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ON KAUFFMAN POLYNOMIALS OF LINKS

Kr HYOUNG Ko AND SUNGYUN LEE

§ 1. Introduction

L. Kauffman concocted a polynomial invariant of links last year
[K]. For an unoriented link K, a polynomial LK(a, z) in commuting
variables a, z and with integer coefficients is defined through axioms:

1. Regularly isotopic links have the same polynomial;
2. Lo=l;
3. LK++LK-=z(LKo+LK,,,,);
4. Removing a positive (or negative) curl as in Fig 1. 2 multiplies

the polynomial by a (or by a-I).

Axioms need to be made clear. Links are regularly isotopic if their
diagrams become identical through 2-dimensional isotopies and Reide-
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meister moves of types Il and IlI. 0 denotes the trivial knot. K+, K_,
Ko, and K oo are diagrams of four links that are exactly the same
except near one crossing where they are as Fig. 1.1.

For an oriented link K, an integer w(K), called the writhe number
of K, is define by taking the sum of all crossing signs in the link
diagram K. Then the Kauffman polynomial FK (a, z) of an oriented
lnlk K is defined by

FK(a, z) =awCK)LK(a, z).
E~rlier Lickorish and Millet defined a polynomial QK (z), known as

Q-polynomial for an unoriented link K. The simple formula QK(z) =

FK (1, z) relates the two polynomials.
In [4J, it was proved that the lones polynomial VK(t) is a special

case of FK(a, z), that is, VK(t) =FK(-r314, t-114+tl/4). Since lones
polynomial turned out to be useful in many aspects [6J, Kauffman
polynomial needs to be studied carefully.

The primary purpose of this paper is to develop the preskein theory
for the Kauffman polynomials which has extensively been done for the
HOMFLY polynomials in [5J. A typical use of this theory shows
that the Kauffman polynomial is an invariant of mutation. However
it is not an invariant of the skein equivalence. Therefore it can be
utilized to detect links that are skein equivalent but not mutations
each other. As another application of the theory, a general formula of
computing the polynomials of pretzel links is obtained.

Before ending this section, few properties of the Kauffman polyno­
mial is observed.

LEMMA 1. 1. Let K be an oriented link and K' the same link with
the reversed orientation on each component. Then FK= FK'.

Proof. Clearly w (K) =w (K').

LEMMA 1. 2. Let K be an oriented link and Kif the same link with
the reversed orientation on the i-th component. Let li be the sum of the
linking numbers of the i-th component of K with all other components.
Then

Proof. Let K j be the j-th component of K, j=l, ..., m and l:k(K)
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the linking number of K j and K k. Then w (K) = 1:,Ljk (K) +1:,W (K j )
j*k j

But l;k(K)=-l;k(K") and l;=1:, l;k. Thus w(K")=w(K)-4l;.
k

LEMMA 1. ~-3. Let K be an (oriented) link and X its mirror image.
Then

LJ«(a, z) =LK (a-1, z),
FK (a, z) = }ix(a-I, z).

Proof. This follows from the fact that all crossings are reversed,
hence that Axiom 3 is unaffected and the contributions via Axiom 4
are all reversed. Similarly w (X) = -w (K)

2. Regular preskein theory

In this section, we mainly concern the polynomial L, hence all links
are assumed to be unoriented unless said otherwise. A room R is a 2­
disk (possibly punctured) on the boundary of which a finite set of
points is given. An inhabitant of R is a properly embedded tangle
diagram in R, which meets the boundary precisely in the given set
of points. The regular preskein of R is the set of regular isotopy
classes, keeping the boundary fixed during isotopies, of all inhabitants
of R. Two useful rooms that are not punctured are a prison with the
empty subset on its boundary and a quad with four points on its boun­
dary.

For a room R, let M(R) be the free module over Z[a±l, Z±l] gen­
erated by the regular preskeins of R. Let L (R) be the quotient of
M(R) by the submodule generated by all elements of the forms

s++s_-z(so+soo), Se+-as, and se_-a-ls

where s+, L, so, and Sce are elements of the regular preskein that have
representative inhabitants identical except near a point where they are
X, x,) (, and :::::, and Se-+- (or se-) become s by removing a positive
(or negative) curl. The first example to consider is the prison P. As
any link diagram can be reduced to the unknot () by regular isotopies,
changing crossing and removing curls. Hence L (P) is generated by
(). Since the polynomial L is well-defined, any generator K of M(R)
is uniquely written as L K (). Any inhabitant in a quad Q can be reduced
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to either vD, VI. or V-l as show in Fig. 2.1. Hence L(Q) is generated
by VD, VI. and V-I'

Fig. 2.1

A house H is a punctured room together with a specific inhabitant,
the wiring, and specified components Rh Rz, ... , Rn (called the rooms
of H) in the complement of H, where the point on oRi are the
points of oRi n (wiring). Let H be the room H with its rooms Rh Rz,
... , Rn filled in.

PROPOSITION 2. 1. A house H with rooms Rh R z, ..., Rn defines a
multilinear map

L(RI ) XL(Rz) X···XL(Rn) --->;L(H).

. Proof [5J. Insertion of an inhabitant into each room produces
an inhabitant of H. This function on generators extends by multiline­
arity to a multilinear function M(RI ) XM(Rz) X··· XM(Rn) --->; M(H)
which passes to quotients to give immediately the required function.

LEMMA 2. 2. If K1 and Kz are two (oriented) links, separated by a
2-sphere, then

LXI UX2= (az-1+a-1z-1-1) LKILx2,
FXl UX2 = (az- I +a-1z-1-l) FKIFK2'

L Xl fiX2 = LKILx2,
FXl fi X2 = FXlFX2'

where K 1 UKz and KIfiKZ denote the distant union and any connected
sum of K 1 and Kz, respectively.

Proof. Can be done by either a direct use of Axiom 4 (see [3J)
or a typical use of the preskein theory we have developed (see [5J).
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Let K l and Kz be link diagrams, then Kz is a mutation of K l (and
vice versa), if Kz can be obtained from K l by the following process:

i) remove from K l an inhabitant T of a copy of a quad Q;
ii) rotate T through angle 7T: about the central axis (perpendicular

to the plane of diagram) or about the E- W or the N-S axis (see Fig.
2.2) ;

iii) place this new inhabitant in Q.

In fact, this operation can also be performed on oriented liks.

,>/--N-'~

I \
\ w I';)

\ /

)-, s __ ~

Fig. 2.2 Fig. 2.3

In Fig. 2. 3, the Kinoshita-Terasaka knot on the left is a mutation of
the Conway knot on the right, but they have different genus (see
[GJ).

PROPOSITION 2. 3. If K l and Kz are (oriented) links and K 1 is a
mutation of Kz, then L K1 = L K2 and FK1 = F K2.

Proof. Let p be one of the three involutions on the set of inhabi­
tants T of Q described in the above definition. Then p induces a
linear map from L(Q) to L(Q). Since p fixes the generators Vo and
V±h P must be the identity on L(Q). Let P be the house with Q filled
in to give K 1 or Kz depending on inhabitant T or pT. Then the
linear map L(Q) ~L(P) sends T to LKP, and pT to L K20. There­
fore L K1 =LK2 . Clearly the mutation operation does not change the
writhe numbers and hence FK1 =FK2

When he first invented the algorithmic method of computing the
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Alexander polynomial, Conway saw the usefulness of the following
equivalence among links [1J. Skein equivalence is the smallest equival­
ence relation ~ on the set of all oriented links such that

i) if K and K are ambient isotopic then K~K;

ii) if K+, K_, and Ko are three oriented links identical except near

one poin~ where they are X, X, and JCrespectively and K/, K_',
and Ko is another such triple then

a) K+"-'K/ and Ko~Ko' imply K_"-'K_' and
b) K_"-'K_' and Ko"-'Ko' imply K+"-'K/.

Skein equivalence is by its definition the weakest equivalence relation
of oriented link that make the HOMFLY polynomial well-defined
[5J.

LEMMA 2.4. If K l and K 2 are oriented links and K l is a mutation of
K 2,then K 1 is skein equivalent to K 2•

Proof. Can be done by the induction on the complexity of the
inhabitant rotated where the complexity is the lexicographic order of
pairs that consist of the number of crossings and the number of
crossing changes necessary to create an ascending tangle in the quad
(see [5J).

Except iterated mutations, it is hard to generate skein equivalent
knots. On a computer, one can generate links and compute their
polynomials. If two links have the same HOMFLY polynomial, it is
very likely that they are skein equivalent. On the other hand if the
two links have the distinct Kauffman polynomial, they are not related

88

Fig. 2.4
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by mutations. As an example of this phenomenon, (136714, 10129, ( 2)

and (8s, 10129, ( 2) are the (K+, K_, Ko) triples (see Fig. 2.4) where
0 2 is the unlink of two components. Thus 88 and 136714 are skein
equivalent.

PROPOSITION 2.5. F136714* ]iBs' Therefore the knot 136714 is not a
mutation of the knot 88,

Proof. Since Kauffman gave the table of his polynomials for all knots
with less than 9-crossings, we reduce the number of crossings down
to 9. The relevant (K+, K_, Ko, K",,) quadruples are (see Fig. 2.5):

~ (2)~
943 J J

~ c!?~-----... -
41

62 Fig. 2.5
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(136714, a-110~29' 0 2, 12x ) , (1012;, 8s, a02, a89) ,
(12x , 10x , a-10 2, a-110129), (10x , a-40, aJ, 94S) ,
(J, J', a-SO, a62) , (J', 0 U41> a41> a-141)

whereanK'denotes the link diagraII!. K with 1nl removable + or ­
curls depending on the sign of n. We give the highest degree term in
z to save space.

F126714 = (a-2+ 1) z10+ ...~
Fss={a-S+a-1) Z7+"',

,This proposition shows that the Kauffman polynomial is not an
invariant under skein equivalence.

3. Computations

PROPOSITION 3.1. Let Xr be the polynomial L of the r-crossing link
in Fig. 3. 1. Then

X r= (1, 0, 0,) [a-~+z -1~a-1z a~] r-2[~.: ] for r:?:3,

o 1 0 l(o

X 2= (a+a-1) (z- Z-1) +1,
X 1=a,
X o= (a+a-1)z-1-1,
Xr(a, z) =X_r(a-t, z) for r<O.

x
~lI

tc:;
t U

r)O r<o
Fig. 3.1

Proof. Assume r:?:3. Applying Axiom 3 to one of crossings, "e
have a recursive formula Xr+Xr_2=Z(Xr_1-a-c,-n). By eliminating
the constant term, we have

Xr = (a-1+z) X r- 1- (1+a-1z) X r_2+a-1X r - S'
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By solving this recursion, we have the result. Note that Xz is the
Hopf link, Xl is of the trivial knot with a positive curl, X o is of the
trivial link of twocomponent and X- r is the mirror image of X r•

For integers ah az, •.. , an the pretzel link [ah az ... , anJ is the house
of Fig 3.2 with n rooms, each of which is a quad with the inhabitant
Ta; of Fig. 3.3.

Fig. 3.2 Fig. 3.3

PROPOSITION 3.2. Let K be the pretzel link [ah az, .•. , anJ. Then
Lk= ~Xa/Cl)X a/j(2) ••• X/Cn) XI; Co)

o

where the summation is over the 3n functions
0: {1, 2, ... , n}~ {O, 1, -1},

n

and ~ (0) = - ~o (i), and finally
.=1

(XaO, X a!' X a-1) =

(1,0,0) [a-l{z -l~a-Iz a~I)a-211-~-IZZ-t- I

o 1 0 -1 z-I
(XIO, Xl!, Xl-I) =
(XoO, X o!, XO-I) = (-1, z-l, z-I)
(XaO, Xal, X a-1) (a, z) = (X_aO, X_aI, X_a -1) (a-I, z) for a>O.

Proof. Let Q be a quad. Let Ta be the inhabitant in Q as in Fig
3.3. Recall the generators Vo, Vh and V-I of L(Q) from Fig.
2. 1. Using the recursive formula:

Ta+Ta_z=z(Ta_I-a-cr-Vvo) ,

we have T
a
= (1, 0, 0) [a-l-;-z -1~a-Iz a~l]a-2 (~2] for a~2. But

o 1 0 lTo
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T2+To=z(Vl-a-lvO) and TO=z-l(Vl+V_l) -vo, hence

[
T2]_[1-a- I

Z Z-Z-I -Z-ljIVo ]
Vl - 0 1 0 Vl
To -1 Z-l z-l V-I

Thus T a = Xaovo+ XalVl + Xa:-lv_l for a~2.

The house P with n rooms of Fig. 3. 2 defines an multilinear map
<p: L(Q) XL(Q) X"'XL(Q) ~L(P).

Then,
LKO=<P(Tal' T a2 , ··.Tan)
=<p ((Xa1°vp+ Xa/Vl + Xa1-lV_h X a2°vo+Xa2lvl + X a2- lV_h ..., X an°Vo
+ X an lVl + Xan-lV_l)'

<p (Yh Y2, "', Yn) where r of the Yi are Vh s of the Yi are V-l and the
remaining (n-r-s) are Vo is the (s-r)-crossing link and hence

<p (Yh Y2, .•• , Yn) =xs-rO.
Then. the r~u1t follows from the multilinearity of <po
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