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THE CANONICAL DECOMPOSITION OF SIEGEL
MODULAR FORMS 1*

MYUNG-HWAN KIM

Introduction

Let M~ (q, X) be the space of Siegel modular forms of degree n,
weight k, level q, and character X, where n, k, q are positive integers
and X is a Dirichlet character modulo q. The purpose of this article
is to show that M~ (q, X) can be decomposed into n+1 subspaces which
are pairwise orthogonal with respect to· the so called canonical inner
product. Actually, we prove this for more general space, namely,
M~ (r, X), where r is any congruence subgroup of the symplectic group
SPn(Z) of level q.

Evdokimov[l], in 1981, gave a proof of this on the way of proving
that M~ (r, X) has a simultanuous eigenbasis with respect to all the
Hecke operators from a certain Hecke ring. But unfortunately, his
proof contains a mistake in defining the canonical inner product, and as
a consequence his proof of the existence of such eigenbasis needs a
major correction.

In this article, the mistakes are corrected to get the canonical decom­
position of M~ (r, X) (section 3.) and some useful theorems on the
decomposition are given.

Let Z, Q, R, and C be the ring of rational integers, the field of
rational numbers, the field of real numcers, and the £eld of complEx
numbers, respectively.

Let Mm,n(A) be the set of all mXn matrices over A, a commutative
ring. with 1, and let Mn(A) = Mn.n(A). Let GLn(A) and SLn(A) ce the
group of invertible matrices in M n (A) and its subgroup consisting of
matrices of determinant 1, respectively. For MEMm(A), NEMm,n(A),
let M[N]=tNMN, where IN is the transrose of N. Let En and On
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be the identity and the zero matrices in M n (A), respectively. Let detM
be the determinant of M. For MEM2n (A), we let AM, BM, CM, and
DM be the nXn block matrices in the upper left, upper right, lower
left, and lower right corners of M, respectively, and write M= (AM, BM;
CM, DM). Let N m be the set of all semi-positive definite (eigenvalues
~O), semi-integral (diagonal entries and twice of nondiagonal entries
are integers), symmetric m X m matrices, and N m+ be its subset consi­
sting of positive definite (eigenvalues>O) matrices.

Let Gn=GSPn+(R) = {MEM2n (R) ; In[MJ=rJn, r>O} where I n=

(On, En; -Em On) and r=r(M) is a real number determined by M. Let
rn=SPn(Z) = {MEM2n (Z) ;In[MJ=Jn}. LetHn= {Z=X+iYEMn(C);
tZ=Z, Y>O}. For MEGn and ZERn, we set

M(Z) = (AMZ+BM) (CMZ+DM)-lEHn.
For MEMn(C), let e(M) =exp (2n'il1 (M)) where I1(M) is the trace

of M.

1. Siegel modular forms

Let n, q be positive integers. We define r~=r~ (q) = {MErn ; CM
==On (modq)}and r~=r~(q)={MErn:M E2n (modg)}.

Let F be an arbitrary complex valued function on H m and let M­
(A, B; C, D) EGn• We set

(1.1) (FI kM) (Z) = (detM)k-cn+I)/2(det(CZ+D) )-kF(M<Z»
where ZEHn and k is a positive integer. Note that FlkMis holomorphic
on Rn if F is. Also note that FlkMdkM2=FlkMlM2 for Mh M2EGn•

Let X: (Z/qZ)X~CX be a Dirichlet character modulo g. A function
F : Hn~C is called a Siegel modular form of weight k, degree n,
level g, and character X if (i) F is holomorphic on R m (ii) FI kM=
X(detDM ) ·F for any MEr~, and (iii) if n=l, (cz+d)-kF«az+b)
(CZ+d)-l) is bounded as Im(z)~+oo for any matrix (a, b ; c, d) E

r1=SL2 (Z). The set of all such forms is denoted by MHg, X). This
is a finite dimensional vector space over C. (See [2].) We define
M~ (g) by the set of all F: Rn ~ C satisfying (i), (iii), and (ii) ,
FlkM F for any MEr~. M~ (g) is also a finite dimensional vector
space over C. Note that M~ (g, X) cM~ (q).

It is known [3J that every FEM~ (q), hence every FEM~ (q, X),
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has a Fourer expansion of the form
(1. 2) F(Z) = I; f(N)e(NZfq), ZERn•

NeNn

2. The Siegel operator

Let 0::::: r::::: n and let G ~ be the r-th Satake group ([4J, Expose
12), i. e. ,

(
AI 0 BI B12)

(2.1) G~= {MErn ; M= A ZI A z BZI Bz
Cl 0 D l D IZ

o 0 0 D z

with Al> Bl> Cl> Dl> DIE Mr (Z) }.

The matrix M l = (Al> BI ; Cl> DI) Er and the map w~ : G~ ~ r
defined by w~ (M) =MI is a surjective group homomorphism. Note that
w~ (r~ nG~) =r~ for i=O, 1.

Let F : Rn ~ e be an arbitrary function with Fourier expansion (1. 2).
The Siegel operator rp is defined by

(2.2) (rpF)(Z') = p~ F (~' ?A) = N'~N"_/ (~' ~)e(N'Z' f q)

where Z' ERn_I. A>O. For O:::::r:::::n, we define rpr by rpo=the identity
operator, rpr=rporpr-l for l:::::r:::::n. Let MEG~ of the form (2.1).
Then it is easy to see that

(2.3) rpn-T(FlkM ) = (detDz)-k rpn-rFlk(W~(M)).

Let FEM~ (q, X) and M l Er~ and let M be any matrix in r~ nG~

of the form (2.1) such that w~ (M) =MI. Then from (2.3) and
the condition (ii) follows

(2.4) (rpn-TF) IkMI= (detDz)k X(detDM)rpn-TF.
So rpn-rFEM~ (q, Xr) where Xr(detDI) = (detDz)k X(detDM) which is
independent of the choice of M according to (2. 3). Moreover, since
we can choose M such that detDM=detDI and detDz=l, we get

(2.5) rpn-TFEM~(q,X) if FEM~(q,X).

Similar argument shows that
(2.6) rpn-TEM~(q) if FEM~(q).

Let r be a congruence subgroup of level q, i. e., r~crcr.

Let X be a character: r-4 ex such that X(rD =1. We set MkCr, X)
to be the set of all F: Rn ~ e satisfying the conditions (i), (iii),
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and (ii)" FlkM=X(M)F for any MEF. This is also a finite dimens­
ional vector space over C. So under this definition, Siegel modular
spaces M Hq, X) and M~ (q) can be identified with M~ (F~, X) and
M~ (F~, Xo) where Xo is the trivial character. For convenience we set
MHF, X) =C, FO=l, and Ho to be a single point.
Let FEM~(F,X) and MIEw~(FnGn. Take any MEFnG~ of the
form (2.1) such that w~ (M) =M1. Then

(2. 7) (/)n-rFE M ~ (F,., X,.)
where F,.=w ~ (rn Gn and X,. is a character on Fn G~ defined by
X,. (M1) = (detD2)k X(M). Again (2.3) guarantees the independence of
X,. under the choice of M.

Let MEFn. Then
(2.8) FlkMEMHFM,XM)

where FM=M-1rM and XM is a character on M-IFM defined by
XM(M) =X(MMM-l) for MEM-IFM. Combining (2.7) and (2.8),
we get

(2.9) (/)n-r(FlkM) EM~ (F~, X~)

where F~=w~ (M-IFMn G~ and X~= (XM),..
We denote M~((F~)M,XM) and M~((F~)~,X~) by M~(qM,XM)

and M ~ (q~, X~), respectively. (2. 6) shows that M ~ ((F~),., X,.) =

M~ (q, X). It's easy to see that M~ ((FD M, XM) =M~ (q) and
M~((FD~, (Xo)~=M~((FD,., (Xo),.)=M~(q).

3. The canonical decomposition

FEMk(F,X) is called a cusp form if (/)(FlkM ) =0 for all MEr-.
For F, GEM~ (F, X), we set

(3.1) (F, G)o=f F(Z)G(Z) (dety)kdZ
Dcn

where D(F) is a fundamental domain of Fin H m Z=X+iYEHm

and dZ= (dety)-n-1dXdY is the Gn-invariant volume element on H n•

If either F or G is a cusp form, then the pairing (3. 1) is a well
defined non-degenerate Hermitian inner product ([4J, Expose 7) and
is called the Maass-Petersson inner product on M ~ (F, X). But otherwise,
the pairing (3.1) is meaningless.

We now construct a positive definite Hermitian inner product which
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is meaningful on the whole space M ~ CF, X).
Let G~ CF, X) be the subspace of M~ CF, X) consisting of all the cusp

forms. If FEM~ CF, X), then F can be written uniquely in the form
F=F' +Fn where FnEG~ CF, X) and F' is contained in the orthogonal
complement of GkCF, X) in M kCF, X) with respect to the Maass-Pete­
rsson inner proudct. We call Fn the cusp part of F. We set

C3.2) CF, G) = i:: 1:; er: F~-l(C<PM'F)r>C<PM'G)r)
r=O MEF\rn 0

where <PM'F=<Pn-'CFlkM), C<PM'F)r is the cusp part of <PM'F, and
C-, - ) 0 is the Maass-Petersson inner product on the space
MkCF~,X~.

THEORME 3.1. The pairing C3.2) is a well defined positive definite
Hermitian inner product on the whole space M~ CF, X), which is called
the canonical inner product on the space.

Proof. Since FM, XM are independent of the choice of representative
M of the left coset FM with MEFn, so are the index er : F~J and
the space M k CFAf, xAf). The Maass-Petersson inner product C-, -) 0

is also independent of the choice of M because IX(M') I= 1 for any
M' E F. So (3. 2) is a well defined Hermitian inner product. The
positive definiteness follows immediately from (2. 2) and the obvious
fact that (-, -) 0 is positive definite when restricted to cusp forms.
The theo rem is proved.

We now decompose M k(F, X) into n+ 1 mutually orthogonal subspaces
with respect to the canonical inner product. For O:S::r:S::n, we set

(3.3) M/:"CF,X)={FEM~(F,X);<PM'F is a cusp form for every

MEFn such that (F, st+l M'j(sCF, X) ) =0 if r*n }.

Observe that M/:,nCF,X)=G~(F,X).

THEOREM 3.2. For O:S::r:S::n-l,

(3.4) M/:"(F, X) = {FEM~ (F, X) ; <PMFE 'f:M/:-l,S(F::-r, X::- 1)

such that (F, };'+IM'/,'S(F,X) )=O}.
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Proof. Let the right sides of C3. 3) and C3. 4) be A and B.
We use induction on n. For n=l it is well known [5J that the lemma
holds. Let n>l. It is clear that BcA. Suppose FEA-B.Then there

n-1,$

exists M such that (/)MF is not contained in L; MrlCF~h X~l). But
s=r

then from the induction hypothesis and C2. 3) follows that (/)"i{!F is
not a cusp form for some M' EF", which is impossible, whence
AcB.

When n=l, M}'oCr, X) and M}I(F, X) coincide with the subspaces
of classical Eisenstein series [5J and cusp forms [6]. Furthermore, they
are orthogonal to each other with respect to Maass-Petersson inner
product as well as to the canonical inner product. This can be
generalized for arbitrary.n. More precisely.

THEOREM 3.3. The space Mi CF, X) is decomposed into n+1 subspaces
MVCF, X), O::::::::r::::::::n, which are pairwise orthogonal with respect to the
canonical inner product.

Proof. From Theorem 3. 2. and induction on n, the theorem follows.

Maass[7J proved this for M kCF, Xo).

"We write MkCF,X)=l-M'i"CF,X) and call it the canonical decom-
r=O

position of M kCF, X). the subspace M~·rCF, X) is called the r-th
canonical subspace of Mi CF, X) for each r=O, ... , n.

4. Some theorems

Let P, GEMi CF, X) such that at least one of which is a cusp form,
say, G. Since (/)k G=O for s>O,

C4.1) CF, G) = L; [F": FMJ-1(CFlkM)n, CGlkM)n) .
MEr\r' 0

THEOREM 4.1. If FEMi Cr,X) , then F'lkM CFlkM)' and FnlkM
=CF!kM)n for any MEF".
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Proof. The second equality follows from the definition of a cusp
form. For F, GEM ~ (F, X), at least one of which is a cusp form, it
is easy to see that (FI kM, G IkM) 0= (F, G) 0 where the former pairing
is the Mass-Petersson inner product on M~ (FM, XM) and the latter
is that on M~ (F, X). The first equality follows.

THEOREM 4. 2. For F, GEM ~ (F, X), at least one of which is a cusp
form, the canonical inner product coincide with the Maass-Petersson
inner product.

Proof. Let G be a cusp form. Since ((FlkM)m (GlkM)n)o=
(FnlpM, GnlkM)o= (Fm Gn)o= (Fm G)o= (Fm G)o+ (F', G)o= (F, G)o,

from (4. 1) we have (F,G)= L: [Fn: FM]-l(F,G)o' [Fn : FM] =
MEr\r·

[Fn : F] for any MEr. The theorem is proved.

Let ME.Fn be given. Let T M : M~ (F, X) --) M~ (FM, XM) be a homo­
morphism defined by TM(F) =FlkM. It is easy to see that T M is an
isomorphism that preserves the canonical inner product and hence the
canonical decomposition, i. e. ,

(4.2) (F, G) = (FlkM, GlkM) = (TMF, TMG)
where the left canonical inner product is on M~ (F, X) and the right
is on M~ (FM, XM), and

(4. 3) TM(M~ (F, X» = MkCFM, XM).
Let r' be a congruence subgroup contained in F and let X' be the

restriction of X to r'. Then M ~ (F, X) c M ~ (r', X').

THEOREM 4. 3. For F, GEM ~ (F, X) ,
(4.4) (F,G)=[F: r']-l(F,G)'
where the left canonical inner product is on M~ (F, X) and the right is

on M~ (r', X').

Proof. From (3.1) follows that (F, G)o= [F: r']-l(F, G) 0' where
(-, -) 0' is the Maass-Petersson inner product on M ~ (r', X'). Let
{Nil i=1,2,ooo,mcF, {Mj}j~1,2,•.• ,ICr I::e full sets of left coset repre­

sentatives of r'\F, F\Fn. Then {NiMj } is a full set of left cmd

representatives of r'\Fn. For each Osrsn, NE {Ni}, ME {Mj },

we have (rJ>'NMF)r= (rJ>n-rFlkNM)r=X(N) (rJ>'MrF)r' Similary, (rJ>'NMG)r
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=X(N) (rJ>'MTG)T' Since (-, -)0' is Hermitian and IX(N) 1=1,
((rJ>NMF)T> (rJ>'NMG)r)!= ((rJ>'MTF)r, (<1J'M rG)r)!' So
[rr: (r');-'MJ-1((rJ>NMF)n (rJ>'NMG)r)o'=[rr: r~]-l((rp'MrF)T> (rJ>'MrG)r)o
and hence from (3. 2) follows (F, G)' = m (F, G) = [r: r'] (F, G) which
proves the theorem.

THEOREM 4.4. For each O~r~n, we have
(4.5) M'r(r, X) =MV(r', X') nMHr, X),
Proof. We use induction on s=n-r. For s=O (n=r) , (4.5) follows

immediately from (3. 3) and Theorem 4. 3. Let F be in the right side

of (4.5) and GE t MZ'S(r, X) for r<n. From induction hypothesis
s=r+l

(F,G)=[r: r']-l(F,G)'=O. So from (3.3), FEM~,r(r,X). To
"show the reverse inclusion, let FEM~,r(r,x). Then FE~ MZ'S(r',X').

&=r
n

Write F=Fr+G where FrEM~;r(r',X') and GE ~ M~'s(F',X').
3=r+1

From induction hypothesis 0= (F, G)' . (Fr+G,G)'=(G,G)'. So G=O
and F=FrEM;.,r(r', X'). The theorem follows.

According to equalities (4.2), (4.3) and Theorems 4. 3., 4.4., when
one needs to prove a certain property related to the canonical inner
product and decomposition on M'k (r, X), in particular, on M'k (q, X),
it suffices to prove it for M'k (q).

Finally, we prove the invariance of the r-th canonical subspace of
M k(r, X) under the action IkM for MEr.

THEOREM 4.5. If F is in Mv(r, X), then so is FlkM for any MErn.

Proof. As the remark above, it is enough to show the theorem for
FEMk(q). It is clear that FlkMEM'k (q). Again we use induction
on s':'-n-r. rJ>'M/F is a cusp form for each M' Ern. If M' runs over
rn, then so does MM'. So rJ>jrM,F=rJ>U;T(FlkM) is also a cusp form
for each MErn and hence it suffices to show

n

(4.6) (FlkM, G) =0 for any GE ~ M'k,s(q) for O~r<n.
s:;-r+1

From (3. 2) we get

. (4.7) (FlkM, G) = t ~ [rr: r~]-l((rJ>Mr(FIkM))r, CrJ>';;/G)r)o'
T=OO M'Er'J\rn
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where f(-, -) 0 is the Maass-Petersson inner product on M ~ (q),
because (r~)';t'=J'~. If M' runs over a full set of representatives of
J'~\J'n, then so dose M-IM'. Substitution of M' by M-IM' In

(4.7) yields (FI kM, G) = (F, G IkM-I). From induction hypothesis
(F, G IkM-I) =0. So (4.6) and hence the theorem follows.
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