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HOLOMORPHIC VECTOR BUNDLES OVER COMPLEX TORI

]AE-HYUN YANG

1. Introduction

The purpose of this paper is to study the holomorphic vector
bundles over a complex torus. The theory of vector bundles of
rank r over a g-dimensional complex torus is not sufficiently
developed except for r = 1 and g = 1. In his paper [1], Atiyah
classified the vector bundles over an elliptic curve. Many algebraic
geometers, e. g., Weil, Mumford, studied the line bundles over a
complex torus. The theory of line bundles is the theory of theta
functions. Indeed, the classification of vector bundles over a
complex torus T= V/L corresponds to that of automorphic factors
for L, where V is a g-dimensional complex vector space and L is
a lattice in V. In general, it is a very difficult problem to classify
the automorphic factors for a discrete group. Matsushima [1J and
Morimoto Cl] classified the flat vector bundles over a complex
torus. It is equivalent to the problem of the classification of
representations of a lattice group L. And Matsushima [2J and Hano
[1J characterized the projectively flat vector bundles over a complex
torus. Mukai [1J introduced the concept of semi-homogeneous
vector bundles over an abelian variety and characterized the semi­
homogeneous vector bundles. In fact, semi-homogeneous vector
bundles corresponds to projectively flat vector bundles. In this
paper, we characterize the projectively flat vector bundles over a
complex torus completely and investigate the connection between
those vector bundles and the Heisenberg group. I would like to
remark that it is so interesting to classify the automorphic factors
corresponding to the stable vector bundles.
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In Section 2, we review the basic properties of complex tori. We
will omit the proofs and the details. In Section 3, we describe the
automorphic factors for the holomorphic vector bundles and in
particular, we write the automorphic factors for line bundles
explicitly. In Section 4, we review the general results about line
bundles over a complex torus we will use in the following sections.
For details, we refer to Mumford DJ and Yang DJ. In Section 5,
we characterize the projectively flat vector bundles over a complex
torus completely and we discuss the stability of those vector
bundles. In Section 6, we investigate the connection between the
Heisenberg groups and the projectively flat .vector bundles.

Finally I would like to express my gratitude to the Korea Science
and Engineering Foundation for financial support.

2. Complex tori

In this section, we briefly review the theory of complex tori.
Proofs will be omitted.

Let T= VjL be a complex torus of dimension g, where V is a
g-dimensional comlex vector space and L is a lattice of rank 2g in
V. Then T is a connected, compact commutative complex Lie
group. A complex torus T is called an abelian variety if it is a
projective variety, i. e., it can be holomorphically ~embedded in a
complex projective space.

DEFINITION 1. 1. Amorphism P: Tc -) Tz of complex tori Tb Tz is
said to be an isogeny if it is a surjective homomorphism with finite
kernel. The order of the kernel is called the degree of p. We say
that two complex tori T 1 and T z are isogeneous, denoted by T 1"v

Tz if there exists an isogeny between T 1 and Tz•

If PI : T1"v Tz and Pz : Tz- Ts are isogenies, then so is PZoP1 and
the degrees multiply : deg (Pzo PI) =deg pz deg PI. The following
proposition shows that "v is an equivalence relation.

PPROPOSITION 1. 2. Let T 1 and T z be two complex tori of the same
dimension g. If P; T1-Tz is an isogeny of degree m, then there
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exists a unique isogeny 1; : Tz-4 Tt of degree m2g- I such that 1;0 9=
mII and r/J 0 1;=mI2, where 11 (resp.I2) denotes the identity of TI
(resp. Tz). 1; is called the dual isogeny to 9.

Let T= V/L be a g-dimensional complex torus. A Hermitian
from H on V is called a Riemann form for the complex torus
T=V/L if

( i) H is nondegenerate,
(ii) Im H =E is integral valued on the lattice L.

The following theorem is well known.

THEOREM A (Mumford[l], p. 35). Let T= V/L be a g-dimensional
complex torus. Then the following are equivalent.

(l) T is an abelian variety,
(2) there exist g algebraically independent meromorphic func­

tions on T,
(3) there exists a Positive definite Riemann form H on V.

EXAMPLE. Let w be an elements in the upper-half plane. Now we
consider the lattice L= {n+mw In, mEZ} in C. Then T=C/L is a
one dimensional complex torus. We define a Hermitian form H on
C by

H(z, w) = IZ '
w where z, WEC.mw

Then H is clearly a positive definite Riemann form on C. By
Theorem A, there is a projective embedding of T in a complex
projective space. In fact, several projective embeddings of Tare
well-known in the classical theory: for example, the Weierstrass
q>-function

q;(z) =_1_+ L: [1 1]
Z2 (n,m) l' (0.0) (z-n-mw)2 (n+mw)2

is a meromorphic function, periodid with respect to 1, w,
poles at the points n+mwEL. The map

z----+(l, q;(z) , q>'(z»
induces an ismorphism of T with a plane cubic curve of the from
XoX~=4X~+aX5XI+bX~ for suitable constants a, b depending on
w. We remark that the Weierstrass q;-function satisfies the follo­
wing nonlinear differential equation

- 119-



Jae-Hyun Yang

[ql (z) JZ=4S03 (z) -60G4SO(z) -140G6,

where G,,(k"2.3) is the Eisenstein series of order k. Here, in fact,
a=-60G4 and b=-140G6•

Restricting the Riemann from shows that a subtorus of an abelian
variety is again an abelian variety. One can show that a quotient
of an abelian variety is also an abelian variety. This is a conse­
quence of the following theorem.

THEOREM B (Poincare Reducibility Theorem). Suppose A is an
abelian variety and AIcA an abelian subvariety. Then there exists
an abelian subvariety A z such that Al nA z is finite and A is
isogeneous to Al X Az.

. Let T= VjL be a complex torus of dimension g. Let T,,: T~T
be the translation by xET. We have a Kaehlermetricon T which
is invariant under the translations. Since T", preserves a Kaehler
metric on T, T; sends harmonic forms into harmonic forms. Since
T. is homotopic to the identity map, the map

T: : H"(T)~H"(T)
is the identity map, where H"(T) denotes the space of all harmonic
k-forms on T. If xET, T""c(T)=T/(T)+T/(T). We identify
T,/(T) with V. An element fJEA"(T/(T»*-A"V* extends a
holomorphic, translation-invariant k-forms Wo on T. Indeed, we
define (wo) y= T:_y{fJ) for any yE T. Then the map defines a sheaf
homomorphism

t!/'T ®c AkV*~Q"
which is actually a sheaf homomorphism, where Q" is the sheaf of
holomorphic k-forms on T and t!J'T is the structure sheaf on T,
simply denoted by t!/'. Since T-(Sl)2g topologically, dimcH"(T) =

(2f). Let I"(T) be the space of all translation-invariant· k-forms

on T. Then dim 1"(T) =(2/) and hence H"(T) =I"(T). In fact,

H"(T) =I"(T) =A"(V*EBV*)
=EB~(APV*®AqV*).

THEOREM C. Hq(T, t!/')-Aqv* for all q. -:
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For the proof of Theorem C, see Mumford ([l], p. 4).
Hq(T, QP)-Hq(T, O'®APV*)

~Hq(T,O')®cAPV*
- AqV*®cAPV* by Theorem C.

Thus we have
Hk(T, C)-Hk(T) by the Hodge theorem

-EBp+Fk(APV*®AqV*)
-EBHq=kHq(T, QP).

This is a so-called famous Hodge theorem.

REMARKS. (l) By Theorem C, the natural map induced by cup
product

Aq(HI (T, 0') )-.Hq( T, Q)

is an isomorphism.
(2) \Ve consider the three sheaves on T, embedded In one

another as follows:
ZcCCO',

where Z and C are the constant sheaves on T. Then we have the
following:

HI (T, Z) !!.-HI (T, C) LHI (T, 0')
II1 I11 I11

Hom (L, Z) V*EB V* V*
I! 11

L* Home( V, C)
Let Ak(resp. Ak,o, AO.k) be the sheaf of C" k-forms(resp. of type

(k,O), of type (0, k)) on T. Let AO'l: Al = Al.OEBAo'I--+Ao,l be the
projection. Then we have the commutative diagram

d
O->C->A°--->Al->O

I: 1A O• l

a0->0'->AO.o---> AO,I->O.
Hence we have

HI(T) = V*EBV*->HO(T, Al)->HI(T, C)

I proj I AO,l I f3
¥ ~ ¥

V* -> HO(T,AO'l)->HI(T,O').
Thus f3 is surjective.
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3. Automorphic factors

Let V be a g-dimensionaJ complex vectr space and L a lattice
in V. Then V is the universal covering space of the complex torus
T= V/L. Clearly the projection 'K : V-T is holomorphic and L is
the fudamental group of T.

DEFINITION 3.1. An automorphic factor of rank r with respect to
the lattice L in V is a holomorphic mapping ]: Lx V-GL(r ; C)
satisfying the condition .

](a+!3,z)=](a,j3+z)](j3,z) for all a,j3EL, ZEV.

Two automorphic factors] and J of the same rank r with respect to a
lattice L are said to be holomorphicaIly equivalent (simply equivalent)
if there exists a holomorphic mapping h : V-GL(r ; C) such that

J(a,z)=h(z+a)]ea,z)h(z)-l for each aEL, zEV..

An automorphic factor]: Lx V-GL(r, C) is said to be flat if the
mapping ] is costant on V. Thus a flat automorphic factor consists
of an element fEHom(L, GL(r; C» of the set of all group homo­
morphisms from L into GL (r ; C).

Let E be a holomorphic vector bundle of rank r over a complex
torus T=V/L. If 'K: V-T is the projection, then 'K*E=E is
holomorphicaIly trivial since V is a contractible Stein manifold. It
is Grauert's result that any topologicaIly trivial holomorphic vector
bundle over a Stein manifold is holomorphically trivial (Grauert
[1]). Having fixed the isomorphism E= VxCr, each bundle
homomorphism a: E-E induced by a covering transformation. a :
V-V (aEL) must be of the form

a(z,fD=(z+a,J(a,z)~), aEL, ZEV, ~ECr,

where]: Lx V-GL(r ; C) is an automorphic factor of rank r for
L. The mapping] is called the automorphic factor for the bundle
E. Conversely, given an automorphic factor]: Lx V-GL(r : C),
we may regard L as a group of biholomorphic mappings from
VxCr to itself by setting a(z,~) = (z+a, ](Cl', z)~) for aEL. Then
the quotient E = Vx Cr/ L is a holomorphic vector bundle over a
complex torus T= VjL such that 'K*E= VxCr.

-122 -



Holomorphic vector bundles over complex tori

Let E and El be holomorphic vector bundles over a complex
torus T of rank r and rank s respectively. Any bundle homorphism
7C: E-E1 induces a bundle homomorphism 7C : VxC'- VxCS which
commutes with the action of L. Thus 7C must be of the form

7l:(z,~) = (z, h(z)~), zE V, ~EC',

where h : V-Ms,T is a holomorphic mapping from V into the space
MS'T of all s x r complex matrices. Moreover, if J and J1 are the
automorphic factors for the bundles E and El respectively,

(*) h(z+a)J(a,z)=J1(a,z)h(z), aEL, zEV.
Conersely, given a holomorphic mapping h : V-Ms'T satisfying the
above condition (*), then h determines a bundle homomorphism
7C : Vx C'- Vx Cs which comutes with the action of L and hence
determines a bundle homomorphism 7C : E-E1•

In summary, it has been shown that there exists a one-to-one
correspondence between the set of all isomorphic classes of vector
bundles of rank r over a complex torus T= V/L and the set of all
equivalence classes of automorphic factors of rank r for the lattice
L. Therefore the problem of classifying holomorphic vector bundles
of rank r over a complex torus T= V/L corresponds to that of
classifying automorphic factors of rank r for the lattice L. In
general, the determination of all automorphic factors for the lattice
L is a difficult problem. However the classification of atomorphic
factors of rank one was completely done by Appel. This problem
is equivalent to the computation of the group HI (T, 0*) - Pic T of
isomorphic classes of holomorphic line bundles over T. Now we
give an explanation in detail.

Let T= V/L be a g-dimensional complex torus and let H be
a Riemann form for the complex torus T. A map X: L-C: =
{ZEC I 'z I= l} is said to be a semi-character of L with respect to
E=Im H if it satisfies the codition

X(a+ (3) =X (a) X((3) exp{in'E(a, B)}, a. [3EI.
We define the mapping JH,X : Lx V-C*

JH,X(a, z) =X(a)exP{7CH(z, a) + ~ H(a, a)},

where aEL, zE V and X denotes a semi-character of L with
respect to E=Im H. Then it is easily shown that JH,X is an autom-
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orphic factor of rank one for the lattice L. We denote by L(H, X)
the holomorphic line bundle over T= V/L defined by the above
atitomorphicfactor ]H,X for L. We can easily show that

L(Hh XI)0L(Hz, Xz)':::::-L(HI+Lz, XIXz).
Therefore the set of all L (H,X) forms a group under tensor pro­
duct. Now we have the following theorem.

THEOREM (Appell-Humbert). Any holomorphic line bundle over a
complex torus T=V/L is isomorphic to an L(H,X) for a uniquely
determined Riemann form H for T and a uniquely determined
semi-character X.

The Chern class of L(H, X) is given E=Im HEHZ(T, Z). Since
H(x,y) =E(ix,y) +iE(x,y) for an x,yEV, according to the above
theorem, a holomorphic line bundle over T must be of the form
L(H,~), where X is a character of. L. Thus group Pic°(T) of
holomorphic line bu~dles with Chern class zero is isomorphic -to the
group Hom(L, Cn of all characters of L. In fact, Pic°(T)~

Hom(L, Cn has the structure of a complex torus. By the following
exact sequence of sheaves

0---+Z---+0---+0*---+0,
we have an ismorphism Pic°(T)~Hl(T,O)/Im HI(T, Z). Now
we have HI(T,O) =HO,l(T) = V*. We know that the image of
HI (T, Z) in HI (T, 0) is the set of all conjugate linear functionals
on V whose real part is half-integral on L. Thus Pic°(T) is a
complex torus, called the dual complex torus of T and is denoted
by t. If T is anabelian variety, so is t and it is called the dual
abelian variety of T.

We now, compute the curvature of a holomorphic line bundle
F=L(H,ij over T= VIL. We fix a hermitian structure h on F.
We pull back h to 1C*F =F to obtain an hermitian structure on
F= VxC. We may consider h. as a positiv:e ,functio~ on V invariant
under L. That. is, h satisfies .- ,. "

h(z) = I]HAa, z) IZh(z+a) , aEL, ZEC.
Then the connection formw=a log hand th'e curvature form Q=
aalogh are given by .,

w(z) =w(z+a) +a log]H.__Aa, z),
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Q(z) =Q(z+a).
Thus the curvature form of F is an ordinary 2-form on T. Muti­
plying h by a suitable Coo. positive function on T. we may assume
that the curvature form of F=L(H, X) is a harmonic (1, I)-form
on T. Since H2(T, C) =A2V*EB V*®V*EBA2V*, a harmonic form
on T has constant coefficients with respect to the natural coordinates
Zl> ••. , Zg in V. In particular, the curvature Q of F=L(H, X) is
given by

where Ck. are constant.

4. Line Bundles over Complex Tori

In this section, we will review line bundles over complex tori.
For details, we refer to Mumford [l] and Yang [lJ.

LEMMA 4.1. Let E be a holomorphic vector bundle over a complex
torus T. Let Tx(XE T) be the translation of T by x. Then Tx* (E)
and E have the same Chern classes.

LEMMA 4.2. Let E be a holomorphic vector bundle frank rover
a complex torus T= V/L. Let I be the automorphic factor for
the bundle E. Let XE T. Then an automorphic factor Ix for the
bundle Tx* (E) is given by

Ix(a,z)=I(a,z+a), aEL, ZEV,
where a is an element of V such that 7t:(a) =x.

DEFINITION 4. 3. A holomorphic vector bundle E over a complex
torus T is said to be homogeneous if for all xE T, Tx* (E) - E.

LEMMA 4.4. For a holomorphic vector bundle E of rank rover
a complex torus T= V/L, the following conditions are equivalent:

(1) E is homogeneous,
(2) E is defined by a representation p : L-'>GL(r ; C),
(3) E admits a flat connection,
(4) E is a flat vector bundle.

LEMMA 4.5. If E is a homogeneous vector bundle of rank rover
complex torus T, then ck(E) =0 for k~l, where ck(E) denotes the
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k-th Chern class of E.

REMARK 4.6. If rank E=r>2, the converse of Lemma 3.5 does
not hold. A counter example was given by Oda [2J. However if
r=l, the converse of Lemma 4.5 is true. For the proof, we refer
to Yang D].

DEFINITION 4.7. Let F be a holomorphic line bundle over a complex
torus T= V/ L. We set K(F) = {XE TI T; (F) ~F}. And we define
the map ifJF : T -'I- T=Pico (T) by.

ifJF(X) = T;(F)I$)F-\ xE T.

REMARKS 4.8. (l) IF F is ample, then K(F) is a finite subgroup
of T.

(2) ifJF is an isogeny and the set K(F) is nothing but the kernel
of ifJF.

DEFINITION 4. 9. Let n be an integer, We define nT : T-'I- T by
nT(x) =nx, XET.

The map nT is called the multiplication by n. The following lemma
shows that nT is an isogeny of degree n2g if T is an abelian variety
of dimension g.

LEMMA 4. 10. Let F be an ample line bundle over an abelian
variety A. Then

n:;(F) =Fn'I$)Fo for some FoEA.
And the degree of nT is n~g.

For the proof of the above lemma, we refer to Mumford DJ,
p.59, p.63 or Yang D], p.14.

THEOREM OF SQUARE. Let F be an ample line bundle over an
abelian variety A= V/L. Then for any x,yEA,

T ;+y(F) I$)F~ T; (F) I$) T; (F).

COROLLARY 1. ifJF: A-'l-A=PicO(A) is a homorphism of A to A.

COROLLARY 2. Let F1 F2 be two ample line bundles over an abelian
variety A. Then
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COROLLARY 3. <PT~*<FJ =<PF for all XEA.

DEFINITION 4. 11. An ample line bundle F over an abelian variety
A is said to be symmetric if (- 1);F~F.

LEMMA 4.12. If F is an ample, symmetric line bundle over an
abelian variety A, then F®( - 1) iF is also an ample, symmetric
line bundle over A.

PROPOSITION 4.13. Let A be an abelian variety of dimension g.
Then we have

(1) FEA if and only if <PF=O.
(2) Let f, g : A~A be holomorphic maps. If FEA, then

(f+g)*(F)~f*(F)®g*(F).

(3) If FEA, then n'f.(F)~Fn.
(4) If FEHl (A,~) has finite order, then <PFEA.
(5) If F is an ample line bundle over A, then <PF is surjective.
(6) If FEA and F is not trivial, then Hi(A, F) =0 for all i.

In the previous section, we introduced the line bundle L(H, X)
over complex torus T. Using Lemma 3.2, we have

PROPOSITION 4.14. Let aE V and x=~(a). Then
T: L(H, X)~L(H,XDa),

where Da(a)=exp{2~iA(a,a)}.

REMARKS 4.15. If aEV, then <PL(H.X)(~(a))~L(O,Da). Thus we
have

K(L(H, X» =U-IL,
where U- = {VE VI A( (a, v) EZ for all a on L}. Therefore we have

(1) L(H, X)EPic°(T) = f
~K(L(H,X))=T~U-=V

~A=O~H-=O.

(2) K(L(H, X») is a finite subgroup of T
~U- I L is finite~U- is a lattice
~A is nondegenerate~H is nondegenerate.

Let T= VI L be an abeIian variety of dimension g. From the exact
sequence

O~Z~CJ'~CJ'*~O,
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we obtain the exact sequence
HI(T, Z)--?HI(T, t!7)--?HI(T, t!7*)--?H2(T, Z).

Thus
Pic°(T) =HI(T, t!7)/lm HI(T, Z).

We know that HI(T, t!7)-'::::'HO,I(T)~V*. On the other hand,
HI(T, Z)-.::::.HI(L, Z) is the space of R-linear functionals on V taking
integral values on L. The map i : HI (T, Z) -)-HI (T, t!7) is given by

W--?WO,l.
Since

LW=2ReLwo'IEZ,

lm i consists of conjugate linear functionals on V whose real part
is half-integral on L. By multiplying a constant 2i, lm i can be
identified with theset L given by

L={IEV*llml(a)EZ for all aEL}
Thus we obtain

T=Pic°(T) = V*/ L.
.lEMMA 4. 16. There exists a unique holomorphic line bundle

P--?TXT,
called the Poincare line bundle, which is trivial on {e} x T and
which satisfies

PIT@lt}-- Pt for all gET,
where Pt is the line bundle over T corresponding to ';E T.

For the proof, we refer Mumford [l; p. 78-80J and also Griffith­
Harris [1; p.328-329J.

In fact, we have the following sequence

HI(Tx T,t!7)--?HI(Tx T, t!7*)~H2(TX T, Z)
T - T

HI(T, t!7)(fJHI(T, t!7) HI(T,Z)®HI(T, Z)
-- 1Il

HI(T, Z)0(HI(T, Z»*
ill

Hom(HI(T, Z), Hl(T, Z»
The identity IEH2(Tx T, Z) gives a holomorphic line bundle P over
Tx T such that Cl (P) =1 by the Lefschetz theorem on (1, 1) classes.
This line bundle P is nothing but the Poincare line bundle over
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TXT.

Now we will describe the Poincare bundle over T0 T explicitely.
We define an Hermitian form H on V0 V* by

H( (z}, 11), (Z2' 12)) =12(Z1) +11(Z2) ,
where Z1, Z2EV, and I}, 12EV*. We also define the map X : LXL-»
Ct by

X(a, I) =exp{ -n-i Im I (a) }, aEL, lEL.
Then X is a semicharacter of LxL with respect to H. That is,

X((a+p, l+l)) =X(a, I)X(p, l)exp{in-E((a, l), (p, l)},
where a, pEL, 1, IEL, and E- Im H. Then the line bundle L(H, X)
over Tx T defined by the Hermitian form H and the semi-character
X of L is the Poincare line bundle over Tx T. In fact, the
corresponding automorphic factor I : Lx T-»C* for L(H, X) is given
by

.A ,A .A 1C "" .A

J((a, I), (z, 1» =X(a, l)exp{n-H((z, l), (a, I» +ZH((a, I), (a, I»)},

where aEL, lEL, zE V and lE V*. The line bundle L(H, X) 'TX,(/)

over T corresponding to a point n- (l) E t(lE V*) is defined by a
flat automorphic factor I/ : L xV-»C* given by

J/(a, z) =exp{n-l(a)}, aEL, zE V.
However

h(z+a)J/(a, z) =exp{2n-i Im l(a)}h(z),
where n:EL, zEV and h(z)=exp{-n-l(z)} is holomorphic In z.
Thus we obtain the isomorphism

L(H, X) ITx,(/)-L(O, XI)'
where X/Ca) =exp{2n-il(a)} is a semicharacter of L(aEL). We note
that if 1=0, L(H, X) ITxe-L(O, I)-OT. Clearly

L(H, X) lext-L(O, I)-Of.
By the uniqueness, L(H, X) must be the Poincare line bundle over
TXT.

5. Projectively flat vector bundles

In his paper (DJ), Mukai characterized semihomogeneous vector
bundles over an abelian variety and showed that a simple semiho­
mogeneous vector bundle is Gieseker-stable. He dealt with those
vector bundles algebraically, In the analytical point of view, those
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vector bundles corresponds to the projectively flat vector bundles.
In this section, we characterize those vector bundles analytically
and study the properties of them.

First we give some definitions.

DEFINITION 5.1. Let g' be a torsion-free coherent sheaf over a
compact Kaehler manifold (X, g) of dimension n. . Let w be its
Kaehler form. It is a real positive closed 0, I)-form on X. Let
Cl (g') be the first Chern class of g'. It is represented by a real
closed (1, I)-form on X. The degree of g' is defined to be

deg(g') = LCI(g') Awn-I.

The degr~e/rank ratio or slope p (g') is defined to be
peg') =deg(g')/rank(g').

A coherent sheaf g'over a cOlllP<ict Kaehlermanifold (X,g) is
said to be stable (resp. semistable) if for every coherent(nontrivial)
proper subsheaf Y of lower rank, p(y)<p(g') (resp. :::;:).

DEFINITioN 5. 2. Let L be an ample line bundle over a compact
Kaehler manifold X. For a coherent sheaf g' over X, we denote
by g'(k) the sheaf g'@Lk and by X(g'(k» the Hilbert polynomial.
We define P"" by

x(g'(k»
P",,(k) rank (g')

g' is said to be Giesek({r-stable(resp. ,Gieseker-semistable) if for
each proper subsheaf Y of g', we have

P",,(k) <P",,(k) (resp. P",(k):::;:P",,(k»
for all k»O.

REMARK 5.3. (1) Aholomorphic vector bundle E over X is said
to be stable (resp. semistable) if the sheaf O(E) of germs of
holomorphic sections is stable (resp. semistable). Similarly we can
say for the Gieseker stability.

(2) It is known that if a coherent sheaf g' is stable (resp.
semistable) , it is Gieseker-stable (resp. Gieseker-semistable).

The concept of stability is the algebraic geometrical concept.
Kobayashi DJ interpreted the concept' of stability differential
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geometrically.

DEFINITION 5. 4. Let g be a Kaehler metric on a compact Kaehler
manifold X. Then we define trg : Al.l(End(E))-AO(End(E)) as
follows: For a section F=(F~)EAl.l(End(E)),

trgF= (L,giIF~iI) l:Sct.ft:sn = L,giIFj/;,
i. k

whereF~=F~ikdzj\dzk and Fj"I= (F~iI)I:Sct.~:S'. A holomorphic vector
bundle of rank r over a compact Kaehler manifold (X, g) is said
to be Hermitian-Einstein if there exists an hermitian metric h for
which the Hermitian curvature satisfies

trgF--: f1.I,
where I is the identity endomorphism of E and f1. is a constant.

Kobayashi [lJ obtained the following differential geometrical
criterion for stability.

THEORE\I (Kobayashi). An indecomposable Hermitian- Einstein
vector bundle over a compact Kaehler manifold is stable.

The fact that the converse of the above theorem is also true was
proved by Uhlenbeck and Yau [1].

DEFINITION 5. 5. Let E be a holomorphic vector bundle of rank
r over a compact Kaehler manifold X and P its associated principal
GL(r; C) --bundle. Then F=PjC*I, is a principal PGL(r; C)­
bundle. We say that E is projectively flat when F is provided
with a flat sturcture.

Mukai Cl] introduced the notion of semihomogeneous vector
bundles over a complex torus.

DEFINITION 5. 6. A holomorphic vector bundle E over a complex
torus T is said to be semihomogeneous if for each xE T, there
exists a line bundle F over T such that

T:(E)-E@F,
where Tr is the translation of T by x.

LEMMA 5.7. Let E be a semihomogeneous vector bundle of rank r
over an abelian variety A. Then the vector bundle (rr)*(E)@
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(det E) -T is homogeneous, where det E denotes thedeterminant line
bundle of E.

Proof. L= (rT)*(E)@(detE)-". Then we have
det L= (rT) * (det E)@(detE)-T'.

By Lemma 4. 10 in the preceding section, Cl (det L) =0 and hence
det L is homogeneous. It is clear that L is semihomogeneous. Since
T;(L)-L@F for some FEPic°(T), we obtain

T:'; (L)~H@FT,
T;(det L)~detL@F".

Therefore
T;;(L)~L@T;(detL)@(det L)(-l)

-L(because det L is homogeneous).
Since A is divisible, L is homogeneous.

PROPOSITION 5.8, Let E be a serJJihomogeneous vector bundle of
rank r over an abelian variety A of dimension g. Then

X(E) =r1-&X(det E),
where X(E) denotes the Euler-Poincare characteristic of E.

Proof. Since (rT) *(E)-(det E)'"@F for some homogeneous vector
bundle F, we have

r2gX(E) =X((rT)*(E»
=X(det E)'"@F) (because clF) =0 for k2l)
=rX((det E)T)
= rK+lX (det E) .

Hence X(E) =r1-gX(det E).

Mukai DJ and Oda [2J showed the following theorem.

THEOREM 5. 9 (Mukai, Oda). Let E be a simple vector bundle
over an abelian variety A of dimension g. Then the following
are equivalent:

(l) dimcHl(A, End(E» =g,

(2) dimcHi(A, End (E» =(~),

(3) E is semihomogeneous,
(4) There exist an isogeny f: B-)-A and a line bundle L on an

abelian variety B such that E=f*(L).
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It is easily seen from the definition that semihomogenous vector
bundles over a complex torus are projectively flat. Hano DJ showed
that an automorphic factor for a projectively flat vector bundle E
over a complex torus T= VjL is given by the following form

(*) ](a, z) =G(a)exp { ~ H(z,a)+ ; H(a, a)}, aEL, ZEV,

where (i) H is a Riemann form for T= VjL,
(ii) G : L-+GL (r ; C) is a semirepresentation of L in the sense:

G(a+,B)=G(a)G(,B)exp{ i: E(,B,a)}, E=ImH.

Using Lemma 4.2 in the previous section, we can show that a
projectively flat vector bundle over a complex torus is semihomoge­
neous. Thus the notion of semihomogeneous vector bundles is the
same of projectively flat vector bundles.

LEMMA 5.10. Let f: T=VjL-+ T= VjL be an isogeny and let E
(resp. F) be a projectively flat vector bundle of rank rover T
(resp. T). Then f*(E) (resp. f*(F)) is also projectively flat.

Proof. f lifts to the linear map f: V-+ V. Then the automorphic
factor ]* for f* (E) is given by

J(ii,z)=G(f(ii)) exp { ~ H(f(z)),f(ii)) + ; H(f(ii,f(ii))},

where iiEf, ZEV. thus f*(E) is semihomogeneous. We leave to
the reader the case of f*(E).

PROPOSITION 5.11. Let E be a hermitian vector bundle of rank r
over an abelian surface A with c2 (End(E)) =0. Then the following
are equivalent:

(l) E is simple,
(2) E is simple and semihomogeneous,
(3) E is simple-and projectively flat,
(4) E admits an indecomposable Hermitian-Einstein vector bundle

over A,
(5) E is stable,
(6) E is Gieseker-stable.

Proof. (l) =? (2) :
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X(End (E» =2hO(A, End(E» -hI (A, End(E»
=2-h1 (A, End (E» (because E is simple).

But by the Riemann-Roch theorem,
X(End(E»=-c2(End(E» =0.

TllUs we have hI (A, End(E» =2. By Theorem 5.10, E is semiho­
mogeneous. The remaining ones follows from Kobayashi's theorem
and the fact that a Gieseker-stable vector bundle is simple.

'Since a simple projective flat hermitian vector bundle E over a
complex torus T admits an Hermitian-Einstein structure, E is
Gieseker-stable by Kobayashi's theorem (or Mukai [1J). Thus E
has a filtration

0=EocE1c···cEk=E
such that Fi=EJEi-1 is Gieseker-stable, and Pp;=PE for all i=l,
2, ' .. , k(Gieseker [1J).

An automorphic factor· J for·· E· is given by the form (*). Now
we calculate the curvature form Q of E. We l.et 7r:: V--). T= V/L.
We choose an open covering {Ui} of T with the following property:
Ui are connected and each conn~ted component of 7r:-1 (Ui) are
mapped homeomorphically onto Ui by 7r:. For Ui we choose a
connected component Vi of 7r:-1 (U,). Then we have 7r:d (Ui) =
U"'EL T",Vi, . where T",: V --). V is the translation of Vby aEL. We
let

Pi·: Ui~Vi
be the inverse of the homeomorphism 7r:: Vi--).Ui. For each pair
(i, j) of indices such that Ui nUFI=cj>, there exists a unique ojiEL
such that

Pi(X) =pj(x) +Oji

for all xEUin Uj. For all xEUin Uj, we let
gij(x) =J (OJ;, plx».

Then gij : Uin Uj--).GL(r, C) is a holomorphic map and {gij} is a
system of transition functions of the vector bundle E over a complex
torus T.
We take a basis of V and identify V with C~ and write

~

H(v,.w) = I: hatVaw".
a~b=l

Then we have
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We let
Z~i)=VaoPi

for each i. Then {ZiiJ_, "', z~)} are local coordinates of T on Vi and
we obtain

dZ~i) =dz~j) on vin Vi
Let t;,a be the holomorphic I-form on T such that 7I:*t;,a =dva Then
we have

on each Vi. We get

gi/dgii = {-.!!..-L ha'" (fi ji) bCa} .Jr,r a.b
where I r is the r X r identity matrix. We let

{ 71: '"h -w} JWi= - -L.. abZb . rr a,b
on each Vi. Then it is easy to show that w= {Wi} is a connection
form. The curvature form Q= {Qi } is the system of 2-forms such
that

Qi=dwi+W;/\Wi
on Vi. But we have W;/\Wi=O and hence Qi=dwi. Then we have

Qi = { ~ ltha."Ca/\~b}} ·Jr

on Vi and since the left hand side is globally defined, we have
globally

Q= { ~ Ehc."Ca/\~b} .Jr.

The total Chern class c(E) is given by

c(E) =det(Ir - 2~i Q)
=(1 + -2i Lha."Ca/\~b)r.r a.b

Let E be a holomorphic vector bundle of rank r over a complex
torus T. We assume that the total Chern class cCE) of E is

c(E)=(I+ cl~E) r
We know that cCE) is given by
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c(E) =det(Ir- 2~i ),

where Q is the curvature form of E. If we write Q = (QD, the
k-th Chern class c,,(E) of E is given by

ck(E) =(k) ~ Cl (E)k

_ (- 1)10 ,,~il•••iU)il/\ /\nik- (27ri)k! £...IUil···ik~i, ••• ~ik'

By a tedious calculation, we know that Q is of the ferm
()=oIr ,

where 0 is a 2-form on T. Hence E isprojectively f!at.

In summary, we have

THEOREM 5. 12. Let E be a holomorphic vector bundle over rank r
over a complex torus T= V/L. Then the following conditions are
equivalent:

(1) E is semihomogenedus,
(2) E is projectively flat,
(3) The total Chern class c(E) of E is given by

c(E)=(l+ Cl~E) r
(4) The Automorphic factor] for E is given by

](a,z)=G(a)exp{ ~ H(z,a)+ ~ H(a, a)}, aEL, ZEV,

where G:~GL(r ; C) is a semirepresentation of Land H zs a
Riemann form for T. Furthermore, if E is simple, (1), (2), (3)
and (4) are equivalent to

(5) dimcHi(T,End(E»=(~) for all j=1,2, .. ·,n.
(6) Hi(T, t9)-Hi(T, End(E» for all j,
(7) There exists an isogeny f :T~T and a line bundle L on T

such that E=f*(L).

6. Heisenberg Group ~ (E)

Throughout this section X is assumed to be an abelian variety
of dimension g over the field of complex numbers. We recall that
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nx is the multiplication by n for an integer n (see Definition 4. 9).

(6.1) Let E be a holomorphic vector bundle over X We define
H(E) and '9'(E) as follows:

H(E) = {xEXI E-T;(E)},
';9 (E) = {(x,cp) iXEH(E) and cp is an isomorphism of E onto

T: (E)}. '9' (E) is a group. In fact, let (x, cp), (y,1;) be elements
of '9'(E). Then the composition T;(cJ;ocp):

E~T;(E)~ T;(T;(E) = T:+y(E)
is an isomorphism of E and T:+ y • We define the multiplication

(y, 1;) 0 (x, cp) = (x+y, T; (cJ;ocp»).
It is easy to check that the set '9' (E) forms a group under the
above multiplication. And we have the following exact sequence

l~Aut(E)~'9'(E)~H(E)~O.

(b.2) Let L be an ample line bundle over an abelian variety X
\Ve recall the basic results about an ample line bundle (Mumford
[IJ) .

( I) H (L) is finite and Ho (X, Ln) =/::-0 for all n>O.
(II) If dim X =g, then there exists a positive integer d such that

dimcHO(X, V) =dng for all n>1,
dimcHi(X, Ln) =0 for all n>l, i~l.

The integer d is called the degree of L
(ill) Let X be the dual abelian variety of X. Let A(L) : -X be

the homomorphism define by A(L) (x) = T;(L)0L-l for all XEX

Then we have
d2=IX(L)12=the degree of A(L)=IH(L)/

( N) For all integers n,

(6.3) Let E be a stable ample vector bundle over X. Then E is
simple and hence we have the following extension:

l~C*~'9'(E)~H(E)~O.

We note that H (E) is a finite abelian group and that C* is
contained in the center of '9' (E). The extension defines the
following invariant: Given x, yEH(E), we let x, yE'9' (E) lie over
x,y. We set
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eE{x, y) =xyx-1y-l.
It is obvious that this is well-defined, that eE(x, y) is an element
H of C*, and that eE is askew-symmetric bilinear pairing from
H(E) to C*. A subgroup K of ~ (E) is said to be a level subgroup
if KnC*= (0), i. e., K is isomorphic to its image in H(E). For all
subgroup K of H(E), there exists a level subgroup K over K if
and only if eE is trivial on K. If eE is degenerate, then there exists
a subgroup K such that eE is trivial on K and such that IK1 2> IHI.

A 1

Hence there exists a level subgroup K of order> IH 12
• We now

define Uz : HO (X, E)-HO (X, E) by
Uz(s) = T~:c(cp(s» for all sEHO(X, E),

where z=(x, cp)Eep(E). This is an action of the group epeE)
because if Z= (x, cp), w= (y, p), then

Uw(UzCs» = Ti {p(T;(cps»}
= T::::c-y{ T; (p(T;(cps»)}
~T~:c-AT;(1J)(~s)} ..
= U(:c+y,T:c*(~)O'P) (s).

Also C* acts on HO (X, E) by its natural character, that is, aEC*
acts on HO (X, E) as multiplication by a. Hence U is the represent­
ation of epeE) on HO (X, E).

(6.4) Let X be an elliptic curve and let E be an ample indecom­
posable vector bundle of rank r and of degree d. We assume that
r, dare coprime. Then E is stable and hence simple. Thus we
have the extension O-C*-ep(E)-H(E)-O and a level subgroup
of ~(E) corresponds to a descent data for E. By Oda DJ, there
exists an isogeny f: Y-X of degree r and an ample line bundle L
of degree d on Y such that E is isomorphic to the direct image
f*(L) and the intersection of ker(f) and ker(A(L» is O. Moreover,
d=dirncHO(X, E) =dimcHO(Y, L). Since H(L) nker(f) =0, a non­
trivial translation by an element of H(L) induces a nonzero element
of H(E). Hence H(L) is a subgroup of H(E). We have IH(L) I=
d2, hence IH(E) l~d2. There exists a level subgroup of order
J>d. If we had IH (E) I>d2 then .there would exist an isogeny
cp : X-Z of degree J and a vector bundle it over Z such that
cp*(it)-E. But we have d=X(X, E) =dX(Z, E). This is a contr­
adiction. Hence H(E)=H(L) and ep(E)=rp(L). The unique

-138 -



Holomorphic vector bundles over complex tori

representation of 'P(E) is given by HO (X, E).

PROPOSIION 6.5. Let E be a holomorphic vector bundle of rank r
over an abelian surface X. Then the following conditions are
equivalent:

(l) E is a simple homogeneous vector bundle over X,
(2) E is an indecomposable projectively flat vector bundle over

X,
(3) E is stable and satisfies C2 (End (E» =0,
(4) E is Gieseker stable and satisfies C2 (End (E» = 0,
(5) E is simple and satisfies c2(End (E» =0,
(6) dimcHi (X, End (E» = en for all j = 1, 2, "', g,
(7) Hi(X, Q)-Hi(X, End(E» for all j,
(8) There exists an isogeny f: y--.x of abelian surfaces and

an ample line bundle M over Y such that H(M) nker(f) =0 and
E is isomorphic to the direct image f*(M),

(9) E is simple and, for any ample line bundle L over X and
for any sufficiently large integer n, we have the extension of
the Heisenberg group

O~C*~'P(E®V)~H(E®V)~o.
such that the pairing eE@L"(x,y) is nondegenerate and IH(E®L") I=

;2hO(X, (det E) ®Lm) 2,

(l0) E is simple and the same assertion as in (9) holds for an
ample line bundle L and for infinitely many n>O.

Proof. The equivalence of (l), (2), "', (8) follows from Theorem
5.12 and the equation c2(End(E»=~(r-I)cl(E)2+2rc2(E). In
order to prove (8) =? (9), we let E be a simple vector bundle of
rank r and let L be an ample line bundle over X. By (8), E®L"
is isomorphic to the direct image of M®f*(L"). Let xEker(f) n
H(M®f*(L"». Then we have

M®f* (L") - T; (M®f* (L"» - T; (M) ® T; f* (L")
-T;(M)®f*(Ln).

Hence M is isomorphic to T;- (L), i. e., xEker (f) nH (M). It
follows that x=o. As in (6.4), we have the inequality

IH(M®f*(Ln» j:::;;:IH(E@L") I.
According to the descent theory, if M@f*(L") is an ample line
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bundle, then we get IH(M0f*(Ln»-H(E0Ln) and IH(E0Ln) I=
hO(X, E0Ln) 2. By the Riemann-Roch theorem,

hO(X, E0Ln) = ~ d(E0U) -c2(E0£n)

= 2~ c~(E) + r;2 c~(L) +ncl (E) Cl (L)

= 2~ d(E0Ln) == Ir ci«det E)0Lrn)

= ;hO(X, (detE)0Lrn).

Thus we have IH(E0Ln) I=---;-hoex, edet E)0Lrn). Obviously (9)r
implies (10). Thus the proof is complete only if we show that (l0)
implies (5). We assume that (10) holds. Then there exists an
integer n and an ample line bundle L over X such that HO (X, E0
£n)*o, Hi(X, E0Ln)=o,i=1, 2, and O~C*~~(E0U)~IjeB0

Ln)~OisaHeisenberggroupand\H(E0Ln)II=;2hO(X, (detE)0Lrn)2.

.Since E0U is simple,
X(End(E0Ln» =hO(X, End(E®L"» -hI (X, End(E0Ln»

+h2(X, End(E0Ln»
=2-h1 (X, End(E»~O.

By the Riemann-Roch theorem,
X(End(E0Ln» = ~c2(End(E0Ln»

== (r-l)ciCE®Ln) -2rc2(E0Ln) ,
Thus (r-l)ci(E0Ln) -2rc2(E0Ln) ~O. Then we have

1~ho (E0Ln) = lCiCE0D') - C2 (E0Ln)
2

~+i(E0Ln)- r;l cr(E0Ln)

= lrciCE0L") = IHCE0Ln) li.
since ~ (E0L") is a Heisenberg group and HO (X, E0Ln) is a
representation of ~CE&JLn) in which C* acts by its natural

" 1
character, hO (E0L") is divisibl;} by IH (E0Ln) 12 • By the above
inequality, we have
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By the assumtion, we have

hO(X, E®Ln) = ir c~(E®Ln).

By the way, by the Riemann-Roch theorem, we have

hO(X, E®V) = ~ c;(E®Ln) -c2(E®Ln).

Hence we obtain
(r- Uc;(E®Ln) -2rc2(E®Ln) =0.

So we get the equation
c2(End(E» = - (r-l)ci(E) +2rc2 (E) =0.

REMARK 6. 6. Indeed, the classification of projectively flat vector
bundles over a complex torus cerresponds to that of representations
of the Heisenberg group. Matsushima [2J described the holomorphic
vector bundles defined by the representation of the Heisenberg group.

FINAL REMARK 6. 7. It is very interesting to characterize the auto­
morphic factors corresponding to stable vector bundles over complex
torus. The author believes that a characterization of those automor­
phic factors will be useful in the study of vector-valued theta
functions.
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