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AMALGAMATION IN CERTAIN SMALL VARIETIES

Perer Bruyns anp Henry Rose'

Introduction

This paper is concerned with amalgamation classes of residually
small varieties. Congruence distributive varieties are considered in
section 3. Here we prove the result implicit in Day [5]: if & is a
congruence distributive variety generated by a finite simple algebra
then o satisfies the amalgamation property.

Section four is concerned with amalgamation classes of abelian
group varieties. Here it is shown that every proper subvariety of
the variety of all abelian groups satisfies the amalgamation
property. The concluding section contains some open problems
suggested by the results of the paper,

1. Preliminaries

Congruences

The congruence lattice of an algebra A is denoted by Con(A4).
We use the symbol 4 for the trivial congruence, Given #=Con(A)
we shall say that

(1) # is non-zero if for some g, b=A with aZb we have

(a,b)=0,
(2) 6 is a B-congruence on A if A/6=B for some algebra B.
(3) 6 is filtral if A=T1 A; is a product of algebras and @ is

iel
induced by some ultrafilter on 1.
Algebras with a unique smallest non-zero congruence are called
subdirectly irreducible. The well-known result of G. Birkhoff
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states that every nontrivial algebra is either subdirectly irreducible

or has a subdirect decomposition via its subdirectly irreducible
images.

Absolute retracts and essential extensions

The symbohsm AgB (f embeds A into B) indicates that an
algebra B is an extension of A. An extension B of an algebra A
is said to be essential if each non-zero congrience of B restricts
to a -non-zero congruence of A, An algebra A% is said to be
an absolute retract in % 1f for any embedding f : A—B, there

is an epimorphism g : B—»A such that gf is the identity map on
A

The next result can be found in [12].

Prorosition 1.1. (1) An essential extension of a_subdirectly irre-
ducible algebra is. subdirectly irreducible.

(2) If B is an extension of A then among the congruences 0 on
B with 0/A=FA there is a maximal one 0, and the extension -
A<LB/8, is essential.

(3) An algebra has a proper essentzal extension iff it is not an
absolute retract.

Varieties '
A variety of algebras is denoted by . The followmg two facts
are well-known

(1) o is closed under the formation of products subalgebras
and homomorphic 1mages

)] Every member of 2 is a subdirect product of subdirectly
irreducible members of 7. Call 7~ congruence distributive
if, for any AE%‘ Con(A) is a distributive lattice.

THEOREM 1. 2. (lesen—Rose [9D. Let o be a congruence distribu-
tive variety and assume that every member of ¥ has a one-element
subalgebra. Then every direct product of absolute retracts in ¥~
is an absolute retract in .

Amalgamatlon in a Yarlety‘

By a diagram in a variety 2 we mean a quintuple (4, f, B, g,C)
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with A,B,C=» and f:A-B, g:A—-C embeddings. By an
amalgam of this diagram in % we mean a triple (D, f, g:) with
D&y and with f, : B—D, g,:(C—D embeddings such that f;f=
g.2. If such an amalgam exists, we say that the diagram can be
amalgamated in . An algebra A=< is called an amalgamation
base for 2 if every diagram (A4, f,B,g,C) can be amalgamated
in ¢, The class of all amalgamation bases for ¢ is called the
amalgamation class and denoted by Amal(e»). The variety ¥
is said to satisfy the amalgamation property if ¥ =Amal(¥").

Amalgamation classes of varieties (more generally of elementary
classes) were studied by Yasuhara [17]. In particular we have
the following

Turorem 1. 3. (1) Amal() is a proper class
(2) The complement of Amal() is closed under ultrapowers
(3) Every absolute retract of o belongs to Amal(z).

CoroLLarY 1.4. Amal() is elementary iff it is closed under
ultraproducts.

Proof. A class o is elementary iff 9 is closed under ultra-
products and isomorphisms and the complement of % is closed

under ultrapowers (see [5] Corollary 6.1.16). Theorem 1.3 (2)
vields the result,

The following lemma makes the problem of amalgamating a
diagram somewhat more accessible.

Lemma 1.5 (Gritzer and Lakser [8]). A diagram (A, f, B, g,C)
in a variety o can be amalgamated iff for all u#vcB there
exists Dey~ and homomorphisms f' : B—>D and g’ : C—D such
that f-f =g'-g and f(u)=f'(v) and the same holds for C.

For our next result we assume that every member of ¢ has a
one-element subalgebra.

Consider a product A=-]] A, of members of ¢~. For each y=a

7=

we have an embedding 7 : A4,—A where for a,=A, and p=y the g*

coordinate of 7(a;) is an element e,=A, with {e;} a one-element
subalgebra of A,
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Let B =_EHI S; be a product of subdirectly irreducible members of

o and assume that f: A—B is a subdirect decomposition. Then
for each yEa there is a subset I, of I and an embedding f-7 : A,—
Il S;=B,<B. For the next lemma we assume that A,.cAmal(y)

iclr

for any r&a.

Lemma 1.6, Lef f: A—>B and g : A~C be subdirect decomposi-
tions. Then the diagram (A, f, B, g,C) can be amalgamated in & .

Proof. For yEa let (D, h,, K,) be an amalgam of (4, f-7, B,
2'7,C). Let D, h and K be products of D,/s, &’s and K/s.
Then (D, h, K) is an amalgam of (A, f, B, g, ). '

2. Residually small varieties
A variety o is said to be mfeéi'd“ﬁally small if 9 satisfies the
two equivalent conditions of the following theorem:

Tueorem 2. 1. (Taylor [161). (1) There exists a cardinal a such
that every subdirectly irreducible member of ¥~ has cardin-
ality < a.

(2) Every member of ¥ has a maximal essential extension. in
&

Combining Proposition 1.1 and Theorem 2.1 we have the follo-
wing:

CoroLLARY 2. 2. Let # be a residually small variety. Then every
subdirectly irreducible member of » has a maximal essential
extension which is subdirectly irreducible. Moreover, every such
maximal essential extension is an absolute retract in ¥ and
therefore does not have proper essential extensions.

We define a maximal irreducible algebra in a variety ¢ to be a
subdirectly irreducible algebra of ¢ with no essential extensions
in . Let 9y, be the class of all maximal irreducibles in o and
P(o7u;) be the class of all products of members of oy,

CoroLLARY 2.3. Let o be a residually small variety. Then every

— 86—
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subdirectly irveducible member of 9 has a maximal essential
extension in 9y and therefore every member of ¥ is embeddable
in a member of P(ory;).

CoroLLary 2. 4. Let A be a member of a vesidually small variety
. Then A= Amal(>) if and only if for any two embeddings
f i1 A-B&eP(yy) and g: A—>C&=P(wy:) the diagram (A, f, B,
2,C) can be amalgamated in .

Proof. The condition is clearly necessary. To prove sufficiency,
observe that if f: A—B'Ey and g : A—>C&%  are two embeddings
then, since B’<<B and C<C’ for some B, C=P(oy,;) (see Corollary
2.3), the diagrams (A4, f,B’,g,C’) and (A, f, B, g,C) have the
same amalgam in .

DeriniTion 2.5. (1) An algebra A9, is said to be injective in
7 if for any embedding f : B—~»(C&% and any homomorphism g :
B— A there is a homomorphism % : C—A such that g=h-f.

(2) Let # be a residually 'small variety. An algebra Aco is
said to satisfy the property (&) if for any homomorphism g :
A—Meyy, and any embedding f: A—B&o- there is a homo-
morphism s : B—~M such that g=#-f.

The following result is crucial in our investigations.

Lemma 2.6 (Bergman [1]). Let o be a residually small variety
and Acs. If A satisfies the property (Q) then A< Amal(¥).

CoroLLaRY 2.7. Let o be a residually small variety and assume
that every member of 2w 1S injective in . Then ¥ satisfies
the amalgamation property.

For the rest of this section we assume that ¢ is a residually
small variety satisfying the following three conditions:
( * ) Every member of 2 has a one-element subalgebra
(**) If A=Amal(zr) then A is a subdirect product of subdire-
ctly irreducible members of Amal()
(***) If B is a product of subdirectly irreducible members of
Amal(¢) then B&Amal(e).
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Remark 2. 8.
(a) It follows from (***), Theorem 1.3 (3) and Corollary 2.2
that P(97u) CAmal().
(8) By (*) every factor of a product is embeddable in a product.

Lemma 2.9. Let A be a subdirect product of subdirectly irredu-
cible members of Amal(¥). Then AcAmal(y) if and only if
any diagram (A,b,B,c,C) can be amalgamated in v, where b:
A—B and ¢ : A—C are subdirect decompositions of A.

Proof. Clearly the condition is necessary. We shall use Corollary
2.3 to prove the sufficiency. Let d : A—D and ¢ : A—»E be embe-
ddings where D, E<=P(sy;). The embeddings d and ¢ induce
subdirect decompositions b : A—»B and ¢ : A—C (see figure 1). It

follows from Lemma 1.5 that there are embeddings d’ : B—»D and
¢ T C—E suchthat d7vb=d and e">c=e. By our-assumption (A4;5b; -
B,c,C) has an amalgam (F,c¢’,b’). By Corollary 2.3 we may
assume that Fe=P(gry,). It follows that FeAmal(y) by the
Remark 2.8. The assumption of our lemma and Corollary 2.4
imply that the diagrams (B,¥,F,d’,D) and (C,é¢,E,c, F) have
amalgams (G, f,g) and (H,h,s) in 9. Since FeAmal(y) the

K k
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FIGURE 1.
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diagram (F, f,G,s, H) has an amalgam (K,t, k) and so (K, kg, th)
is an amalgam of (A,d,D,e, E).

TreOREM 2. 10. Amal(e) is closed under direct products.
Proof. Follows directly from Lemmas 1.6 and 2. 9.

ExampLe 2. 11. The “smallest non-modular lattice”, the so-called
pentagon, is pictured below in figure 2. Let ¢ be a variety
generated by the pentagon. It follows from a resuit of C. Bergman
([11]) that every member of Amal(»’) is a subdirect power of
the pentagon. Since the pentagon is the only maximal subdirectly
irreducible member of ¢ it follows from Theorem 2,10 that
Amal(e) is closed under direct products.

FIGURE 2.
3. Congruence distributive varieties

All algebras and varieties in this section are assumed to be
congruence distributive.

The following result of Jonsson is fundamental for congruence
distributive algebras and varieties.

TueoreM 3.1 (Joénsson [10]). (1) Let A=HOA; be a product of
algebras and B<LA. If 0=Con(B) s such that B/0 is subdirectly
irreducible then there is a filtral congruence ¢ on A such that
o/BC4.

(2) If & is a variety gemervated by a finite algebra A then
every subdirectly irreducible member of 9 is an image of a
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subalgebra of A.

CororLLary 3.2. Let K' be a direct power of a finite subdirectly
irreducible algebra K. Then ¢ is a K-congruence on K' if and
only if ¢ is filtral.

Proof. If ¢ is filtral then K//p=K (see for instance [4] Coroll-
ary 4.2.5). Since K is a finite algebra the converse follows from
Theorem 3.1 (1).

CoroLLaRY 3.3. Let o be a variety gemerated by a fuite subdi-
rectly irreducible algebra K and assume that every subdirectly
irreducible member of o is embeddable in K. If ALBEy then
every K-congruence on A can be extended to a K-congruence on B,

Proof. Let B—-IIS; be a subdirect decomposition. By assumption
S; can be embedded in K for each i€l so that A<B<K! If
0=Con(A4) with A/0=K then, since K is subdirectly irreducible
and finite, it follows from Theorem 3.1 (1) that ¢/A=8# for some
filtral congruence ¢ on K'. By Corollary 3.2 ¢ is a K-congruence
on K' so that ¢/B is a K-congruence on B and so it is a K-
congruence on A,

We are now ready to prove the following

TreoreM 3.4 (c.f. Day [4]). Let o be a congruence distributive
variely generated by a finite subdirectly irreducible algebra K.
Suppose further that K has no mnon-trivial subalgebras. Then K
is injective in ¥~ so that every member of 9 satisfies the property
() and therefore o satisfies the amalgamation property.

Proof. It follows from Theorem 3.1 (2) that K is the only
subdirectly irreducible member of 9. The result follows from
Corollaries 3.3 and 2.7.

Exameie 3.5, The following two facts about lattices are well-
known: (1) Lattices are congruence distributive algebras and (2)
up to isomorphism the two-element chain is the only subdirectly
irreducible distributive lattice.

Thus by Theorem 3.4 the variety of all distributive lattices
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satisfies the amalgamation property. This was first proved by
Pierce [15].

4. Varieties of abelian groups

Call a variety 9 of groups abelian if every member of & is an
abelian group. Note that, if G is an abelian group, Con(G) is the
subgroup lattice of G. The following facts are well-known (Fuchs
[61).

(1) Every subdirectly irreducible abelian group G is isomorphic
to Z,» where p is a prime number and kCZ*U{cc}. Thus
every abelian group variety is residually small,

(2) If o is a proper subvariety of the variety of all abelian
groups then 2 is determined by the identity nx=0 (and the
abelian identity x+y=y+x).

Using 1 and 2 we have:

(3) If o is the variety of all abelian groups then 9 y;={Z,-: p
is a prime number}.

(4) If &~ is a proper subvariety of the variety of all abelian
groups, that is 2~ is determined by the identity nx=0 where
n has prime decomposition n=p,"*:--p.", then the subdirectly
irreducible members of ¢ are Z,n for i&{l,---,m} and
[;<k;. It follows that gy, ={Zsm, -, Zea'=}.

In this section we shall prove the following:

TueoreM 4. 1. Let 7 be an abelian group variety. Then every
> 1S injective in o .

CoroLLARY 4. 2. Every member of o satisfies the property (&)
and therefore ¥ satisfies the amalgamation property.

Remark 4.2. It is well-known that if ¢ is the variety of all
abelian groups then ¢~ satisfies the amalgmation property. In
Neumann [13] this is shown by defining a “generalized free
product”, If groups A and B with amalgamated subgroup C are to
satisfy the amalgamation property, Neumann examines what
conditions on A, B, and C allow the existence of the generalized
free product into which A and B can be embedded so as to have
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C as their amalgamated subgroup. It is shown that if A4, B and
C are all abelian then there always exists an abelian group P*
into which A and B can be embedded so as to have amalgamated
subgroup C. '

It is also known that Z,. is injective in the variety of all abelian
groups for each prime number p.

For our next lemma we assume that ¢ is an abelian variety
determined by the identity p*-x=0 where p is a prime number and
k is a positive integer. For an embedding f: A—Bcy and
be=(B—f(4)) we let A* be the subgroup of B generated by the
set f(A) U {8}

LemMa 4.3. Let g : A—Z,. be a homomorphism. Then there is a
homomor phism h : A*—Z . such that g=h-f.

Proof. To simplify the notation we identify A with a subgroup
f(A4) of B. Let r&Z* be such that rb=A. We have to show that,
if g(rb)=y, then there exists z&Z,. such that rz=y.

The elements 76 and y have order p°/(p%r) and p*/(P% )
respectively. Thus there exists an integer 2 such that k(p"7)=
(2", 5). Also there are relatively prime integers # and v with 7=
" r*u and p=r*v and integers s and f such that rsk+tkpr= (4", ).
If y=(p* y)k* for an integer £* then y=rskk*(mod p"). Put z=skk*
to obtain the desired element of Z,.

For the next lemma we assume that 2 is an abelian variety
determined by the identity #x=0. Let #=p,"'---p"* be a decomposi-
tion of # in terms of distinct prime numbers so that Z, =, -, Z,%
are the only members of o7y, Let f: A—»B&% be an embedding
and g : A—X a homomorphism, where X is a finite product of
members of ¥4, As before, for x&(B—f(4)) we let A* be the
subgroup generated by f(4) U{X].

Lemma 4.4. There is a homomorphism h : A*—X such that g=
h-f. ‘

Proof. As before we identify A and f(A4). Since nx=0 there
exist Xy, Xz, -+, % With %:EZ,5, x;=pf;-x for some B; and x=x;+%,
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+--++2x; Supposing f defined on rx implies therefore that f is
defined on each rx; If p; is not a prime dividing the order of the
group generated by x then f(x) =0 will do. If p; does divide this
order then, by Lemma 4.3, we may find z&Z,r which extends
f to x;. The f so obtained is a homomorphism.

CoroLLarY 4.5, Let o and X be as in Lemma 4.4. Then X is
injective in .

Proof. Let f: A—-B&% be an embedding and g: A—X a
homomorphism. For s&B let (b> be the cyclic group generated by
b. Well-order the set {<b) : b=(B—f(A))}. Apply induction, using
Lemma 4,4 on successor stages and taking the union of increasing
chains of subgroups and homomorphisms on limit stages.

Proof of ThHeorem 4.1. The second statement of the theorem
follows from the first (see Corollary 2.7). If & is the variety of
all abelian groups then for any prime p, the group Z,. is injective,
If & is a proper subvariety of the variety of all abelian groups
the result follows from Corollary 4. 5.

5. Some open problems

5.1 For which non congruence~distributive varieties does Theorem
1.2 hold. Varieties of groups would be a possibility: although
groups are not congruence distributive algebras, they do have one-
element subalgebras,

5.2 It is shown in Jipsen & Rose [9] that if & is a residually
small congruence distributive variety whose members have a one-
element subalgebra then the members of Amal(»") are the algebras
which satisfy the property (Q). Thus, for this variety the converse
of Lemma 2.6 holds. Can one generalize this result for other
varieties?

5.3 By Theorem 4.1, for any natural number #, the abelian
group variety determined by the identity rx=0 satisfies the amalg-
amation property. On the other hand it is shown in Neumann [14]
that, for n=4, the amalgam of two groups of exponent 4 cannot
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have exponent 4. Thus for n=4 the variety of groups determined
by the identity x*=e fails to satisfy the amalgamation property.
For which n does it satisfy this property? Can one characterize the
amalgamation class of such varieties? Are they residually small?

5.4 It will be interesting to find the necessary and sufficient
conditions for amalgamation classes of varieties of particular
algebras (e.g. groups or lattices) to be elementary. The residually
small varieties are probably the most accessible for this sort of
problem. For instance, if 9 is a variety from Theorem 2.1 and
Amal(9) is closed under homomorphic images, then, by Corollary
1.4, Amal(s») is elementary. Examples of varieties whose amalg-
amation class is (not) elementary can be found in Bergman™[1]

([3D.
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