THE CANONICAL DECOMPOSITION OF SIEGEL MODULAR FORMS 1*

Myung-Hwan Kim

Introduction

Let $M_k^n(q, \chi)$ be the space of Siegel modular forms of degree n, weight k, level q, and character χ , where n, k, q are positive integers and χ is a Dirichlet character modulo q. The purpose of this article is to show that $M_k^n(q, \chi)$ can be decomposed into n+1 subspaces which are pairwise orthogonal with respect to the so called canonical inner product. Actually, we prove this for more general space, namely, $M_k^n(\Gamma, \chi)$, where Γ is any congruence subgroup of the symplectic group $Sp_n(\mathbf{Z})$ of level q.

Evdokimov[1], in 1981, gave a proof of this on the way of proving that $M_k^n(\Gamma, X)$ has a simultanuous eigenbasis with respect to all the Hecke operators from a certain Hecke ring. But unfortunately, his proof contains a mistake in defining the canonical inner product, and as a consequence his proof of the existence of such eigenbasis needs a major correction.

In this article, the mistakes are corrected to get the canonical decomposition of $M_k^n(\Gamma, \chi)$ (section 3.) and some useful theorems on the decomposition are given.

Let Z, Q, R, and C be the ring of rational integers, the field of rational numbers, the field of real numbers, and the field of complex numbers, respectively.

Let $M_{m,n}(A)$ be the set of all $m \times n$ matrices over A, a commutative ring with 1, and let $M_n(A) = M_{n,n}(A)$. Let $GL_n(A)$ and $SL_n(A)$ be the group of invertible matrices in $M_n(A)$ and its subgroup consisting of matrices of determinant 1, respectively. For $M \in M_m(A)$, $N \in M_{m,n}(A)$, let $M \lceil N \rceil = {}^t N M N$, where ${}^t N$ is the transpose of N. Let E_n and 0_n

Received May 27, 1988.

^{*}This was partially supported by KOSEF research grant (Grant No. 873-0101-002-1).

be the identity and the zero matrices in $M_n(A)$, respectively. Let $\det M$ be the determinant of M. For $M \in M_{2n}(A)$, we let A_M , B_M , C_M , and D_M be the $n \times n$ block matrices in the upper left, upper right, lower left, and lower right corners of M, respectively, and write $M = (A_M, B_M; C_M, D_M)$. Let N_m be the set of all semi-positive definite (eigenvalues ≥ 0), semi-integral (diagonal entries and twice of nondiagonal entries are integers), symmetric $m \times m$ matrices, and N_m be its subset consisting of positive definite (eigenvalues ≥ 0) matrices.

Let $G_n = GSp_n^+(\mathbf{R}) = \{M \in M_{2n}(\mathbf{R}) : J_n[M] = rJ_n, r>0\}$ where $J_n = (0_n, E_n; -E_n, 0_n)$ and r = r(M) is a real number determined by M. Let $\Gamma^n = Sp_n(\mathbf{Z}) = \{M \in M_{2n}(\mathbf{Z}) : J_n[M] = J_n\}$. Let $H_n = \{Z = X + iY \in M_n(\mathbf{C}) : tZ = Z, Y > 0\}$. For $M \in G_n$ and $Z \in H_n$, we set

$$M(Z) = (A_M Z + B_M) (C_M Z + D_M)^{-1} \in H_{n}$$

For $M \in M_n(\mathbb{C})$, let $e(M) = \exp(2\pi i \sigma(M))$ where $\sigma(M)$ is the trace of M.

1. Siegel modular forms

Let n, q be positive integers. We define $\Gamma_0^n = \Gamma_0^n(q) = \{M \in \Gamma^n : C_M \equiv 0_n \pmod{q}\}$ and $\Gamma_1^n = \Gamma_1^n(q) = \{M \in \Gamma^n : M \equiv E_{2n} \pmod{q}\}$.

Let F be an arbitrary complex valued function on H_n , and let $M = (A, B; C, D) \in G_n$. We set

(1.1) $(F|_kM)(Z) = (\det M)^{k-(n+1)/2}(\det(CZ+D))^{-k}F(M\langle Z\rangle)$ where $Z \in H_n$ and k is a positive integer. Note that $F|_kM$ is holomorphic on H_n if F is. Also note that $F|_kM_1|_kM_2 = F|_kM_1M_2$ for $M_1, M_2 \in G_n$.

Let $\chi: (\mathbf{Z}/q\mathbf{Z})^{\times} \to \mathbf{C}^{\times}$ be a Dirichlet character modulo q. A function $F: H_n \to \mathbf{C}$ is called a Siegel modular form of weight k, degree n, level q, and character χ if (i) F is holomorphic on H_n , (ii) $F|_k M = \chi(\det D_M) \cdot F$ for any $M \in \Gamma_0^n$, and (iii) if n=1, $(cz+d)^{-k}F((az+b)(cz+d)^{-1})$ is bounded as $\operatorname{Im}(z) \to +\infty$ for any matrix $(a,b;c,d) \in \Gamma^1 = SL_2(\mathbf{Z})$. The set of all such forms is denoted by $M_k^n(q,\chi)$. This is a finite dimensional vector space over \mathbf{C} . (See [2].) We define $M_k^n(q)$ by the set of all $F: H_n \to \mathbf{C}$ satisfying (i), (iii), and (ii)' $F|_k M = F$ for any $M \in \Gamma_1^n$. $M_k^n(q)$ is also a finite dimensional vector space over \mathbf{C} . Note that $M_k^n(q,\chi) \subset M_k^n(q)$.

It is known [3] that every $F \in M_k^n(q)$, hence every $F \in M_k^n(q, \chi)$,

has a Fourer expansion of the form

(1.2)
$$F(Z) = \sum_{N \in N_n} f(N) e(NZ/q), \quad Z \in H_n.$$

2. The Siegel operator

Let $0 \le r \le n$ and let G_r^n be the r-th Satake group ([4], Exposé 12), i.e.,

$$(2.1) \quad G_r^n = \left\{ M \in \Gamma^n \; ; \; M = \begin{pmatrix} A_1 & 0 & B_1 & B_{12} \\ A_{21} & A_2 & B_{21} & B_2 \\ C_1 & 0 & D_1 & D_{12} \\ 0 & 0 & 0 & D_2 \end{pmatrix} \right.$$

$$\text{with } A_1, B_1, C_1, D_1, \; D_1 \in M_r(\mathbf{Z}) \right\}.$$

The matrix $M_1 = (A_1, B_1; C_1, D_1) \in \Gamma^r$ and the map $w_r^n : G_r^n \to \Gamma^r$ defined by $w_r^n(M) = M_1$ is a surjective group homomorphism. Note that $w_r^n(\Gamma_r^n \cap G_r^n) = \Gamma_r^n$ for i = 0, 1.

Let $F: H_n \to \mathbb{C}$ be an arbitrary function with Fourier expansion (1.2). The Siegel operator Φ is defined by

(2. 2)
$$(\Phi F)(Z') = \lim_{\lambda \to +\infty} F\begin{pmatrix} Z' & 0 \\ 0 & i\lambda \end{pmatrix} = \sum_{N' \in N_{n-1}} f\begin{pmatrix} N' & 0 \\ 0 & 0 \end{pmatrix} e(N'Z'/q)$$
 where $Z' \in H_{n-1}$, $\lambda > 0$. For $0 \le r \le n$, we define Φ^r by Φ^0 = the identity operator, $\Phi^r = \Phi \circ \Phi^{r-1}$ for $1 \le r \le n$. Let $M \in G_r^r$ of the form (2.1).

Then it is easy to see that

(2.3)
$$\Phi^{n-r}(F|_k M) = (\det D_2)^{-k} \Phi^{n-r}F|_k (w_r^n(M))$$
.
Let $F \in M_k^n(q, \chi)$ and $M_1 \in \Gamma_0^r$ and let M be any matrix in $\Gamma_0^n \cap G_r^n$ of the form (2.1) such that $w_r^n(M) = M_1$. Then from (2.3) and the condition (ii) follows

(2.4)
$$(\Phi^{n-r}F) \mid_k M_1 = (\det D_2)^k \ \chi(\det D_M) \Phi^{n-r}F.$$

So $\Phi^{n-r}F \in M_k^r(q, \chi_r)$ where $\chi_r(\det D_1) = (\det D_2)^k \ \chi(\det D_M)$ which is independent of the choice of M according to (2.3). Moreover, since we can choose M such that $\det D_M = \det D_1$ and $\det D_2 = 1$, we get

(2.5)
$$\Phi^{n-r}F \in M_k^r(q, \chi) \text{ if } F \in M_k^n(q, \chi).$$

Similar argument shows that

$$(2.6) \Phi^{n-r} \in M_{k}^{r}(q) if F \in M_{k}^{n}(q).$$

Let Γ be a congruence subgroup of level q, i.e., $\Gamma_1^n \subset \Gamma \subset \Gamma^n$. Let χ be a character: $\Gamma \to \mathbb{C}^{\times}$ such that $\chi(\Gamma_1^n) = 1$. We set $M_k^n(\Gamma, \chi)$ to be the set of all $F: H_n \to \mathbb{C}$ satisfying the conditions (i), (iii), and (ii)" $F|_k M = \chi(M) F$ for any $M \in \Gamma$. This is also a finite dimensional vector space over C. So under this definition, Siegel modular spaces $M_k^n(q,\chi)$ and $M_k^n(q)$ can be identified with $M_k^n(\Gamma_0^n,\chi)$ and $M_k^n(\Gamma_1^n,\chi_0)$ where χ_0 is the trivial character. For convenience we set $M_k^n(\Gamma,\chi) = C$, $\Gamma^0 = 1$, and H_0 to be a single point.

Let $F \in M_k^n(\Gamma, \chi)$ and $M_1 \in w_r^n(\Gamma \cap G_r^n)$. Take any $M \in \Gamma \cap G_r^n$ of the form (2.1) such that $w_r^n(M) = M_1$. Then

$$(2.7) \Phi^{n-r} F \in M_k^r(\Gamma_r, \chi_r)$$

where $\Gamma_r = w^r$, $(\vec{\Gamma} \cap G_r^r)$ and \mathcal{X}_r is a character on $\Gamma \cap G_r^r$ defined by $\mathcal{X}_r(M_1) = (\det D_2)^k \mathcal{X}(M)$. Again (2.3) guarantees the independence of \mathcal{X}_r under the choice of M.

Let $M \in I^n$. Then

$$(2.8) F|_{k} M \in M_{k}^{n}(\Gamma^{M}, \chi^{M})$$

where $\Gamma^M = M^{-1}\Gamma M$ and χ^M is a character on $M^{-1}\Gamma M$ defined by $\chi^M(\hat{M}) = \chi(M\hat{M}M^{-1})$ for $\hat{M} \in M^{-1}\Gamma M$. Combining (2.7) and (2.8), we get

$$(2.9) \qquad \Phi^{n-r}(F|_{k}M) \in M_{k}^{r}(\Gamma_{r}^{M}, \chi_{r}^{M})$$

where $\Gamma_r^M = w_r^n (M^{-1} \Gamma M \cap G_r^n)$ and $\chi_r^M = (\chi^M)_r$.

We denote $M_k^n((\Gamma_0^n)^M, \chi^M)$ and $M_k^r((\Gamma_0^n)^M, \chi^M^r)$ by $M_k^n(q^M, \chi^M)$ and $M_k^r(q_r^M, \chi_r^M)$, respectively. (2.6) shows that $M_k^r((\Gamma_0^n)_r, \chi_r) = M_k^r(q, \chi)$. It's easy to see that $M_k^n((\Gamma_0^n)^M, \chi^M) = M_k^n(q)$ and $M_k^r((\Gamma_0^n)^M, (\chi_0^M)^M) = M_k^r((\Gamma_0^n)^r, (\chi_0)^M) = M_k^r(q)$.

3. The canonical decomposition

 $F \in M_k^n(\Gamma, \chi)$ is called a cusp form if $\Phi(F|_k M) = 0$ for all $M \in \Gamma^n$. For $F, G \in M_k^n(\Gamma, \chi)$, we set

$$(3.1) (F,G)_o = \int_{D(I)} F(Z) \overline{G(Z)} (\det Y)^k d\widetilde{Z}$$

where $D(\Gamma)$ is a fundamental domain of Γ in H_n , $Z=X+iY\in H_n$, and $d\tilde{Z}=(\det Y)^{-n-1}dXdY$ is the G_n -invariant volume element on H_n . If either F or G is a cusp form, then the pairing (3.1) is a well defined non-degenerate Hermitian inner product ([4], Exposé 7) and is called the Maass-Petersson inner product on $M_k^n(\Gamma, \chi)$. But otherwise, the pairing (3.1) is meaningless.

We now construct a positive definite Hermitian inner product which

is meaningful on the whole space $M_k^n(\Gamma, \chi)$.

Let $G_k^n(\Gamma, \chi)$ be the subspace of $M_k^n(\Gamma, \chi)$ consisting of all the cusp forms. If $F \in M_k^n(\Gamma, \chi)$, then F can be written uniquely in the form $F = F' + F_n$ where $F_n \in G_k^n(\Gamma, \chi)$ and F' is contained in the orthogonal complement of $G_k^n(\Gamma, \chi)$ in $M_k^n(\Gamma, \chi)$ with respect to the Maass-Petersson inner proudct. We call F_n the cusp part of F. We set

(3. 2)
$$(F,G) = \sum_{r=0}^{n} \sum_{M \in \Gamma \setminus \Gamma^n} [\Gamma^r : \Gamma^M_r]^{-1} \Big((\Phi_M^{n-r}F)_r, (\Phi_M^{n-r}G)_r \Big)_o$$
 where $\Phi_M^{n-r}F = \Phi^{n-r}(F|_k M)$, $(\Phi_M^{n-r}F)_r$ is the cusp part of $\Phi_M^{n-r}F$, and $(-,-)_o$ is the Maass–Petersson inner product on the space $M_k^r(\Gamma_r^M, \chi_L^M)$.

Theorem 3.1. The pairing (3.2) is a well defined positive definite Hermitian inner product on the whole space $M_k^n(\Gamma, \chi)$, which is called the canonical inner product on the space.

Proof. Since Γ^M , χ^M are independent of the choice of representative M of the left coset ΓM with $M \in \Gamma^n$, so are the index $[\Gamma^r : \Gamma^M_r]$ and the space $M_k^r(\Gamma^M_r, \chi^M_r)$. The Maass-Petersson inner product $(-, -)_o$ is also independent of the choice of M because $|\chi(M')|=1$ for any $M' \in \Gamma$. So (3.2) is a well defined Hermitian inner product. The positive definiteness follows immediately from (2.2) and the obvious fact that $(-, -)_o$ is positive definite when restricted to cusp forms. The theorem is proved.

We now decompose $M_k^n(\Gamma, \chi)$ into n+1 mutually orthogonal subspaces with respect to the canonical inner product. For $0 \le r \le n$, we set

(3.3)
$$M_k^{n,r}(\Gamma, \chi) = \left\{ F \in M_k^n(\Gamma, \chi) : \Phi_M^{n-r}F \text{ is a cusp form for every } M \in \Gamma^n \text{ such that } \left(F, \sum_{s=r+1}^n M_k^{n,s}(\Gamma, \chi) \right) = 0 \text{ if } r \neq n \right\}.$$
 Observe that $M_k^{n,n}(\Gamma, \chi) = G_k^n(\Gamma, \chi)$.

Theorem 3.2. For $0 \le r \le n-1$,

(3.4)
$$M_k^{n,r}(\Gamma, \chi) = \left\{ F \in M_k^n(\Gamma, \chi) : \Phi_M F \in \sum_{s=r}^{n-1} M_k^{n-1,s}(\Gamma_{n-1}^M, \chi_{n-1}^M) \right\}$$

such that $\left(F, \sum_{s=r+1}^n M_k^{n,s}(\Gamma, \chi) \right) = 0 \right\}$.

Myung-Hwan Kim

Proof. Let the right sides of (3.3) and (3.4) be A and B. We use induction on n. For n=1 it is well known [5] that the lemma holds. Let n>1. It is clear that $B\subset A$. Suppose $F\in A-B$. Then there exists M such that $\Phi_M F$ is not contained in $\sum_{s=r}^{n-1,s} M_k^{n-1}(\Gamma_{n-1}^M, \chi_{n-1}^M)$. But then from the induction hypothesis and (2.3) follows that $\Phi_{M'}^{n-r} F$ is not a cusp form for some $M' \in \Gamma^n$, which is impossible, whence $A \subset B$.

When n=1, $M_k^{1,0}(\Gamma, \chi)$ and $M_k^{1,1}(\Gamma, \chi)$ coincide with the subspaces of classical Eisenstein series [5] and cusp forms [6]. Furthermore, they are orthogonal to each other with respect to Maass-Petersson inner product as well as to the canonical inner product. This can be generalized for arbitrary n. More precisely.

THEOREM 3.3. The space $M_k^n(\Gamma, \chi)$ is decomposed into n+1 subspaces $M_k^{n,r}(\Gamma, \chi)$, $0 \le r \le n$, which are pairwise orthogonal with respect to the canonical inner product.

Proof. From Theorem 3.2. and induction on n, the theorem follows.

Maass[7] proved this for $M_k^n(\Gamma, \chi_0)$.

We write $M_k^n(\Gamma, \chi) = \prod_{r=0}^n M_k^{n,r}(\Gamma, \chi)$ and call it the canonical decomposition of $M_k^n(\Gamma, \chi)$. The subspace $M_k^{n,r}(\Gamma, \chi)$ is called the r-th canonical subspace of $M_k^n(\Gamma, \chi)$ for each r=0, ..., n.

4. Some theorems

Let $F, G \in M_k^n(\Gamma, \chi)$ such that at least one of which is a cusp form, say, G. Since $\Phi_M^s G = 0$ for s > 0,

$$(4.1) (F,G) = \sum_{M \in \Gamma \setminus \Gamma^n} \left[\Gamma^n : \Gamma^M \right]^{-1} \left((F|_k M)_n, (G|_k M)_n \right)_o.$$

THEOREM 4.1. If $F \in M_k^n(\Gamma, \chi)$, then $F'|_k M = (F|_k M)'$ and $F_n|_k M = (F|_k M)_n$ for any $M \in \Gamma^n$.

Proof. The second equality follows from the definition of a cusp form. For $F, G \in M_k^n(\Gamma, \chi)$, at least one of which is a cusp form, it is easy to see that $(F|_k M, G|_k M)_o = (F, G)_o$ where the former pairing is the Mass-Petersson inner product on $M_k^n(\Gamma^M, \chi^M)$ and the latter is that on $M_k^n(\Gamma, \chi)$. The first equality follows.

THEOREM 4.2. For $F, G \in M_k^n(\Gamma, \chi)$, at least one of which is a cusp form, the canonical inner product coincide with the Maass-Petersson inner product.

Proof. Let G be a cusp form. Since $((F|_k M)_n, (G|_k M)_n)_o = (F_n|_k M, G_n|_k M)_o = (F_n, G)_o = (F_n, G)_o = (F_n, G)_o + (F', G)_o = (F, G)_o$, from (4.1) we have $(F, G) = \sum_{M \in \Gamma \setminus \Gamma_o} [\Gamma^n : \Gamma^M]^{-1} (F, G)_o$. $[\Gamma^n : \Gamma^M] = [\Gamma^n : \Gamma]$ for any $M \in \Gamma^n$. The theorem is proved.

Let $M \in \Gamma^n$ be given. Let $T_M : M_k^n(\Gamma, \chi) \to M_k^n(\Gamma^M, \chi^M)$ be a homomorphism defined by $T_M(F) = F|_k M$. It is easy to see that T_M is an isomorphism that preserves the canonical inner product and hence the canonical decomposition, i.e.,

(4.2)
$$(F,G) = (F|_k M, G|_k M) = (T_M F, T_M G)$$
 where the left canonical inner product is on $M_k^n(\Gamma, \chi)$ and the right is on $M_k^n(\Gamma, \chi)$, and

$$(4.3) T_{M}(M_{k}^{n}(\Gamma, \chi)) = M_{k}^{n}(\Gamma^{M}, \chi^{M}).$$

Let Γ' be a congruence subgroup contained in Γ and let \mathcal{X}' be the restriction of \mathcal{X} to Γ' . Then $M_{k}^{n}(\Gamma, \mathcal{X}) \subset M_{k}^{n}(\Gamma', \mathcal{X}')$.

THEOREM 4. 3. For
$$F, G \in M_k^n(\Gamma, \chi)$$
,
(4. 4) $(F, G) = [\Gamma : \Gamma']^{-1}(F, G)'$

where the left canonical inner product is on $M_k^n(\Gamma, \chi)$ and the right is on $M_k^n(\Gamma', \chi')$.

Proof. From (3.1) follows that $(F,G)_o = [\Gamma : \Gamma']^{-1}(F,G)_o'$ where $(-,-)_o'$ is the Maass-Petersson inner product on $M_k^n(\Gamma', \chi')$. Let $\{N_i\}_{i=1,2,\ldots,m} \subset \Gamma$, $\{M_j\}_{j=1,2,\ldots,l} \subset \Gamma^n$ be full sets of left coset representatives of $\Gamma' \setminus \Gamma$, $\Gamma \setminus \Gamma^n$. Then $\{N_iM_j\}$ is a full set of left coset representatives of $\Gamma' \setminus \Gamma^n$. For each $0 \le r \le n$, $N \in \{N_i\}$, $M \in \{M_j\}$, we have $(\Phi_{NM}^{n-r}F)_r = (\Phi^{n-r}F)_k NM)_r = \chi(N) (\Phi_M^{n-r}F)_r$. Similarly, $(\Phi_{NM}^{n-r}G)_r$

 $= \chi(N) \, (\Phi_{M}^{n-r}G)_r. \ \, \text{Since} \ \, (-,-)_o{'} \ \, \text{is Hermitian and} \ \, |\chi(N)| = 1, \\ ((\Phi_{NM}^{n-r}F)_r, \ \, (\Phi_{NM}^{n-r}G)_r)_o{'} = ((\Phi_{M}^{n-r}F)_r, (\Phi_{M}^{n-r}G)_r)_o{'}. \ \, \text{So} \\ [\varGamma^r: (\varGamma')_r^{NM}]^{-1} ((\Phi_{NM}^{n-r}F)_r, (\Phi_{NM}^{n-r}G)_r)_o{'} = [\varGamma^r: \varGamma^M_r]^{-1} ((\Phi_{M}^{n-r}F)_r, (\Phi_{M}^{n-r}G)_r)_o \\ \text{and hence from (3. 2) follows } (\digamma, G){'} = m(\digamma, G) = [\varGamma^r: \varGamma^r](\digamma, G) \text{ which proves the theorem.}$

THEOREM 4.4. For each $0 \le r \le n$, we have (4.5) $M_k^{n,r}(\Gamma, \chi) = M_k^{n,r}(\Gamma', \chi') \cap M_k^n(\Gamma, \chi)$,

Proof. We use induction on s=n-r. For s=0 (n=r), (4.5) follows immediately from (3.3) and Theorem 4.3. Let F be in the right side of (4.5) and $G \in \sum_{s=r+1}^{n} M_k^{n,s}(\Gamma, \chi)$ for r < n. From induction hypothesis $(F, G) = [\Gamma : \Gamma']^{-1}(F, G)' = 0$. So from (3.3), $F \in M_k^{n,r}(\Gamma, \chi)$. To show the reverse inclusion, let $F \in M_k^{n,r}(\Gamma, \chi)$. Then $F \in \sum_{s=r+1}^{n} M_k^{n,s}(\Gamma', \chi')$.

Write $F=F_r+G$ where $F_r\in M_k^{n,r}(\Gamma',\mathcal{X}')$ and $G\in \sum_{s=r+1}^n M_k^{n,s}(\Gamma',\mathcal{X}')$. From induction hypothesis $0=(F,G)'=(F_r+G,G)'=(G,G)'$. So G=0 and $F=F_r\in M_k^{n,r}(\Gamma',\mathcal{X}')$. The theorem follows.

According to equalities (4.2), (4.3) and Theorems 4.3., 4.4., when one needs to prove a certain property related to the canonical inner product and decomposition on $M_k^n(\Gamma, \chi)$, in particular, on $M_k^n(q, \chi)$, it suffices to prove it for $M_k^n(q)$.

Finally, we prove the invariance of the r-th canonical subspace of $M_k^*(\Gamma, \chi)$ under the action $|_k M$ for $M \in \Gamma^n$.

THEOREM 4.5. If F is in $M_k^{n,r}(\Gamma, \chi)$, then so is $F|_k M$ for any $M \in \Gamma^n$.

Proof. As the remark above, it is enough to show the theorem for $F \in M_k^n(q)$. It is clear that $F|_k M \in M_k^n(q)$. Again we use induction on s=n-r. $\Phi_{M'}^{n-r}F$ is a cusp form for each $M' \in \Gamma^n$. If M' runs over Γ^n , then so does MM'. So $\Phi_{MM'}^{n-r}F = \Phi_{M'}^{n-r}(F|_k M)$ is also a cusp form for each $M \in \Gamma^n$ and hence it suffices to show

(4.6)
$$(F|_k M, G) = 0$$
 for any $G \in \sum_{s=r+1}^n M_k^{n,s}(q)$ for $0 \le r < n$.
From (3.2) we get

$$(4.7) \quad (F|_{k}M,G) = \sum_{r=0}^{n} \sum_{M' \in \Gamma_{1}^{n} \backslash \Gamma_{1}^{n}} \left[\Gamma^{r} : \Gamma_{1}^{r} \right]^{-1} \left((\Phi_{M'}^{n-r}(F|_{k}M))_{r}, \quad (\Phi_{M'}^{n-r}G)_{r} \right)_{o},$$

The canonical decomposition of Siegel modular forms

where $\{(-,-)_o\}$ is the Maass-Petersson inner product on $M_k^r(q)$, because $(\Gamma_1^n)_r^M = \Gamma_1^r$. If M' runs over a full set of representatives of $\Gamma_1^n \setminus \Gamma_1^n$, then so dose $M^{-1}M'$. Substitution of M' by $M^{-1}M'$ in (4.7) yields $(F|_kM,G) = (F,G|_kM^{-1})$. From induction hypothesis $(F,G|_kM^{-1}) = 0$. So (4.6) and hence the theorem follows.

References

- S. A. Evdokimov, A Basis of Eigenfuctions of Hecke Operators in the Theory of Modular Forms of Genus n, Mat. Sb. 115(157) (1981), 337– 363 (Russian); Math. USSR Sbornik vol. 43(1982), 299-322 (English).
- 2. C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116 (1938/39), 617-657.
- 3. M. Köcher, Zur Theorie der Modulformen n-ten Grades, I, II, Math. Zeit. 59(1954), 399-416; ibid. 61(1955), 455-466.
- Séminaire H. Cartan 10e Annee, Fonctions Automorphes, vols. I, II, Secrétariat Math., Paris 1958.
- 5. E. Hecke, Über Modulfunktionen und Dirichletschen Reihen mit Eulerscher Produktenwicklung I, II, Math. Ann. 114(1937), 1-28, 316-351.
- H. Petersson, Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktenwicklung I, II, III, Math. Ann. 116(1938/39), 401-412; ibid. 117(1939/40), 39-64, 277-300.
- H. Maass. Die Primzahlen der Theorie der Siegelschen Modulfunktionen, Math. Ann. 124(1951), 87-122.
- 8. _____, Siegel's Modular Forms and Dirichlet Series, Lec. Notes in Math. 216, Springer-Verlag 1971.
- 9. G. Shimura, Intro. to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press 1971.
- A. N. Andrianov, The Multiplicative Arithmetic of Siegel Modular Forms, Usp. Mat. Nauk. 34(1979), 67-135 (Russian); Russian Math. Surveys 34(1979), 75-148 (English).

Seoul National University Seoul 151-742, Korea