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THE FINITE HANKEL-SCHWARTZ TRANSFORM

]. M. MENDEZ

1. Introduction

A.1. Schwartz [10J introduced the following variant of the Hankel
transform

F(y) = f~x 2v+1pv(xy)j(x)dx (1. 1)

where Pv(x) =x-vJv(x) , Jv(x) being the Bessel function of the first
kind of order J.!. This transform has been investigated in spaces of
generalized functions by different authors [1, 3, 9J and was called the
Hankel-Schwartz transformation by W. Y. Lee [6J.

In this paper we study its finite version, first from a point of view
entirely classical. For it we begin by considering a Fourier-Bessel type
of series expansion which suggests the definition of the classical finite
Hankel-Schwartz transformation. Later this transform is extended to
spaces of generalized functions. In order to do that, we modify pre­
viously in a natural way the method developed by Zemanian [15J in his
research on a variety of distributio nal series expansions. Recall that
the success of Zemanian's method lies in the fact that the differential
operators considered are always selfadjoint. The main objective of our
work is to give a procedure that turns out to be valid for more general
operators. For this purpose, two differential operators having the same
positive eigenvalues and whose respective systems of eigenfunctions
verify the same orthogonality condition, are simultaneously considered.
Then two testing function spaces and their duals are constructed such
that certain Fourier-Bessel series converge in them. So we are led on
to define two new generalized transforms, which will be called the
finite Hankel-Schwartz integral transformations of the first kind of
order J.!. This approach is reminiscent of the procedure described in
[8J for extending the infinite Hankel transformation to distributional
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spaces.
Finally, the operational calculus generated is used in solving certain

partial differential equations.

2. Preliminary Resnlts

Consider the Sturm-Liouville problem [11, p. 440J
(A,,+).2)y=0

aly(a) +a2Y' (a) =0, b1y(b) +b2y' (b) =0
where A,,=X-2"-lDx2"+lD; a, b, aI. a2, bI. b2 are real constants
d/dx.

The general solution of (2. 1) is
y=if>;.(x) =A().)U,,().x) + B (A) 1J" (h) , (2.3)

where ff-,,(x) =x-"J" (x) and 1/-v(x) =x-vYv(x) , Y,,(x) denoting the
Bessel function of the second kind of order v.

Equation (2. 1)· may be written· as

X-2V~(X2V+l dy )2+).2X2V+2L(y2) =0
dx dx dx

Upon integrating by parts in the interval [a, bJ we obtain

2).2S:x2v+ly2d~- [x2v+l(xy'2+).2xy2+2vyy') J:=0 (2.4)

Let y=if>n (x) be the eigenfunctions of the problem (2. 1) "" (2. 2)
which correspond to the non-zero eigenvalues ).n. Thus the orthogonality
condition

b j2i 2 [X
2
,,+1 {x (if>n' (X.»2+).n2Xif>n2(X)

fa X2V
+

1
if>m (x) if>n (x) dx= n +2vq)n(x)if>n' (X)}]:, m=n (2.5)

o , m=l=n,
may be derived from (2. 4) and Sturm-Liouville general theory.

Consider now the problem
(Av+).2) q) (x) =0, O~x:::;;a,

if>(il) =0
whose solution is in view of (2.3)

if>n(x) =9"Unx) , (2.7)
where jI. jz, ... represent the positive zeros arranged in ascending
order of magnitude of the equation [13, p.479J

ff-vUna) =0
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(2.9)

3. The Fourier-Bessel series and the classical finite Hankel­
Schwartz transformation

Let f(x) be an arbitrary function defined in the interval (0, a).

This function may be formally expressed by virtue of (2. 9) as the
following Fourier-Bessel expansion

=

where f(.7:) =flam9vCilllx) (3.1)

am= "2 2V+49~ (" ) fax2V+19vUmx)f(x)d:r (3.2)
}ma ,+1 }llIa 0

From now on it will be assumed that a=l for the sake of the
simplicity.

To study the convergence of the series (3. 1), consider the partial
sum

n

Sn (x) = z:; am9v (jmx)
m=l

(:3. 3)

If P n (x, t) denotes the finite sum

P n(x, t) = fl 29vj~~~: ti~{nt) (3.4)

(3. 3) may be written as

Sn (x) = fI
tM1 P n(x, t)f(t) dt

• 0

We now establish that

}~~>2V+IPn(X,t)dt=l, O<x<l (3.5)

First of all note that from (3. 4) we have

f
lt2V+lPn(X,t)dt=± "~9v(jm:Ij)
o m~l }m9v+l (}m)

Then, if C denotes the rectangle with vertices at +Bi, An+Bi,

where jn<An<jn+h an application of residues theory yields.
j; 29v(wx) d - -2 .~ 29v(jmx )
f () w- nz £..J"2 ( " ) •c w9v w m=1.7m9v+l .7m

Since the integrand is an odd function of w, the integral along the
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side on the imaginary axis reduces to the contribution in a small
indentation at the origin, whose value is 21Ci. Thus, when B-too, we
get

t .~fJv(jm::) l-~f:An+~ 2fJv(xw) dw.
n=1JmfJv+l (Jm) 21CZ An-oo, wfJv(w)

Now (3.5) follows immediately as n-too. In a similar way it can be
stated that

limfXtZv+IPn(x, t)dt= 21 , O<x<l,
#_00 0

limS
1
tZv+1Pn(x, t)dt=l, O<x<l.

n-loOO: X 2
Proceeding as in [13, p. 584J we obtain the bounds

_ ..... 1

( ) 1
< K(xt) 2"

IPn x, t = ItZ-xZI (2-x-t)
and

(3.6)

(3.7)

(3.8)

IfttZv+IPn(X,t)(tZ-xZ)dtl;£ K (..!.)'+i (3.9)
o A n(2-x-t) x

where K is a positive constant.
Taking into account (3. 8) and (3. 9), a result analogous to the

Riemann-Lebesgue Lemma can be established:

Let'),) ~ - ~ and O;£c<d~l. If f(t) is absolutely integrable in (c, d)

and x$. (c,d), then

~i~S:tZV+IPn(X, t)f(t)dt=O, O<x<l (3.10)

We next analyse the identity

S:tZV+1Pn(x, t)f(t)dt-f(x-O) S:tzV+1Pn(x, t)dt-f(x+O).

S:tZv+1Pn(x, t)dt=S:tZV+1[f(t) -f(x-O)JPn(x, t)dt

+ S:tZv+1[f(t) -f(x+O) JPn(x, t)dt (3.11)

As n-too the left-hand side of (3.11) tends to

¥~Sn(X)-~ [f(x+O)+f(x-O)J

because of (3. 3), (3. 6) and (3. 7). On the other hand, (3. 10) and
the same argument developed in [13, p. 592J may be invoked to show
that the right-hand side vanishes as n-too. This result can~be sum-
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marized as follows

THEOREM 1. Let f(x) be a function defined and absolutely integrable
1on (0,1). Assume that ).!~-2 and set

am . 2j 22 (.) f\2v+1jv(jmt)f(t)dt, m=1, 2, ...
Jm v+l Jm 0

If f(t) is of bounded variation in (c, d) (0<c<d<1) and if
x E (c, d) , then the series

=
'L. amjv (jm·T )

m=l

1converges to 2[f(x+0) + f(x-O)].

Expressions (3.1) and (3.2) and Theorem 1 suggest to introduce
the integral transform

(hl>J) (n) = (hJ) (n) =Fv(n) = f:x2V+1gvUnx)f(x)dx (3.12)

which will be called the finite Hankel-Schwartz integral transformation
of the first kind. Its inversion formula is given by

(hv-1FJ(x)=f(x)= 22+4f,F.v2(n)j;(~nx) (3.13)
a v n=l In jv+l (Jna)

We point out the following operational rules
(i) If f(x) EC2 (0, a), upon integrating by parts we deduce the

relation

hv[f" (x) + 2))+ 1 f' (x)] = jn2a2v+2jv+l Una)f(a) - jn2hvCf(x)]
X

(3.14)
(ii) If f(x) E C2r (0. a) , jCil (0) are finite and jCi) (a) =0 (i=O, 1, 2,

... , 2r-2), then

hv[[f"(x) + 2)).:1 f'(x) fJ=(-jn2)rhv[f(x)],

r being a positive integer.

4. The testing function spaces Av and Av* and their duals

In this section we shall employ the same notation and terminology
as those used in [15]. Thus, I denotes the interval (0,1) and ).! will

be always restricted to the interval - ~ ~ v<00. L 2 (1) and L 2* (1)
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represent the spaces of equivalence classes of functions that are
quadratically integrable on 1 with regard to the weight functions X211~ 1

and X-211- 1, respectively. A mixed inner product is defined on L 2 (1)
XL2*(1) by

(f, g)=ff(x)g(x) dx, fEL2(1) , gEL2*(1) (4.1)

where g(x) denotes the complex conjugate of g(x). This definition is
consistent with the inner product considered usually on L 2 (1) and
L 2*(1). Indeed, (4.1) can be rewritt

(f, g) = Lx211+1f(X) (X- 211- 1g(X»dx -

= LX-211- 1 (X211+lj(X»g(x) dx,

and note that f(x) and x-211- 1g(X) belong to L2(1) , while X211+lj(X)
and g (x) are in £2* (1).

D (l), E (1) , D' (1) and E' (1) are well-known spaces of testing
functions and their duals [16, p.32J.

The differential operator

A =A =D2+ 2v+ 1 D=X-211-1Dx211+1D (4.2)J),a; lJ
X

is not selfadjoillt. We consider, together with All, the operator

A* =A*=D2 2])+1 D+ 2v+1 =DX211+1Dx-211-1. (4.3)
',X, X x2

A; is called the adjoint operator of All' Note that
A;=X211+1Allx-211-1 (4.4)

The functions
</>n(x) =111(jn, x), n=1,2, ••. , (4.5)

are thE;l eigenfunctionsof All, whereas the functions
</>Hx) =X211+1111 (jnx ), n=1,2, ... (4.6)

are the eigenfunctions of A;. In both cases we have the· same
eigenvalues in (n=1,2, .•.), which are the positive roots of equation
(2.8) with a=l. Therefore,

(All+iD if>n (x) =0
and (A; +in</>; (x) =0 (4.7)

Systems of eigenfunctions {</>n(X)}:=l and {</>;(x)}:=lverifyby (2.9)
and (4. 1) the orthogonality condition
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(4.8)
,if m=n

,if m=l=n

(if>mif>:)=(if>:'if>n)=\.~n2 (f 2(')
2 ifv+l In

This is equivalent to say that {if>n (x) }:=1 is orthogonal with respect
to the weight function X 2v+1 and, on the other hand, that {if>~ (x)} :=1

is orthogonal with respect to X- 2v- 1• In any case (4.8) holds.

Av is defined as the linear space of all infinitely differentiable
complex-valued functions if>(x) on I such that

(i) lXk,v(if» = [S/-2V-l IA.:"'if> Cx) 12dxJ}
exists for every k=O, 1, 2, ...

(ii) (A;'if>, if>n) = (if>, A}if>n)
holds for each nand k.

Av is the countable multinormed space having the topology generated
by {lXk, vl. Av is also complete. Consequently, Av is a Frechet space.

In our context we can establish a result analogous to[15, Lemma 1J

1
THEOREM 2. Let v;::;; -2' Every member if>EAv can be expanded into

a series of the form
= 2

if> = L:. . 2g 2(') (if>, if>n) if>~,
n=l In v+l In

which converges in Av.

(4.9)

Proof. Note that A.:"'if> E L! (1). Hence, by (ii) and (4. 7) we have

A;'if> =:E .2g 22 (") (A;'if>, if>n) if>~ =
n=l In v+l I n

= L:. . 2g 22 ( .) (if>, A~if>n) if>~ = L:. . 2g 22 ( .) (t/J, if>n) A.:"'if>~
.In v+l In .In v+l In

where the series involved converge in L 2* (1). Therefore,

[

m 2 1
lXk,v if>-L:. '2g 2(') (if>,if>n)rjJ~J~O

n=l In v+l In
as m~oo. This completes the proof of Theorem 2.

A/ is the dual space of Av and is too complete. We now list some
properties of these spaces

(a) D(1) cAvcE(1). E' (1) is a subspace of A/.
Ch) It can he seen that every eigenfunction if>~, given hy (4.6),
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belongs to A".
(c) The operation ifJ~A;ifJ is a continuous linear mapping of A"

into itself. Consequently, the operation f ~ Avf defined on Av' by
(A"f, ifJ) = (f, A;ifJ) (4.10)

is also a continuous linear mapping of Av' into itself.
We will have need of another testing function space A; along this

work. A; consists of all infinitely differentiable functions ifJ (x) defined
on I such that

(i') al.. (ifJ) = [{x 2v+11A=ifJ (x) 12dxJ}
exsts for each k=O, 1,2, ...

(if) (AkifJ, ifJ":.) = (ifJ, A;'ifJ:)
holds for each n and k.

As before, A; is a Frechet space. A;' represents the dual space of
A;.

Some properties related to these spaces are listed below
(a') D(I) cA;cE(I). E' (I) is a subspace of Ar.
(b') Note that ifJ1t (x), given by (4. 5) , is now in A;.
(c') The operation ifJ~AvifJ is a continuous linear mapping of A;

into itself. Hence the operation f ~ A;f defined on At by
(A;f, ifJ) = (f, AvifJ)

for any ifJEA;, is also a continuous linear mapping of At into
itself.

REMARK 1. Since {ifJ":.} is an orthogonal system on I with respect
to the weight function x-2v-1, verifying the same orthogonality
condition (2.. 9) , we propose to consider this other finite Hankel­
Schwartz transform

(h; f) (n) =F;(n) =f:X-2V-1ifJ":.(x)f(x)dx=f:P,,(j1tx)f(x)dx,

(4.11)
the inversion formular being given through

(h;-lF:) (x) =f(x) =I; . 2 2v~~*(n2(. ) x2v+1pv(j1tx) (4.12)
n=lJ1t a ,,+1 J1tX

By using a similar reasoning as in the proof of Theorem 2, we can
establish
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T L > 1 If,f.. A* hHEOREM 3. et)) = -2' 'f'E v, t en

= 2
ifJ= L; . 2g 2(') (ifJ, ifJ;)ifJm

n=l.Jn v+1 .In

where the series converges in A;.

(4.13)

REMARK 2. Observe that
(hvifJ) (x)=ifJv(n) = (ifJ,ifJ;), ifJEA;, (4.14)

is the finite Hankel-Schwartz transformation (3. 12) acting on the
space A;. Thus Theorem 3 can be interpreted as the inversion Theorem
1 for all testing function ifJEA; and a=1. Analogously,

(h;:'ifJ)(x)=ifJ:(n) = (ifJ,ifJn), ifJEAv, (4.15)
can be considered as the finite transform (4. ll) with a= 1. Its
inversion formula is given in the space Av by (4.12).

1REMARK 3. Assume that ))~ -2' Then Av may be identified with

a subspace of A;', that is, AvcA*'. Indeed, every member fEA v
generates a regular distrihution in A;' hy

SInce (f, ifJ) = ff(x) ifJ (x) dx, ifJEA;',
. I

I (f, ifJ) I ;?;.cxo,v(f) 'a~~v(ifJ)

Furthermore, two members of Av which give rise to the same member
of A;" must be identical.

In a similar way A; can be considered as a subspace of Av'.

5. Orthogonal series expansions and the finite generalized
Hankel-Schwartz integral transformation

The main result of this section can be stated as follows

1THEOREM 4. Let))~ - 2' Every member fE Av' can be expanded into

a generalized series of the form
= 2

f= L; . 2j 2(') Cf, ifJ;)ifJm (5.1)
'1=1 in v+1 in

which converges in Av'.

Proof. By virtue of Theorem 2 it is inferred that

- 51-



J.M. M{mdez

2
(/,</»=(f,"£ '2g 2(") (</>,</>n)</>;)=

In ,,+1 In

= "£ . 2g 22(") (f, </>;)(</>, </>n) = "£ . 2g 22 (") (f, </>;)(</>m </»,
In ,,+1 In In ,,+1 In

for all </>EA". This implies that (5.1) truly converges in A/.

Through an argument similar we can also assert

THEOREM 5. Let J,I~-1. If fEA:', then

f=t . 2g 2 2 (") (f,</>n)</>;,
n=l In ,,+1 In

where the series converges in A:'.

(5.2)

In view of (5. 1) the .finite Hankel-Schwartz transformation of the
first kind of f E A/ is defined by

(hJ) (n) =F,,(n) (J(x) ,p; (x» = (f(x), x2"+1g;,Unx» (5.3)
for each n=l, 2, .... Observe that this definition has a sense by virtue
of note (h) in section 4. Its corresponding inversion formula is supplied
by Theorem 4 and can be expressed as

(h,,-1F,,)(x)=f(x)=t . 2~F,,~().) g,,(jnx) (5.4)
n=l In ,,+1 In

We need merely invoke (4.10) to get
(A~f, </» = (f, A:

1

</»
for all </>EA" and k=O, 1,2.... If </> is replaced hy </>; and (4.7) IS

used, we yield
(A~f, x2"+lg"Unx» = (f, (-jn2)"X2"+lg,, Unx»

This formula may be rewritten in accordance with (5. 3) as
h,,(A:f) = (-jD"h.,j (5.5)

for every fEA/ andk=O, 1,2....

REMARK 4. Theorem 5 suggests to introduce other variant of the
finite Hankel-Schwartz transform of the first kind in the space A.:' by
means of

(h: f) (n) =F.*(n) = (f, </>11) = (f, g"U"x», (5.6)

where fEAt, for each n=I,2, .... The inversion formula is given
through
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The finite Hankel-Schwartz transform

(h;-lF~)(x)= f(x) = f. .~.r;* (n~ X2v+lgv(jnX)
.=1 In gp+! (J n)

REMARK 5. Since A;cA/, our classical finite Hankel-Schwartz
transform (4. 14) is a special case of the generalized transformation
(5. 3) and Theorem 4 turns out to be an extension to distributions
of Theorem 3. Similarly, as an immediate consequence of the inclusion
AvcA;', the classical finite transform (4.15) agrees with the gene­
ralized Hankel-Schwartz transformation (5. 6) , so that Theorem 5
appears now as the distributional version of Theorem 2.

REMARK 6. Let N be a linear differential operator and denote by
N* its adjoint operator. Zemanian [15, p. 264J investigated only the
case N=N*. However, the method developed here allows to takle
more general problems (e. g., as is the case of our operators Av and
An provided that, of course, both operators have the same eigenvalues
and their respective systems of eigenfunctions verify also an identical
orthogonality condition with respect to suitable weight functions.

6. Applications

To illustrate the applications of the finite Hankel-Schwartz transfor­
mation, we end this work by considering the following generalized
Dirichlet problem:

Find the conventional solution v (r, z) of the equation

a
2
v+2v+1 ~+a2V=0 O<r<l, O<z<oo, (6.1)

ar2 r or az2 '

satisfying the boundary conditions
(i) As Z---70+, v(r,z) ---7f(r) EA/
(ii) As z ---700, vCr, z) converges uniformly to zero on O<r<l.
(iii) As r---71-, v(r,z) converges to zero on c;:;;z<oo, for each

C<O.
(iv) As r---70+, v(r,z)=O(l) on c;:;;z<oo.
Denote V(n,z) =hv[v(r,z)]. According to (4.2), (6.1) becomes

(6.2)

- 53-



J.M. Mendez

By applying h)) to (6.2) and making use of (5.5) we
arrive at

-j';' V(n, z) + ::2 V(n, z) =0,

whose solution is
V(n, z) =F(n)e-jnZ

because of boundary conditions (i) and (ii). Here F(n) =hv/. We may
now invoke our inversion formula (5. 4) to get the solution

_ = 2F(n)e-jnz .
vCr, z) -.L: . 2fJ 2(") 9-))(Jnr ) (6.3)

n=lJn ))+1 In
Observe that the case in which v=o is of special interest, since

(6.1) coincides then with the Dirichlet problem for a semi-infinite
cylinder considered by Zemanian. It is also worth noting that, when
v=O, (6.3) yields directly the solution

vCr, z) = ii 2(f(1:2{~:)(jnY» e-jnzJo(jnr),

making unnecessary the previous changes of variables done in [16, p.
281].
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