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HOLOMORPHIC VECTOR BUNDLES OVER COMPLEX TORI

Jae-Hyun Yaxng

1. Introduction

The purpose of this paper is to study the holomorphic vector
bundles over a complex torus. The theory of vector bundles of
rank 7 over a g-dimensional complex torus is not sufficiently
developed except for =1 and g=1. In his paper [1], Atiyah
classified the vector bundles over an elliptic curve, Many algebraic
geometers, €. g., Weil, Mumford, studied the line bundles over a
complex torus. The theory of line bundles is the theory of theta
functions, Indeed, the classification of vector bundles over a
complex torus T=V/L corresponds to that of automorphic factors
for L, where V is a g-dimensional complex vector space and L is
a lattice in V. In general, it is a very difficult problem to classify
the automorphic factors for a discrete group, Matsushima [1] and
Morimoto [1] classified the flat vector bundles over a complex
torus. It is equivalent to the problem of the classification of
representations of a lattice group L. And Matsushima [2] and Hano
[1] characterized the projectively flat vector bundles over a complex
torus, Mukai [1] introduced the concept of semi-homogeneous
vector bundles over an abelian variety and characterized the semi-
homogeneous vector bundles, In fact, semi-homogeneous vector
bundles corresponds to projectively flat vector bundles. In this
paper, we characterize the projectively flat vector bundles over a
complex torus completely and investigate the connection between
those vector bundles and the Heisenberg group. I would like to
remark that it is so interesting to classify the automorphic factors
corresponding to the stable vector bundles.
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In Section 2, we review the basic properties of complex tori, We
will omit the proofs and the details. In Section 3, we describe the
automorphic factors for the holomorphic vector bundles and in
particular, we write the automorphic factors for line bundles
explicitly. In Section 4, we review the general results about line
bundles over a complex torus we will use in the following sections.
For details, we refer to Mumford [1] and Yang [1]. In Section 5,
we characterize the projectively flat vector bundles over a complex
torus completely and we discuss the stability of those vector
bundles. In Section 6, we investigate the connection between the
Heisenberg groups and the projectively flat vector bundles,

Finally I would like to express my gratitude to the Korea Science
and Engineering Foundation for financial support.

2. Complex tori

In this section, we briefly review the theory of complex tori.
Proofs will be omitted.

Let T=V/L be a complex torus of dimension g, where V is a
g-dimensional comlex vector space and L is a lattice of rank 2g in
V. Then T is a connected, compact commutative complex Lie
group. A complex torus T is called an abelian wvariety if it is a
projective variety, i.e., it can be holomorphically 'embedded in a
complex projective space.

Dermarion 1.1. A morphism ¢ : Ty— T, of complex tori T,, T, is
said to be an isogeny if it is a surjective homomorphism with finite
kernel. The order of the kernel is called the degree of ¢. We say
that two complex tori Ty and T, are isogeneous, denoted by Ty~
T, if there exists an isogeny between T, and T,.

If ¢, : Ty~T; and ¢, : To— T are isogenies, then so is ¢y°¢; and
the degrees multiply : deg(@;°¢,) =deg @, deg $,. The following
proposition shows that ~ is an equivalence relation.

PrroposiTion 1.2. Let Ty and T, be two complex tort of the same
dimension g. If ¢ ; T1—T, is an isogeny of degree m, then there
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exists a unique isogeny ¢ : Ty— Ty of degree m*™* such that ¢o¢=
ml, and ¢op=ml,, where I, (resp.I,) denotes the identity of T,
(resp. Ty). ¢ is called the dual isogeny to ¢.

Let T=V/L be a g-dimensional complex torus. A Hermitian
from H on V is called a Riemann form for the complex torus
T=V/L if

(i) H is nondegenerate,

(ii) Im H=E is integral valued on the lattice L.

The following theorem is well known.

TreoreM A (Mumford[1], p.35). Let T=V/L be a g-dimensional
complex torus. Then the following are equivalent.
(1) T is an abelian variety,
(2) there exist g algebraically independent meromorphic func-
tions on T,
(3) there exists a positive definite Riemann form H on V.

Exampie, Let w be an elements in the upper-half plane. Now we
consider the lattice L={n+mw|n, mcZ} in C. Then T=C/L is a
one dimensional complex torus. We define a Hermitian form H on

C by

H(z,w)= Izmu:o where z, weC.

Then H is clearly a positive definite Riemann form on C. By
Theorem A, there is a projective embedding of 7 in a complex
projective space. In fact, several projective embeddings of T are
well-known in the classical theory: for example, the Weierstrass
o—-function

- 1 1 1
»(2) = 22 +(n.m)z:$(0,0)|: (z—n—mw)? N (n+mw)? ]
is a meromorphic function, periodid with respect to 1, o, with
poles at the points n+mw&L. The map
z—> (1, 0(2), ¢’ (2))

induces an ismorphism of T with a plane cubic curve of the from
X, X2=4X}+aXiX,+bX} for suitable constants @, b depending on
w. We remark that the Weierstrass ¢-function satisfies the follo-
wing nonlinear differential equation
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[¢"(2)12=4¢%(2) —60Gp(2) —140Gs,
where G;(£>3) is the Eisenstein series of order k. Here, in fact,
a=—60G, and b=—140G,.

Restricting the Riemann from shows that a subtorus of an abelian
variety is again an abelian variety. One can show that a quotient
of an abelian variety is also an abelian variety. This is a conse-
quence of the following theorem,

Treorem B (Poincaré Reducibility Theorem). Suppose A is an
abelian variety and A,CA an abelian subvariety. Then there exists
an abelian subvariety A, such that A;NA, is finite and A is
1sogeneous to A; X A,.

* Let T=V/L be a complex torus of dimension g. Let 7. : T—T
be the translation by x&7T. We have a Kaehler metric on T which.
is invariant under the translations. Since T, preserves a Kaehler
metric on 7, T¥ sends harmonic forms into harmonic forms. Since
T. is homotopic to the identity map, the map
T : H(T)—HXT)
is the identity map, where H*(T) denotes the space of all harmonic
k-forms on T. If x&T, T,(T)=T/(T)+T,/(T). We identify
T.(T) with V. An element 0=A(T,/(T))*=AV* extends a
holomorphic, translation-invariant k-forms w, on 7. Indeed, we
define (w,),=T¥,(0) for any y=T. Then the map defines a sheaf
homomorphism
Or Q¢ AHV*—-

which is actually a sheaf homomorphism, where £* is the sheaf of
holomorphic k-forms on T and ¢ is the structure sheaf on T,
simply denoted by ¢, Since T=(S")* topologically, dimcH*(T)=

(2;5) Let I*(T) be the space of all translation-invariant - k-forms
on T. Then dim I"(T)z(zlj’g) and hence H*(T)=I*(T). In fact,

HYT)=I"T)=4(V*®7*)
=DFHUTV*QAV).

Treorem C. HY(T, &)Y=A*V* for dll q. -
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For the proof of Theorem C, see Mumford ([11,p.4).
HI(T, @) =H(T,oQAV¥)
=H(T, OYRcAV*
=AV*RA'V* by Theorem C.
Thus we have
HYT, C)=H*(T) by the Hodge theorem
=@y s (MVFRATV)
=@, H(T, 0.
This is a so-called famous Hodge theorem.

Remarks. (1) By Theorem C, the natural map induced by cup

product
A(H (T, 2))~>H*(T,Q)

is an isomorphism.

(2) We consider the three sheaves on 7T, embedded in one
another as follows:

ZcCceo,

where Z and C are the constant sheaves on T. Then we have the
following:

Hi(T, Z)—CL»HI(T, C)LHI(”YZ‘, o)
i

Hom (L, 7) V*O DV 7+
!
L* HomR(V o)

Let A*(resp. A*°, A%*) be the sheaf of C* k-forms(resp. of type
(k,0), of tvpe (0,%)) on T. Let A,,: A'=A"PA*"> A% be the
projection. Then we have the commutative diagram

d
0 C Al— Al 0
I L Aoy
O V2 A0,0 0 AO,] O

Hence we have
HYT)=V*®&V*—HYT,A)—H(T,C)
f proj lA‘“ f B
V* —> HY(T, A“)——>H1(T ).
Thus g is surjective,

— 121 —



Jae-Hyun Yang
3. Automorphic factors

Let V be a g-dimensional complex vectr space and L a lattice
in V. Then V is the universal covering space of the complex torus
T=V/L. Clearly the projection  : V— T is holomorphic and L is
the fudamental group of T.

Dermvition 3.1. An automorphic factor of rank » with respect to
the lattice L in V is a holomorphic mapping J: LXV—-GL(r; C)
satisfying the condition

J(a+8,2)=](a, B+2)J(8,2) for all a, f=L, z&V.

Two éutomorphic factors J and J of the same rank 7 with respect to a
lattice L are said to be holomorphically equivalent (simply equivalent)
if there exists a holomorphic mapping 2 : V—-GL(r ; C) such that

J(a,2) =h(z+a) J(a, 2)h(2)7? for each acL, z&V.

An automorphic factor J : LX V—>GL(r,C) is said to be flat if the
mapping [ is costant on V. Thus a flat automorphic factor consists
of an element J&Hom (L, GL(r ; C)) of the set of all group homo-
morphisms from L into GL(r ; C).

Let E be a holomorphic vector bundle of rank » over a complex
torus T=V/L. If n:V—T is the projection, then n*E=F is
holomorphically trivial since V is a contractible Stein manifold. It
is Grauert’s result that any topologically trivial holomorphic vector
bundle over a Stein manifold is holomorphically trivial (Grauert
[1]). Having fixed the isomorphism E=VxC(C", each bundle

homomorphism &: E—E induced by a covering transformation. « :
V-V (a=L) must be of the form

&z, 8 =(z+a, J(a, 2)&), acL, zEV, £=C,

where J : LXV—GL(r ; C) is an automorphic factor of rank 7 for
L. The mapping J is called the automorphic factor for the bundle
E. Conversely, given an automorphic factor J: LXV-GL( : C),
we may regard L as a group of biholomorphic mappings from
VX Cr to itself by setting a(z, &) =(z+a, J{a,2)&) for a=L. Then
the quotient E=VxC’/L is a holomorphic vector bundle over a
complex torus T=V/L such that z*E=VXC(".
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Let £ and FE; be holomorphic vector bundles over a complex
torus T of rank r and rank s respectively. Any bundle homorphism
7 : E—F, induces a bundle homomorphism 7 : VXC—V X C* which
commutes with the action of L. Thus z= must be of the form

7(z,8)=(z, h(2)8), 2&V, &=C,
where k1 V—M,, is a holomorphic mapping from V into the space
M., of all sxr» complex matrices. Moreover, if J and J, are the
automorphic factors for the bundles £ and E, respectively,
(*) h(z+a)J(a,z) =] (a,2)h(2), aEL, z&V.

Conersely, given a holomorphic mapping % : V—M,, satisfying the
above condition (%), then /% determines a bundle homomorphism
71 VXC—V xXC* which comutes with the action of L and hence
determines a bundle homomorphism 7 : E—E,.

In summary, it has been shown that there exists a one-to-one
correspondence between the set of all isomorphic classes of vector
bundles of rank » over a complex torus T=V/L and the set of all
equivalence classes of automorphic factors of rank » for the lattice
L. Therefore the problem of classifying holomorphic vector bundles
of rank r over a complex torus T=V/L corresponds to that of
classifying automorphic factors of rank #» for the lattice L. In
general, the determination of all automorphic factors for the lattice
L is a difficult problem. However the classification of atomorphic
factors of rank one was completely done by Appel. This problem
is equivalent to the computation of the group H!(T,£*) = Pic T of
isomorphic classes of holomorphic line bundles over T. Now we
give an explanation in detail.

Let T=V/L be a g-dimensional complex torus and let H be
a Riemann form for the complex torus 7. A map X:L-C¥=
{zeC]|z]=1} is said to be a semi-character of L with respect to
E=Im H if it satisfies the codition
La+p) =X()X(BexplinE(a,B)}, a.f=l
We define the mapping Jux : LX V—-C*

Juala, ) =A@ exp{zH(z, @) + % Ha, )},

where acL, 2V and X denotes a semi-character of L with
respect to E=Im H. Then it is easily shown that Ju, is an autom-
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orphic factor of rank one for the lattice L. We denote by L(H,X)
the holomorphic line bundle over T=V/L defined by the above
automorphic factor [y, for L. We can easily show that

L(H,, %) QL(H,, %) =L(H;+ Ly, X:X>).
Therefore the set of all L(H,%) forms a group under tensor pro-
duct Now we have the followmg theorem

THEOREM (Appell—Humbert). Any holomorphic line bundle over a
complex torus T=V/L is isomorphic to an L(H,X) for a uniquely
determined Riemann form H for T and a uniquely determined
semi—-character X.

The Chern class of L(H,%) is given E=Im HEHz(T Z). Since
H(x, y) E(ix,y) +iE(x,y) for all x,y&V, according to the above
theorem, a holomorphic line bundle over T must be of the form
L(H,X), where X is a character of L. Thus _group P1c°(T) of
holomorphic line bundles with Chern class zero is isomorphic to the
group Hom(L,C¥) of all characters of L. In fact, Pic®(T)=
Hom (L, C}) has the structure of a complex torus. By the following
exact sequence. of sheaves

0—>Z c—* 0,

we have an ismorphism Pic®(T)=H(T,#)/Im H'(T,Z). Now
we have H'(T,&2)=H,,(T)=V*. We know that the image of
HY(T,Z) in H(T,) is the set of all conjugate linear functionals
on V whose real part is half-integral on L. Thus Pic®(T) is a
complex torus, called the dual complex torus of T and is denoted
by T. If T is an abelian variety, so is T and 1t is called the dual
abelian variety of T.

We now- compute the curvature of a holomorphic line bundle
F=L(H, %) over T=V/L: We fix a hermitian structure % on F.
We pull back % to z*F=F to obtain an hermitian structure on

=V xC. We may consider % as a p031t1ve functlon on V invariant
under L. That is, % satisfies
E(2) =1Jux(a, z) |2k (z+a), a=L, z<C.
Then the connection form &@=2o log % and the curvature form O—
90 logh are given by
@(z)= w(z—l—a)-i—alog‘]“(a z),
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0(2) =0(z+a).
Thus the curvature form of F is an ordinary 2-form on 7. Muti-
plying % by a suitable C*, positive function on 7. we may assume
that the curvature form of F=L(H,X) is a harmonic (I,1)-form
on T. Since H*(T C)=AV*RV*QV*PA*V* a harmonic form
on T has constant coefficients with respect to the natural coordinates
2y, -, 2, in V. In particular, the curvature @ of F=L(H,X) is
given by
Q=Y cudz/\dz,

where ¢, are constant.

4. Line Bundles over Complex Tori

In this section, we will review line bundles over complex tori.
For details, we refer to Mumford [1] and Yang [1].

Lemma 4.1. Let E be a holomorphic vector bundle over a complex
torus T. Let T,(x&T) be the translation of T by x. Then T¥(E)
and E have the same Chern classes.

Lemma 4.2. Let E be a holomorphic vector bundle f rank v over
a complex torus T=V/L. Let ] be the automorphic factor for
the bundle E. Let x=T. Then an automorphic factor J, for the
bundle T¥(E) is given by

Jlo,2)=](a, z+a), acL, z&V,
where a is an element of V such that n(a) =x.

Derinition 4. 3. A holomorphic vector bundle £ over a complex
torus T is said to be homogeneous if for all x&T, TF(E)=E.

Lemma 4. 4. For a holomorphic vector bundle E of rank r over
a complex torus T=V/L, the following conditions are equivalent :

(1) E is homogeneous,

(2) E is defined by a representation p : L-GL(r ; C),

(3) E admits a flat connection,

4) E is a flat vector bundle,

Lemva 4.5, If E is a homogeneous vector bundle of rank v over
complex torus T, then ci(E)=0 for k>1, where c,(E) denotes the
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k-th Chern class of E.

Remark 4.6. If rank E=r>2, the converse of Lemma 3.5 does
not hold, A counter example was given by Oda [2]. However if
r=1, the converse of Lemma 4.5 is true. For the proof, we refer
to Yang [1].

Dernition 4. 7. Let F' be a holomorphic line bundle over a complex
torus T=V/L. We set K(IF') ={xT|Tf(F)=F}. And we define
the map ¢r : T—T=Pic®(T) by,

$r(x)=TYF)KF™, x&T.

Remarks 4.8. (1) IF F is ample, then K(F) is a finite subgroup
of T. ‘

(2) ¢r is an isogeny and the set K(F) is nothing but the kernel
of ¢r.

Derinition 4.9. Let # be an integer, We define #; : T— T by
nr(x) =nx, x=T.
The map #nr is called the multiplication by n. The following lemma
shows that #n; is an isogeny of degree #n* if T is an abelian variety
of dimension g.

LemMma 4.10. Let F be an ample line bundle over an abelian
variety A. Then
nE(F)=F"QF, for some F,=A.
And the degree of nr is n*.

For the proof of the above lemma, we refer to Mumford [1],
p.59, p.63 or Yang [1], p.14.

Tueorem oF Square. Let F be an ample line bundle over an
abelian variety A=V/L. Then for any x, y=A,
TE(F)QF=TX(F)QTF(F).

CoroLLarY 1. @r : A—>A=Pic°(A) is a homorphism of A to A.

CoroLLary 2. Let Fy F, be two ample line bundles over an abelian
variety A. Then

¢F1®P, =¢F, + 951?,-
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COROLLARY 3. @rxpm=0¢r for all xS A.

Derinition 4.11. An ample line bundle F over an abelian variety
A is said to be symmetric if (—1)IF=F,

Lemma 4.12. If F is an ample, symmetric line bundle over an
abelian variety A, then FR(—1)}F is also an ample, symmetric
line bundle over A.

Proposition 4.13. Let A be an abelian variety of dimension g.
Then we have

(1) FEA if and only if ¢-=0.

(2) Let f,g:A—A be holomorphic maps. 1f FEA, then
(f+g)i(F)Ef*(F)®g*(F).

(3) If FEA, then nf(F)=F"

(4) If FEH'(A,N) has finite order, then ¢.=A.

(B) If F is an ample line bundle over A, then ¢r is surjective.

(6) If FEA and F is not trivial, then H'(A, F)=0 for all i.

In the previous section, we introduced the line bundle L(H,X)
over complex torus 7. Using Lemma 3.2, we have

Prorosition 4.14. Let a=V and x==n(a). Then
T¥L(H,X)=L(H,XD.),
where D,(a) =exp{2rniA(a,a)}.

Remarks 4.15. If eV, then ¢ruxn(m(a))=L(0,D,). Thus we
have
K(LH,X))=L*/L,
where L*={veV|A((a,v)EZ for all « on L}. Therefore we have
(D L(H,%)ePic™(T) =T
<SKLH X)) =T<L=V
EA=0=H~=0.
) K(L(H,X)) is a finite subgroup of T
&= [*/L is finitec=L* is a lattice
<=4 is nondegenerate<—>H is nondegenerate.
Let T=V/L be an abelian variety of dimension g. From the exact
sequence

0—>Z—>O—>C*—,
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we obtain the exact sequence )
HY(T,Z)—HY(T,&)— H(T, &’*)———>H2(T Z).
Thus
Pic®(T)=H*(T, ) /Im H (T, Z).
We know that H'(T,Z)=H*(T)=V* On the other hand,
H(T, Z)Y=H*(L, Z) is the space of R-linear functionals on V taking
integral values on L. The map i : HY(T, Z)—>H\(T, &) is given by
w—>w’,
Since

Lw:ZRe Lw“EZ,

Im¢ consists of conjugate linear functionals on V whose real part

is half-integral on L. By multiplying a constant 2{, Im{ can be

identified with theset L given by

L={ieV*|Im[(e)eZ for all a=L}

Thus we obtain o ‘ -
T=Pic*(T)=V*/L.

Levma 4.16. There exists a unique holomor phic line bundle
P—TxT,
called the Poincaré line bundle, which is trivial on {e} X T and
which satisfies ‘ ,
Plige=P: for all e T,
where P, is the line bundle over T corresponding to = T.

For the proof, we refer Mumford [1; p.78-80] and also Griffith-
Harris [1; p.328-329].

In fact, we have the following s;aquence
HY(TxT,&)—sHY(TXT,o%) gHZ(TX 1,2)
HY(T, ﬂ’)GTBHl(T, ) H‘(T,.“Z)%H’(T, Z)
HY(T, Z)QHW(T, 2))*

Hom(H(T, 2), H (T, Z))
The identity IeH?2(Tx T, Z) gives a holomorphic line bundle P over
T T such that ¢;(P)=I by the Lefschetz theorem on (1,1) classes.
This line bundle P is nothing but the Poincaré line bundle over
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T T,

Now we will describe the Poincaré bundle over T® T explicitely.

We define an Hermitian form H on VQV* by
H((z,, 1)), (25, 15) 212(71)—’—[1(22),
where z;, €V, and [, [,&=V* We also define the map X : LXxL—
Ct by
X(a, ) =exp{—7ilmi(a)}, ac=L, I<L.
Then X is a semichﬁracter of Lx f: with respect to H. _That is,
X((a+B, 1+1) =X(e, DX(B, DexplinE((a, ), (5, 1)),

where a, SEL, [,I&L, and E—Im H. Then the line bundle L(H, y)
over Tx T defined by the Hermitian form H and the semi-character
y of L is the Poincaré line bundle over TX7T. In fact, the
corresponding automorphic factor J : Lx T—C* for L(H,X) is given
by

J(@ D), (D) =%, Dexp{xH((2, D), (@, 1) +ZH((a, ), (o, 1)),
where a=L, [=L, z2&V and I=V* The line bundle L(H,X) |rea
over T corresponding to a point #()&T(cV*) is defined by a
flat automorphic factor J,: LX V—C¥* given by

Jia, 2) =exp{zl(a)}, aEL, z&V.
However
h(z+a) (e, 2) =exp{2ni Im [ ()} h(2),
where a=L, z&V and h(z) =exp{—7l(2)} is holomorphic in z,
Thus we obtain the isomorphism
L(H, %) | 1:0=L(0, X)),
where X,(a) =exp{2zil(a)} is a semicharacter of L(a=L)., We note
that if /=0, L(H, %) |rx.=L(0,1)=¢r. Clearly
L(H, %) |.«+=L0, 1)=1.

By the uniqueness, L(H,¥) must be the Poincare line bundle over
TxT.

5. Projectively flat vector bundles

In his paper ({1]), Mukai characterized semihomogeneous vector
bundles over an abelian variety and showed that a simple semiho-
mogeneous vector bundle is Gieseker-stable, He dealt with those
vector bundles algebraically, In the analytical point of view, those
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vector bundles corresponds to the projectively flat vector bundles.
In this section, we characterize those vector bundles analytically
and study the properties of them.

First we give some definitions.

Dermition 5.1. Let & be a torsion-free coherent sheaf over a
compact Kaehler manifold (X, g) of dimension #z. .Let w be its
Kaehler form. It is a real positive closed (1,1)-form on X. Let
¢: (&) be the first Chern class of &, It is represented by a real
closed (1,1)-form on X, The degree of & is defined to be

deg () =[ c:(@) N,

The degree/rank ratio or slope p(%) is defined to be

p(&) =deg (%) /rank (&).
A coherent sheaf ¢ over a compact Kaehler manifold (X, g) is
said to be stable(resp. semistable) if for every coherent(nontrivial)
proper subsheaf % of lower rank, u(#)<u(g) (resp.<).

Dermvition 5.2, Let L be an ample line bundle over a compact
Kaehler manifold X. For a coherent sheaf ¢ over X, we denote
by # (k) the sheaf «®L* and by X%(&(k)) the Hilbert polynomial.
We define P, by

_ %)
P.(k) = )Igank(g)
& is said to be Gieseker—stable(resp. Gieseker-semistable) if for
each proper subsheaf & of &, we have
P, (R)<P.(k) (resp. P.(R)<P.(k))
for all 250. .

Remark 5.3. (1) A holomorphic vector bundle £ over X is said
to be stable (resp. semistable) if the sheaf Z(E) of germs of
holomorphic sections is stable (resp. semistable). Similarly we can
say for the Gieseker stability.

(2) It is known that if a coherent sheaf & is stable (resp.
semistable), it is Gieseker-stable (resp. Gieseker-semistable).

The concept of stability is the algebraic geometrical concept.
Kobayashi [1] interpreted the concept of stability differential
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geometrically,

DerinviTion 5. 4. Let g be a Kaehler metric on a compact Kaehler
manifold X. Then we define tr, : A" (End(E))—A%(End(E)) as
follows: For a section F=(Ff) e A" (End(F)),

fi’gF: (Zg"’Ffjx) 15a,ﬂ§n:§gﬂF;z,
whereF=F2:dz;/\dz, and Fj;=(F£fs) < s<.. A holomorphic vector
bundle of rank » over a compact Kaehler manifold (X, g) is said
to be Hermitian-Einstein if there exists an hermitian metric & for
which the Hermitian curvature satisfies
tr,)F=pul,
where [ is the identity endomorphism of £ and g is a constant,

Kobayashi [1] obtained the following differential geometrical
criterion for stability.

Tueorem (Kobayashi). Awn  indecomposable Hermitian-Einstein
vector bundle over a compact Kaehler manifold is stable.

The fact that the converse of the above theorem is also true was
proved by Uhlenbeck and Yau [1].

DermviTion 5.5, Let £ be a holomorphic vector bundle of rank
v over a compact Kaehler manifold X and P its associated principal
GL(r ; C)-bundle, Then P=P/C*I, is a principal PGL(r; C)-
bundle, We say that E is projectively flat when P is provided
with a flat sturcture.

Mukai [1] introduced the notion of semihomogeneous vector
bundles over a complex torus.

DermviTion 5.6. A holomorphic vector bundle E over a complex
torus T is said to be semihomogeneous if for each x&T, there
exists a line bundle F over T such that

T*(E)=EQF,

where T, is the translation of T by x.

Lemma 5. 7. Let E be a semihomogeneous vector bundle of rvank r
over an abelian wvariety A. Then the wvector bundle (rr)*(E)Q
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(det E)™" is homogeneous, where det E denotes thedeterminant line
bundle of E.

Proof. L=(rp)*(E)Q(det E)~". Then we have
det L= (rp)*(det E) Q@ (det E) ™.
By Lemma 4.10 in the preceding section, ¢;(det L)=0 and hence
det L is homogeneous. It is clear that L is semihomogeneous. Since
T¥(L)=LRF for some F=Pic®(T), we obtain
Tx(LY=HQRF",
T¥(det L)=det LQF",
Therefore '
TXL)=LRT*(det LYR(det L)?
=].(because det L is homogeneous).
Since A is divisible, L is homogeneous.

- Proposition 5.8. Let E be a semihomogeneous vector bundle of

rank v over an abelian variety A of dimension g. Then
L(E)=rX(det E),

where y(E) denotes the Euler-Poincaré characteristic of E.

Proof. Since (rr)*(E)=(det E)"QF for some homogeneous vector
bundle F, we have
%4 (E) =X((rr)*(E))
=%((det EY'QF) (because ¢, (F)=0 for £>1)
=r%((det E)7)
=yt (det E).
Hence X(E) =r'"*%(det E).

Mukai [1] and Oda [2] showed the following theorem.

Treorem 5.9 (Mukai, Oda). Let E be a simple vector bundle
over an abelian variety A of dimension g. Then the following

are equivalent:
(1) dim:H'(A, End(E)) =g,

@) dimHi(A, End(E)) :({;T),

(3) E is semihomogeneous,
(4) There exist an isogeny f: B—A and a line bundle L on an
abelian variety B such that E=fy(L).
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It is easily seen from the definition that semihomogenous vector
bundles over a complex torus are projectively flat. Hano [1] showed
that an automorphic factor for a projectively flat vector bundle F
over a complex torus T=V/L is given by the following form

« J(a, z):G(a)exp{_’:_H(z, ) +-Z-H, a)}, ecl, zEV,

where (i) H is a Riemann form for T=V/L,
(ii) G : L-GL(r ; C) is a semirepresentation of L in the sense:

G+ =G@GPexplEE(g o)}, E=mH.

Using Lemma 4.2 in the previous section, we can show that a
projectively flat vector bundle over a complex torus is semihomoge-
neous, Thus the notion of semihomogeneous vector bundles is the
same of projectively flat vector bundles.

Lemma 5.10. Let f: T=V/L->T=V/L be an isogeny and let E
(resp. F) be a projectively flat vector bumdle of rank r over T
(resp. T). Then f*(E) (resp. f«(F)) is also projectively flat.

Proof. f lifts to the linear map f: V— V. Then the automorphic
factor J* for f*(E) is given by

7@ 9 =GUr@) exp{-Z-H(F@), F@)+--H(f@ f@)},

where @=L, z&V. thus f*(E) is semihomogeneous, We leave to
the reader the case of f,(FE).

Prorposition 5.11. Let E be a hermitian vector bundle of rank r
over an abelian surface A with c,(End(E))=0. Then the following
are equivalent:

(1) E is simple,

(2) E is simple and semihomogeneous,

(3) E is simple and projectively flat,

(4) E admits an indecomposable Hermitian-Einstein vector bundle

over A,
(5) E is stable,
(6) E is Gieseker-stable.

Proof. (1)=>(2) :
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X(End(E)) =2h"(A, End(F)) —h'(4, End (E))
=2—n'(A4, End(E)) (because E is simple).
But by the Riemann-Roch theorem,
‘ x(End(E))—-cz(End(E)) =0.
Thus we have #'(4, End(E))=2. By Theorem 5.10, E is semiho-
mogeneous. The remaining ones follows from Kobayashi's theorem
and the fact that a Gieseker—stable vector bundle is simple.

“Since a simple projective flat hermitian vector bundle E over a
complex torus 7 admits an Hermitian-Einstein structure, E is
Gieseker-stable by Kobayashi's theorem (or Mukai [1]). Thus E
has a filtration

: 0=E,CE,C---CE,=F
such that Fi=FE;/E; , is Gieseker-stable, and Pp =P for all i=1,
-, (Gieseker [1]).

An‘automor‘phic factor J for E- is' given by the form (*¥). Now =

we calculate the curvature form Q of E. We let #: V—»T=V/L.
We choose an open covering {U;} of T with the following property:
U; are connected and each connected component of z*(U;) are
mapped homeomorphically onto U; by z. For U; we choose a
connected component U; of z'(U;). Then we have 7 '(U)=
Uae T.0;, where T, : V—V is the translation of V by a=L. We
let
Pi: Uif‘*ﬁi

be the inverse of the homeomorphism = :U,—U, For each pair
(2,7) of indices such that U;\ U@, there exists a unique ozEL
such that ‘
A ‘ p:(x) :Pi(x) +oi
for all x€U,NU; For all x€UNU; we let

‘ gu (x) —](0',,, P: (x))
Then g; : UNU;—»GL(r,C) is a holomorphic map and {gi} is a
system of trans1tlon functlons of the vector bundle E over a complex
torus T,

We take a basis of ¥V and identify V with C* and write

H(o,w) =3, hati,.
Then we have
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g;=G(o)exp {riH (i 0:) + %H (G 0) }

We let

2z =va°p;
for each i. Then {z®,---, 2®} are local coordinates of T on U; and
we obtain

dz¥=dzy on U NU;

Let {, be the holomorphic I-form on T such that #*{,=dv. Then
we have

L=dz?
on each U; We get

gi'dg;= {%HZ;. has (55 bCa} -I,
where I, is the rXr identity matrix. We let
o=~ {Z-Shaz?} I,
v a,b

on each U, Then it is easy to show that w={w;]} is a connection
form. The curvature form Q={Q;} is the system of 2-forms such
that

.Q;=a’w;+w,~/\w,~
on U, But we have w;Aw;=0 and hence ;=dw;, Then we have
[z AL
0.={-Z Shat AT} T,
on U; and since the left hand side is globally defined, we have
globally

_ ]z 71,
0={Z-Shal . NT} 1.
The total Chern class ¢(E) is given by
_ 1
o(E) =det(2,——L-0)

=(14 LBt NT)

Let E be a holomorphic vector bundle of rank » over a complex
torus T. We assume that the total Chern class ¢(£) of E is

_ aE) Y
(B =(1+-2580Y.
We know that ¢(E) is given by
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_ 0
o(B) =det(T, _2.;2-)
where @ is the curvature form of E, If we write Q=(Q%), the

k-th Chern class ¢.(E) of E is given by
a(®) =(3) Lo, (B)*
:V____(_l)k o gh A A\QE
2ri)*t arhEn o
By a tedious calculation, we know that Q is of the fcrm
0=4¢I,
where d is a 2-form on T. Hence E is projectively flat.

In summary, we have

TreOREM 5.12. Let E be a holomorphic vector bundle over rank r
over a complex torus T=V/L. Then the following conditions are
equivalent: ‘ o ‘ ‘

(1) E is semihomogeneous,

(2) E is projectively flat,

(8) The total Chern class c¢(E) of E is given by

— al®E) Y
o(B)=(1+- L)LY,
(4) The Automorphic factor ] for E is given by
J@ 2 =G@exp|-ZH(z, ) +—--H(w o)}, a€L, 2V,

where G:—>GL(r ; C) is a semirepresentation of L and H is a
Riemann form for T. Furthermove, if E is simple, (1), (2), (3)
and (4) are equivalent to

() dimH/ (T, End»(E)):(%-) for all §=1,2, -, .

(6) H(T,2)=H'(T, End(E)) for all j,
(7) There exists an isogeny f: T—T and a line bundle L on T
such that E=fy(L).

6. Heisenberg Grmip Z(E)

Throughout this section X is assumed to be an abelian variety
of dimension g over the field of complex numbers, We recall that
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ny is the multiplication by # for an integer n (see Definition 4.9).

(6.1) Let E be a holomorphic vector bundle over X. We define
H(E) and & (£) as follows:

H(E)={xeX|E=TX(E)},

C(E) = {(x,p) |x=H(E) and ¢ is an isomorphism of £ onto
T*(E)}. £(F) is a group. In fact, let (x,¢), (y,¢) be elements
of € (E). Then the composition T¥(¢og):

E——THE)—TX(TF(E))=T%,(E)
is an isomorphism of K and T}, We define the multiplication
(3, P e (x, ) = (x+y, T (o).
It is easy to check that the set & (FE) forms a group under the
above multiplication. And we have the following exact sequence
11— Aut(E) —ZF (E)—>H(E)—>0.

(6.2) Let L be an ample line bundle over an abelian variety X,
We recall the basic results about an ample line bundle (Mumford
[10).

(1) H(L) is finite and H°(X, L") =0 for all #n>(.

(1) If dim X==g, then there exists a positive integer d such that

dimcH° (X, L*) =dnf for all n>1,
dimcH (X, L") =0 for all n>1, i>1.
The integer d is called the degree of L

(1) Let X be the dual abelian variety of X, Let A(L) : »X be
the homomorphism define by A(L) (x) =T*(L)XL™ for all x=X.
Then we have

d?=|X(L)|?*=the degree of A(L)=|H(L)]|.
(V) For all integers #,

() * (LY=L

n? ni_n
.

TR (—1)* (L)

(6.3) Let E be a stable ample vector bundle over X. Then E is
simple and hence we have the following extension:
|—>C*—Z (E) —>H(E)—0.
We note that H(E) is a finite abelian group and that C* is
contained in the center of & (E). The extension defines the
following invariant : Given x, ye H(E), we let x, y&e& (E) lie over
x,y. We set
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AAA—IA 1

e (x, y) =i9%

It is obvious that this is well-defined, that ef(x,y) is an element
H of C* and that ¢ is a skew-symmetric bilinear pairing from
H(E) to C*. A subgroup K of &€ (FE) issaid to be a level subgroup
if KNC*=(0),i.e., K is isomorphic to its image in H(E). For all
subgroup K of H(E), there exists a level subgroup K over K if
and only if & is trivial on K. If ¢° is degenerate, then there exists
a subgroup K such that ¢° is trivial on K and such that IK |2>1H].

Hence there exists a level subgroup K of order>|H }7 We now
define U, : H'(X, E)—H*(X, E) by
U.(s)=TZ*.(p(s)) for all s€H' (X, E),
where z=(x, p)=Z (E). This is an action of the group ZF(E)
because if 2=(x,¢), w=(y,¢), then
U (U.(8)) =T3¢ (T¥(ps))}
D =Tr (THG(T o))}
=T*_{T*() (ps)}
— U<x+y,Ts*(¢)°¢> (S)
Also C* acts on H°(X, E) by its natural character, that is, a=C*
acts on H°(X, E) as multiplication by @. Hence U is the represent-
ation of £(E) on H'(X, E).

(6.4) Let X be an elliptic curve and let E be an ample indecom-
posable vector bundle of rank 7 and of degree d. We assume that
7, d are coprime. Then E is stable and hence simple. Thus we
have the extension 0—C*->Z (E)—H(E)—0 and a level subgroup
of £€(E) corresponds to a descent data for E. By Oda [1], there
exists an isogeny f: Y—X of degree » and an ample line bundle L-
of degree d on Y such that £ is isomorphic to the direct image
fx(L) and the intersection of ker(f) and ker(A(L)) is 0. Moreover,
d=dim:H*(X, E) = dlmcH"(Y L). Since H(L)Nker(f)=0, a non-
trivial translation by an element of H(L) induces a nonzero element
of H(E). Hence H (L) is a subgroup of H(E). We have |H(L)|=
d?, hence |H(E)|>d? There exists a level subgroup of order
d>d. If we had |H(E)|>d? then there would exist an isogeny
¢ : X—Z of degree d and a vector bundle E over Z such that
¢*(E)=E. But we have d=X%(X, E)=dX(Z,E). This is a contr-
adiction. Hence H(E)=H(L) and Z(E)=%(L). The unique
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representation of & (E) is given by H°(X, E).

Prorostion 6.5. Let E be a holomorphic vector bundle of rank r
over an abelian surface X. Then the following conditions are
equivalent

(1) E is a simple homogeneous vector bundle over X,

(2) E is an indecomposable projectively flat vector bundle over
X,

(3) E is stable and satisfies c,(End(E)) =0,

(4) E is Gieseker stable and satisfies c,(End(E)) =0,

(5) E is simple and satisfies c,(End(E)) =0,

(6) dimcH' (X, End(E))=(5) for all j=1,2,,g,

(7) H(X,Q=H'(X, End(E)) for all j,

(8) There exists an isogeny f: Y—X of abelian surfaces and
an ample line bundle M over Y such that H(M) N\ker(f)=0 and
E is isomorphic to the direct image f«(M),

(9) E is simple and, for any ample line bundle L over X and
for any sufficiently large integer n, we have the exiension of
the Heisenberg group

0—>C*—Z (EQL") —> H(ERQL") —>0.
such that the paiving e*®*(x,y) is nondegenerate and |H(EQL®) | =

Lm(X, (det EYQL™)?,

(10) E is simple and the same assertion as in (9) holds for an
ample line bundle L and for infinitely many n>0.

Proof. The equivalence of (1), (2), ---, (8) follows from Theorem
5.12 and the equation c,(End(E))=— (@ —1c,(E)?+2rc,(E). In
order to prove (8)=(9), we let E be a simple vector bundle of
rank 7 and let L be an ample line bundle over X, By (8), EQRL"
is isomorphic to the direct image of MK [f*(L"). Let x&ker(f)N
HMKf*(L")). Then we have

MRf*(IN=TXMRSOf*(LN=T*M)QTsf*(L"
=TI(M)QS*(L").
Hence M is isomorphic to TX(L), ie., xcker(/)NHM). It
follows that x=0. As in (6.4), we have the inequality
|[HMQf* (L)) | <|H(EQL™) .
According to the descent theory, if MQf*(L") is an ample line
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bundle, then we get | H(MQf* (LY)=H(EQL" and |H(EQL") |=
(X, EQL")?, By the Riemann-Roch theorem,

10 (X, EQL) =+ (EQL) —co(EQ L")
=L c(B) + (L) +ney(B) (D)

“—-—C§ (E®L") = ci((det E)QL™)

Thus we have | H(EQL?)|= 1 (X, (det EY®QL™). Obviously (9)

implies (10). Thus the proof is complete only if we show that (10)
implies (5). We assume that (10) holds. Then there exists an
integer # and an ample line bundle L over X such that H*(X, E®Q

- IM0,- HI(X, EQL) =0, -i=1,2,..and 0—C*->Z (EQL)—-HERQ

L% —( is a Heisenberg group and | H (EQLH|| =#h° (X, (det EYQL™)2,

-Since EQL" is simple,
X(End (E®L")) =h° (X End (EQL™)—h (X, End(E ®L"))
, 42X, End(EQ L)
=2—h (X, End(E))<0.
By the Riemann-Roch theorem,
%(End (E®L")) =—C; (End (EQL™)
=(F—DG(EQL") —2rc,(EQL",

Thus (r D(EQLY) — 2re; (E@L") <0. Then we have

1<n (E®L") =—61 (E®L") —C; (E®L")
)

é""“cl

C% (E®L") = lH (E®L") 1%,
since E(ERL") is a He1senberg group and H° (X E®L") is a
representatlon of ?(E@L") in Wthh C* acts by its natural

character, h°(E®L") is divisible by IH (E@L") l7 By the above
mequahty, we have

(X, EQLY) = | HEQL) |
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By the assumtion, we have
WX, EQL) = c(EQL).
By the way, by the Riemann-Roch theorem, we have
(X, EQL?) = (EQLY) —co(EQL).

Hence we obtain
(r—D(EQLY) —2rc, (ERQL™ =0.
So we get the equation
¢, (End(E)) =— (r—1)ci{(E) +2rc,(E) =0.

Remark 6.6. Indeed, the classification of projectively flat vector
bundles over a complex torus cerresponds to that of representations
of the Heisenberg group. Matsushima [2] described the holomorphic
vector bundles defined by the representation of the Heisenberg group.

FivaL Remark 6. 7. It is very interesting to characterize the auto-
morphic factors corresponding to stable vector bundles over complex
torus. The author believes that a characterization of those automor-
phic factors will be useful in the study of vector-valued theta
functions.
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