X \le \left(1 + \frac{1}{n+1}\right) ||Q_{p_{n+1}}|_{u}||_{X/p_{n+1}}$ for all $u \in [x_i]_{i=1}^{n+1}$.

If we let
$$F_{n+1}=F_n+\tilde{F}_{n+1}$$
 then $F_n\subset F_{n+1}$ and

$$||u||_{x} \le \left(1 + \frac{1}{n+1}\right) ||Q_{P_{n+1}}||u||_{X/P_{n+1}} \text{ for all } u \in [x_{i}]_{i=1}^{n+1}$$

Therefore there exists an increasing sequence $\{F_n\}_{n=1}^{\infty}$ of finite dimensional subspaces of X^* such that for each n, $||Q_{F_n}|| u||_{X/F_n} \le ||u||_X$

$$\leq \left(1+\frac{1}{n}\right) \|Q_{\mathbf{F}_{n_{\perp}}}u\|_{\mathbf{X}/\mathbf{F}_{n_{\perp}}} \text{ for all } u \in [x_i]_{i=1}^n.$$

Now by Fautou's lemma and the normed operator ideal property of

the class of all γ -summing operators, we get that $\left(\int ||x||^2 d\gamma_H \circ T^{-1}(x)\right)^{\frac{1}{2}} = \left(\int_H ||Th||^2 d\gamma_H(h)\right)^{\frac{1}{2}} \\
= \left(\int \lim_n \inf ||Q_{F_{n_{\perp}}} Th||^2 d\gamma_H(h)\right)^{\frac{1}{2}} \le \lim_n \inf \left(\int ||Q_{F_{n_{\perp}}} Th||^2 d\gamma_H(h)\right)^{\frac{1}{2}} \\
= \lim_n \inf \{I\!I_r(Q_{F_{n_{\perp}}} T)\} \le I\!I_r(T). \quad (4)$

(3) and (4) conclude the proof.

It should be noted that Linde and Pietsch [8] have proved the analogous result for γ -summing operators. There, however, one gets that $II_{\tau}(T) = \left(\int_{X^{**}} ||\phi||^2 d\mu(\phi)\right)^{\frac{1}{2}}$, where $\mu = \gamma_H \circ (JT)^{-1}$ is the Gaussian measure on X^{**} and $J: X \rightarrow X^{**}$ is the canonical embedding of a space X into its bidual.

L_{EMMA} 2. Let X be a Banach space with a 1-unconditional basis $\{x_i\}_{i=1}^{\infty}$ and let $\{x_i^*\}_{i=1}^{\infty}$ be the sequence of biorthogonal functionals associated with the basis $\{x_i\}_{i=1}^{\infty}$, If $R: X^* \to X$ is a Gaussian covariance then $\|\sum_{k=1}^{\infty} \langle R x_k^*, x_k^* \rangle^{\frac{1}{2}} x_k \|_X \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} II_r(A^*)$, where $A^*: H \to X$ is the operator in the representation $R = A^* \circ A$.

Proof. Let x be a Gaussian random element in X with expectation zero, μ be the distribution of x and R be its covariance operator. Then for each k, $\langle x_k^*, x \rangle$ is a Gaussian random variable in R and so we have $E |\langle x_k^*, x \rangle| = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \langle R x_k^*, x_k^* \rangle^{\frac{1}{2}}$. By the 1-unconditionality of the basis $\{x_k\}$ and Hölder's inequality, we get that

$$||E\left(\sum_{k=1}^{\infty}|\langle x_{k}^{*}, x\rangle|x_{k}\right)|| \leq E||\sum_{k=1}^{\infty}|\langle x_{k}^{*}, x\rangle|x_{k}|| = E||x|| \leq \left(E||x||^{2}\right)^{\frac{1}{2}}.$$

Since X has a basis $\{x_i\}$, X is separable and since $R = A^* \circ A$ is a Gaussian, A^* is γ -Radonifying. Therefore, by Lemma 1 we have that

$$\begin{aligned} &\|\sum_{k=1}^{\infty}\langle Rx_k^*, x_k^*\rangle^{\frac{1}{2}}x_k\| = \left(\frac{\pi}{2}\right)^{\frac{1}{2}} \|E\left(\sum_{k=1}^{\infty}|\langle x_k^*, x\rangle|x_k\right)\| \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} \left(E\|x\|^2\right)^{\frac{1}{2}} \\ &= \left(\frac{\pi}{2}\right)^{\frac{1}{2}} I\!I_r(A^*), \text{ which completes the proof.} \end{aligned}$$

Lemma 3. Let X be an r.i. function space on [0,1]. If f is an element of X then for any $\varepsilon > 0$ there exists an algebra ∞ whih is

generated by a finite sequence of disjoint measurable sets in [0, 1] such that $||\mathbf{E}_{\infty} f - f|| \leq \varepsilon$.

Proof. Let $A_k = [t \in [0, 1] : k \in \leq f(t) < (k+1) \varepsilon], \quad g_\varepsilon = \sum_{k=-\infty}^\infty k \varepsilon \chi_{A_k}$ and $g_\varepsilon^N = \sum_{k=-N}^N k \varepsilon \chi_{A_k}$. Then $\|g_\varepsilon - f\|_{L_\infty} \le \varepsilon$ and $\|g_\varepsilon - g_\varepsilon^N - f \chi_{[t:|f(t)| \geq (N+1) \varepsilon]}\|_{L_\infty} \le \varepsilon$. It follows from the definition of an r.i. function space X that L_∞ ([0, 1]) $\subset X \subset L_1([0, 1])$ with norm one inclusions and so we have that $\|g_\varepsilon - f\|_X \le \varepsilon$ and $\|g_\varepsilon - g_\varepsilon^N - f \chi_{[t:|f(t)| \geq (N+1) \varepsilon]}\|_X \le \varepsilon$. (1)

Let g be an element of X' such that $\|g\|_{X} *=1$. Since $f \in L_1([0, 1])$, we get that $|f|_{\chi_{\mathbb{D}:|f(0)| \geq 2l}}|g|$ goes to 0 almost everywhere as $\lambda \to \infty$ and is dominated by |f||g|. This fact and the fact that $|f||g| \in L_1([0, 1])$ allow us to use the dominated convergence theorem to conclude that $\lim_{\lambda \to \infty} \int_0^1 |f(t)| \chi_{\mathbb{D}:|f(0)| \geq 2l}(t) |g(t)| dt = 0$. Now X' is a norming subspace of X^* by the definition of an r.i. function space X. So

$$||f\chi_{[t:|f(t)|\geq X]}||_{X} = \sup_{\substack{g \in X' \\ |g||_{Y}=1}} \left\{ \left| \int_{0}^{1} f(t) \chi_{[t:|f(t)|\geq X]}(t) g(t) dt \right| \right\}.$$

Hence for any $\varepsilon > 0$, we have that $|| f \chi_{[t:|f(t)] \ge (N+1)\varepsilon]} ||_X \le \varepsilon$ for large N. (2)

From (1) and (2), for any $\varepsilon > 0$ we get that $||f - g_{\varepsilon}^{N}||_{X} \leq 3 \varepsilon$ for large N.

Now we take α as the algebra generated by $\{A_k\}_{k=-N}^N$. Since the conditional expectation E_{α} is a projection of norm one by Theorem 2. a. 4 of [10], we have the following: $\|E_{\alpha}f - f\|_{X} = \|(E_{\alpha}f - g_{\varepsilon}^{N}) + (g_{\varepsilon}^{N} - f)\|_{X} \leq \|E_{\alpha}(f - g_{\varepsilon}^{N})\|_{X} + \|g_{\varepsilon}^{N} - f\|_{X} \leq 2\|f - g_{\varepsilon}^{N}\|_{X} \leq 6\varepsilon$.

This completes the proof of the lemma, because ε is an arbitrary positive number.

Lemma 4. Let X be an r.i. function space on [0, 1]. If the σ -algebra \mathfrak{E}_1 is contained in the σ -algebra \mathfrak{E}_2 and if f is an element of X then $\|f - \mathbf{E}_{\mathfrak{E}_2} f\|_X \leq 2 \|f - \mathbf{E}_{\mathfrak{E}_1} f\|_X$.

Proof. Let $g=f-E_{\alpha_1}f$. By the definition of the conditional expectation, we get that

 $g - E_{\alpha_2}g = g - E_{\alpha_2}f + E_{\alpha_1}f = f - E_{\alpha_2}f$. Since E_{α_2} is a projection of

Gaussian measures on rearrangement invariant function spaces on [0,1] and on separable σ -complete Banach lattices

norm one, it follows that

$$|| f - E_{\alpha_2} f || = || g - E_{\alpha_2} g || \leq 2 || g || = 2 || f - E_{\alpha_1} f ||.$$

We are now prepared to prove Theorem 1.

 T_{HEOREM} 1. Let X be a rearrangement invariant function space on [0,1] which has cotype p for some $p<\infty$. A nonnegative symmetric bounded linear operator R from X^* into X is a Gaussian covariance if and only if there exists a constant K such that for every σ -algebra $\mathfrak E$ generated by a sequence $\{A_k\}_{k=1}^{\infty}$ of disjoint measurable sets in [0,1],

 $\|\sum_{i=1}^{\infty} \langle E_{\mathbf{c}} R E_{\mathbf{c}}^* g_i, g_i \rangle^{\frac{1}{2}} f_i \| \leq K, \text{ where } f_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X}, g_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_{X^*}},$ $E_{\mathbf{c}} \text{ is the conditional expectation and } E_{\mathbf{c}} R E_{\mathbf{c}}^* \text{ is a map from } (E_{\mathbf{c}}(X))^* \text{ to } E_{\mathbf{c}}(X).$

Proof. Necessity.

Let α be a σ -algebra generated by the sequence $\{A_k\}_{k=1}^{\infty}$ of disjoint measurable sets in [0,1]. Let $A^*: H \rightarrow X$ be the operator in the representation $R = A^* \circ A$. Suppose that R is a Gaussian covariance. Then by the definition of γ -Radonifying operators, $\gamma_{H^{\circ}}(A^*)^{-1}$ extends to a tight Borel measure $\gamma_{H^{\circ}}(A^*)^{-1}$. That is, for every $\varepsilon > 0$ there exists a compact subset K of X so that $\gamma_{H^{\circ}}(A^*)^{-1}(K) > 1 - \varepsilon$. It follows from Theorem 2. a. 4 of [10] that the conditional expectation E_{α} is a projection of norm one from X onto the subspace of X consisting of all the α -measurable functions. Hence $E_{\alpha}(K)$ is a compact set and so the cylindrical Gaussian measure $\gamma_{H^{\circ}}(E_{\alpha}A^*)^{-1}$ has a tight extension to a Borel measure on $E_{\alpha}(X)$. In other words, $E_{\alpha}R$ E_{α}^* is a Gaussian covariance.

Now let $f_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_X}$ and $g_i = \frac{\chi_{A_i}}{\|\chi_{A_i}\|_{X^*}}$ for all i. Since $\{f_i\}$ is a sequence of mutually disjoint elements of a Banach lattice X (with respect to the pointwise order), we have $|\sum_{i=1}^{\infty} a_i f_i| = \sum_{i=1}^{\infty} |a_i| |f_i|$ for every sequence of scalars $\{a_i\}$ and hence

 $\|\sum_{i=1}^{\infty} a_i f_i\| = \|\sum_{i=1}^{\infty} a_i f_i\| = \|\sum_{i=1}^{\infty} |a_i| \|f_i\| = \|\sum_{i=1}^{\infty} |a_i| \|f_i\|$ for every sequence of scalars $\{a_i\}$. Therefore $\{f_i\}$ is a 1-unconditional basis of $E_{\infty}(X)$

and $\{g_i\}$ is the sequence of the biorthogonal functionals associated with the basis $\{f_i\}$. By lemma 2 and the normed operator ideal property of the class of all γ -summing operators, we get that

$$\|\sum_{i=1}^{\infty} \langle E_{\alpha} R E_{\alpha}^* g_i, g_i \rangle^{\frac{1}{2}} f_i \| \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} I I_{\gamma} (E_{\alpha} A^*) \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} I I_{\gamma} (A^*).$$

If we write K for the constant $\left(\frac{\pi}{2}\right)^{\frac{1}{2}}I_r(A^*)$ then this proves the necessity.

Sufficiency.

Assume that R is not a Gaussian covariance. Then the operator $A^*: H \rightarrow X$ in the representation $R = A^* \circ A$ is not γ -Radonifying. Therefore it follows from Theorem 1 of [4] that A^* is not γ -summing, because X doesn't contain a subspace isomorphic to C_0 . Since A^* is not γ -summing, by definition, for any constant M > 0 there exists a finite orthonormal sequence $\{h_k\}_{k=1}^n$ in H so that

$$\left(E \| \sum_{i=1}^{n} A^* h_i \gamma_i \|^2\right)^{\frac{1}{2}} > M$$
. By Lemma 3, for any $\varepsilon > 0$ there exists an

algebra \mathfrak{E}_i generated by a finite sequence $\{A_{i,j}\}_{j=1}^{N_i}$ of disjoint measurable sets in [0,1] such that $\|E_{\mathfrak{E}_i}(A^*h_i) - A^*h_i\|_X < \varepsilon$ for $i=1,2,\cdots,n$. Let the sequence $\{A_i\}$ be the common refinement of all of the $A_{i,j}$'s, $i=1,2,\cdots,n, j=1,\cdots,N_i$, and let \mathfrak{E}_i be the σ -algebra generated by $\{A_i\}$. Then $\mathfrak{E}_i \subset \mathfrak{E}_i$ for $i=1,2,\cdots,n$ and hence by Lemma 4, we have $\|E_{\mathfrak{E}_i}(A^*h_i) - A^*h_i\| \le 2 \|E_{\mathfrak{E}_i}(A^*h_i) - A^*h_i\|$ for $i=1,2,\cdots,n$.

We get the following estimate by Minkowski's inequality.

$$\begin{split} \left(E \parallel \sum_{i=1}^{n} E_{\infty} A^{*} h_{i} \gamma_{i} \parallel^{2}\right)^{\frac{1}{2}} &= \left(E \parallel \sum_{i=1}^{n} A^{*} h_{i} \gamma_{i} + \sum_{i=1}^{n} (E_{\infty} A^{*} h_{i} - A^{*} h_{i}) \gamma_{i} \parallel^{2}\right)^{\frac{1}{2}} \\ &\geq \left(E \parallel \sum_{i=1}^{n} A^{*} h_{i} \gamma_{i} \parallel^{2}\right)^{\frac{1}{2}} - \left(E \parallel \sum_{i=1}^{n} (E_{\infty} A^{*} h_{i} - A^{*} h_{i}) \gamma_{i} \parallel^{2}\right)^{\frac{1}{2}} \\ &\geq \left(E \parallel \sum_{i=1}^{n} A^{*} h_{i} \gamma_{i} \parallel^{2}\right)^{\frac{1}{2}} - \left(\sum_{i=1}^{n} \|E_{\infty} A^{*} h_{i} - A^{*} h_{i} \|^{2}\right)^{\frac{1}{2}} \left(E\left(\sum_{i=1}^{n} |\gamma_{i}|^{2}\right)\right)^{\frac{1}{2}} \\ &\geq M - 2 \text{ ns.} \end{split}$$

Since ε is an arbitrary positive number, we can take ε as $\frac{M}{4n}$ and then $\left(E \parallel \sum_{i=1}^{n} E_{\infty} A^* h_i \gamma_i \parallel^2\right)^{\frac{1}{2}} \geq \frac{M}{2}$ for any constant M > 0. Hence E_{∞} A^* is not γ -summing(*). Next we show that (*) is impossible and

this contradiction proves the sufficiency. Since $E_{\infty}(X)$ is a subspace of X and X has cotype p for some $p<\infty$, $E_{\infty}(X)$ also has cotype p. By hypothesis, the series

 $\sum_{i=1}^{\infty} \left\langle E_{\infty} R \, E_{\infty}^* \, g_i, \ g_i \right\rangle^{\frac{1}{2}} f_i, \text{ where } f_i = \frac{\chi_{Ai}}{\|\chi_{A_i}\|_X} \text{ and } g_i = \frac{\chi_{Ai}}{\|\chi_{A_i}\|_{X^*}},$ converges in $E_{\infty}(X)$. Therefore according to Theorem 2. 1. of [3], we have that $E_{\infty} R \, E_{\infty}^*$ is a Gaussian covariance. Thus $E_{\infty} A^*$ should be γ -summing. That is, (*) is impossible. This completes the proof of sufficiency.

we need the following lemma which is needed in proving the sufficiency of Theorem 2.

Lemma 5. Let E be a separable σ -complete Banach lattice, which is of cotype p for some $p < \infty$. If f is an element of E then for any $\varepsilon > 0$ there exists a simple function \tilde{f} such that $||f - \tilde{f}|| \le \varepsilon$.

Proof. Since E is a σ -complete Banach lattice with cotype p for some $p < \infty$, E is a σ -complete Banach lattice which doesn't contain a subspace isomorphic to C_0 . Hence it follows from Proposition 1. a. 7 of [10] that E is σ -complete and σ -order continuous. Moreover, E has a weak unit because E is separable. Therefore, by Theorem 1. b. 14 of [10], there exist a probability space (Ω, Σ, μ) , an ideal \widetilde{E} of $L_1(\Omega, \Sigma, \mu)$ and a lattice norm $\|\cdot\|_{\widetilde{E}}$ on \widetilde{E} so that

- (i) E is order isometric to \tilde{E}
- (ii) \tilde{E} is dense in $L_1(\Omega, \Sigma, \mu)$ and $L_{\infty}(\Omega, \Sigma, \mu)$ is dense in \tilde{E}
- (iii) $|| f ||_1 \le || f ||_{\tilde{E}} \le 2 || f ||_{\infty}$ whenever $f \in L_{\infty}(\Omega, \Sigma, \mu)$.

Hence we can consider E as $L_{\infty}(\Omega, \Sigma, \mu) \subset E \subset L_1(\Omega, \Sigma, \mu)$ with dense inclusions.

Let $A_k = [\omega : k\varepsilon \leq f(\omega) < (k+1)\varepsilon]$, $g_\varepsilon = \sum_{k=-\infty}^\infty k\varepsilon \chi_{A_k}$ and $g_\varepsilon^N = \sum_{k=-N}^N k\varepsilon \chi_{A_k}$. $E^* = E'$, since E is σ -order continuous. Just as above, then, for any $\varepsilon > 0$ we get $||f - g_\varepsilon^N|| \leq 5\varepsilon$ for large N. If we write \tilde{f} for a simple function $g_\varepsilon^N = \sum_{k=-N}^N k\varepsilon \chi_{A_k}$ then this completes the proof of the lemma, because ε is an arbitrary positive number.

Now we prove Theorem 2. The proof of Theorem 2 is nearly

identical to the proof of Theorem 1.

Theorem 2. Let E be a separable σ -complete Banach lattice, which is of cotype p for some $p<\infty$. A nonnegative symmetric bounded linear operator R from E^* into E is a Gaussian covariance if and only if there is a constant K such that for all finite disjoint sequences $\{g_i\}$ in E and $\{g_i^*\}$ in E^* with $\langle g_i^*, g_i \rangle = \delta_{ij}$, $\|\sum \langle QRQ^*g_i^*, g_i^*\rangle^{\frac{1}{2}} Q(g_i)\| \leq K$, where Q is the canonical map of E onto $E/\lceil g_i^* \rceil_{\perp}$.

Proof. Necessity

Let $\{g_i\}\subset E$ and $\{g_i^*\}\subset E^*$ be finite disjoint sequences with $\langle g_i^*, g_j\rangle = \delta_{ij}$. Suppose that R is a Gaussian covariance. Let $A^*: H \to E$ be the operator in the representation $R = A^* \circ A$. Then, by definition, the cylindrical Gaussian measure $\gamma_{H^\circ}(A^*)^{-1}$ extends to a tight Borel measure $\gamma_{H^\circ}(A^*)^{-1}$ as above. Since Q is a continuous map of E onto $E/[g_i^*]_\perp$, Q(K) is a compact set and hence the cylindrical Gaussian measure $\gamma_{H^\circ}(QA^*)^{-1}$ has a tight extension to a Borel measure on $E/[g_i^*]_\perp$. In other words, QRQ^* is a Gaussian covariance.

Now $\langle Q(g_i), g_j^* \rangle = \delta_{ij}$ and since $[g_i^*]$ is a finite dimensional subspace of E^* , $(E/[g_i^*]_{\perp})^* = [g_i^*]_{\perp}^{\perp} = [g_i^*]^{w^*} = [g_i^*]$. Since $\{g_i^*\}$ is an unconditional basis for $[g_i^*]$ and has coefficient functionals $\{Q(g_i)\} \subset [g_i^*]_{\perp}^*$, $\{Q(g_i)\}$ is an unconditional basis for $[Q(g_i)]$. But dim $(E/[g_i^*]_{\perp}) = \dim[g_i^*]_{\perp}^* = \dim[Q(g_i)]$ and so $\{Q(g_i)\}$ is an unconditional basis for $E/[g_i^*]_{\perp}$. By Lemma 2 and the normed operator ideal property of the class of all γ -summing operators, we get that

$$\parallel \sum \langle QRQ^*g_i^*, g_i^* \rangle^{\frac{1}{2}} Q(g_i) \parallel \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} II_r(QA^*) \leq \left(\frac{\pi}{2}\right)^{\frac{1}{2}} II_r(A^*).$$

If we write K for the constant $\left(\frac{\pi}{2}\right)^{\frac{1}{2}} I_{r}(A^{*})$ then this proves the necessity.

Sufficiency

As we mentioned in the proof of Lemma 5, since E is a σ -complete and σ -order continuous Banach lattice which has a weak unit, by Theorem 1. b. 14 of [10] we can consider E as $L_{\infty}(\Omega, \Sigma, \mu) \subset E \subset L_1(\Omega, \Sigma, \mu)$ with dense inclusions.

Assume that R is not a Gaussian covariance. Then the operator $A^*: H \rightarrow E$ in the representation $R = A^* \circ A$ is not γ -Radonifying. Therefore it follows from theorem 1 of [4] that A^* is not γ -summing, because E doesn't contain a subspace isomorphic to C_0 . Since A^* is not γ -summing, by definition, for any constant M>0 there exists a finite orthonormal sequence $\{h_k\}_{k=1}^n$ in H so that $(E \parallel \sum_{i=1}^{n} A^* h_i \gamma_i \parallel^2)^{\frac{1}{2}} > M$. By lemma 5, for any $\epsilon > 0$ there exists a simple function $\sum_{i=1}^{N_i} \alpha_{i,i} \chi_{A_i,i}$ such that $||A^*h_i - \sum_{i=1}^{N_i} \alpha_{i,i} \chi_{A_i,i}|| < \varepsilon$ for $i=1, 2, \dots, n$. Let the sequence $\{A_i\}$ be the common refinement of $\{A_{i,\,l}\}_{i=1,\,l=1}^n$. Then a simple function $\sum_{l=1}^{N_i} \alpha_{i,\,l} \chi_{A_i,\,l}$ can be written as $\sum_{j=1}^{m_i} \beta_{i,j} \chi_{A_j}$ and for any $\varepsilon > 0$, we also have $\|\sum_{i=1}^{m_i} \beta_{i,j} \chi_{A_j} - A^* h_i\| < \varepsilon$ for $i=1, 2, \dots n$. Now we define a map \tilde{A}^* from $[h_i]_{i=1}^n$ into E by \tilde{A}^*h_i $=\sum_{i=1}^{m_i} \beta_{i,j} \chi_{A_i}$, $i=1,2,\cdots,n$. Again, as above by Minkowski's inequality, we get $\left(E \parallel \sum_{i=1}^{n} \tilde{A}^* h_i \gamma_i \parallel^2\right)^{\frac{1}{2}} \ge M - n \varepsilon$. Since ε is an arbitrary positive number, we can take ε as $\frac{M}{4n}$ and then we get $\left(E \parallel \sum_{i=1}^{n} \tilde{A}^* h_i \gamma_i \parallel^2\right)^{\frac{1}{2}} \ge \frac{3}{4} M$ for any constant M > 0.

Now we choose a finite dimensional subspace F of E^* such that for every $\varepsilon > 0$, $\|g\| \le (1+\varepsilon) \|Q_{F_\perp} g\|$ for all $g \in [X_{A_j}]$, where Q_{F_\perp} is the cannoical map of E onto E/F_\perp . We can assume without loss of generality that F is a subspace of $[X_{C_k}]$, where $\{C_k\}$ is a finite sequence of disjoint measurable sets. Since the space $[X_{C_k}]_\perp$ is a subspace of the space F_\perp , we have $\|Q_{F_\perp}g\|_{E/F_\perp} \le \|Q_{(X_{C_{k-1}}}g\|_{E/(X_{C_{k-1}})}$ and hence for every $\varepsilon > 0$, $\|g\| \le (1+\varepsilon) \|Q_{(X_{C_{k-1}})}g\|$ for all $g \in [X_{A_j}]$. Since $\sum_{i=1}^n \tilde{A}^* h_i \gamma_i$ is an element of $[X_{A_j}]$, for every $\varepsilon > 0$ we have $\|Q_{(X_{C_{k-1}})}(\sum_{i=1}^n \tilde{A}^* h_i \gamma_i)\| \ge \left(\frac{1}{1+\varepsilon}\right) \|\sum_{i=1}^n \tilde{A}^* h_i \gamma_i\|$ and so $\left(E \|\sum_{i=1}^n Q_{(X_{C_{k-1}})} \tilde{A}^* h_i \gamma_i\|^2\right)^{\frac{1}{2}} \ge \left(\frac{1}{1+\varepsilon}\right) \left(E \|\sum_{i=1}^n \tilde{A}^* h_i \gamma_i\|^2\right)^{\frac{1}{2}} \ge \left(\frac{1}{1+\varepsilon}\right) \cdot \frac{3}{4}M$

for any constant M>0. Since $\|Q_{\iota_{X_{c_{k_{1}}}}}\tilde{A}^*h_i-Q_{\iota_{X_{c_{k_{1}}}}}A^*h_i\|<\frac{M}{4n}$ for $i=1,2,\cdots n$, by Minkowski's inequality we get that $\left(E \| \sum_{i=1}^n Q_{\iota_{X_{c_{k_{1}}}}}A^*h_i\gamma_i\|^2\right)^{\frac{1}{2}} \geq \left(\frac{1}{1+\varepsilon}\right)\frac{3}{4}M-\frac{M}{4}$ for any constant M>0. Hence $Q_{\iota_{X_{c_{k_{1}}}}}A^*$ is not γ -summing(*). Next we show that (*) is impossible and this contradiction proves the sufficiency. Let $\{g_k\}$ be the sequence of elements of E such that $\langle g_k, \chi_{c_j} \rangle = \delta_{k_j}$. Then $\langle Q_{\iota_{X_{c_{k_{1}}}}}(g_k), \chi_{c_j} \rangle = \delta_{k_j}$ and since $[\chi_{c_j}]$ is a finite dimensional subspace of E^* , we have $(E/[\chi_{c_j}]_{\perp})^* = [\chi_{c_j}]^{\perp} = [\chi_{c_j}]^{\perp} = [\chi_{c_j}]$. Since $\{\chi_{c_k}\}$ is an unconditional basis for $[\chi_{c_k}]$ and has coefficient functionals $\{Q(g_k)\}\subset [\chi_{c_k}]^*$, $\{Q(g_k)\}$ is an unconditional basis for $[Q(g_k)]$. But dim $(E/[\chi_{c_j}]_{\perp})=\dim[\chi_{c_j}]^*=\dim[Q(g_j)]$ and so $\{Q(g_k)\}$ is an unconditional basis for $E/[\chi_{c_j}]_{\perp}$. By hypothesis, the series $\sum \langle QR Q^*\chi_{c_k},\chi_{c_k}\rangle^{\frac{1}{2}}Q(g_k)$ converges in $E/[\chi_{c_j}]_{\perp}$. Therefore according to

R_{EMARK}. We wanted Theorem 2 as follows: Let E be a separable σ -complete Banach lattice, which is of cotype p for some $p < \infty$. A nonnegative symmetric bounded linear operator R from E^* into E is a Gaussian covariance if and only if there exists a constant K such that for all disjoint sequences $\{g_i\}$ in E and $\{g_i^*\}$ in E^* with $\langle g_i^*, g_i \rangle = \delta_{ij}$, $\|\sum_{i=1}^{\infty} \langle QRQ^*g_i^*, g_i^* \rangle^{\frac{1}{2}} g_i \| \leq K$. But by finding the

Theorem 2.1 of [3], we have that QRQ^* is a Gaussian covariance. Thus QA^* should be γ -summing. That is, (*) is impossible. This

completes the proof of sufficiency.

Let us take the separable σ -complete Banach lattice E as $l_2 \oplus l_1$. Since $l_2 \oplus l_1$ is a direct sum of a cotype 2 space and a cotype 2 space, $l_2 \oplus l_1$ is of cotype 2. Let $y_j = (e_i, \delta_j)$, where $\{e_j\}$ is the unit vector basis of l_2 and $\{\delta_i\}$ is the unit vector basis of l_1 , and $y_j^* = e_j^*$. Now define an operator $A: l_2 \to E$ by $A(e_i) = \beta_i e_i$ with $\{\beta_i\} \in l_2 - l_1$. Then

following example we know that the above statement is false.

$$\|\sum_{j=1}^{\infty} \langle AA^* y_i^*, y_j^* \rangle^{\frac{1}{2}} y_j \|_{E} = \|\sum_{j=1}^{\infty} \|A^* y_j^* \| y_j \|_{E} = \|\sum_{j=1}^{\infty} \beta_j y_j \|_{E}$$

Gaussian measures on rearrangement invariant function spaces on [0, 1] and on separable σ -complete Banach lattices

= $\|\sum_{j=1}^{\infty} \beta_j e_j\|_{l_2} + \|\sum_{j=1}^{\infty} \beta_j \delta_j\|_{l_1} = \infty$. That is, the series $\sum_{j=1}^{\infty} \langle AA^* y_j^*, y_j^* \rangle^{\frac{1}{2}}$ y_j does not converge.

References

- S. Chevet, S. Chobanjan, W. Linde and V. Ta rieladze, Caractérisation de certaines classes d'espaces de Banach par les mesures Gaussiennes, C.R. Acad. Sc. Paris, 285(1977), 793-796.
- S. Chobanjan and V. Tarieladze, On the characteristic functional of a Gaussian measure, Dokl., Akad. Nauk SSSR, 226(1976), 1283~1286, Soviet Math. Dokl., 17(1976), 296-299.
- 3. S. Chobanjan and V. Tarieladze, Gaussian characterizations of certain Banach spaces, J. Multivar. Anal., 7(1977), 183-203.
- 4. S. Chobanjan, W. Linde and V. Tarieladze, Characterization of certain classes of Banach spaces by properties of Gaussian measures, Theory Prob. Appl., 25(1980), 159-164.
- 5. M. Fréchet, Generalisation de la loi de probabilité de Laplace, Ann. Inst. H. Poincaré, 12(1951), 215-310.
- A. Kolmogorov, La transformation da Laplace dans les espaces linéaires, C. R. Acad. Sc. Paris, 200 (1935), 1717-1718.
- S. Kwapien, On Banach spaces containing C₀, Studia Math., LII(1974), 187-188.
- 8. W. Linde and A. Pietsch, Mappings of Gaussian cylindrical measures in Banach spaces, Theory Prob. Appl., 19(1974), 445-460.
- 9. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Ergebnisse Math. Grenzgebiete, Bd. 92, Springer-Verlag, 1977.
- 10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II. Function spaces, Ergebnisse Math. Grenzgebiete, Bd. 97, Springer-Verlag 1979.
- E. Mourier, Eléments aléatoires dans un espace de Banach, Ann. Inst. H. Poincaré, 13(1953), 161-244.
- N. N. Vakhania, Probability distributions on Linear Spaces, North Holland 1981.

Dongguk University Seoul 100—715, Korea