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ON n-CYCLIC MAPS

YEO" Soo YOOl,*

1. Introduction

The concept of cyclic maps was first introduced and studied by
D. H. Gottlieb [3J and K. Varadarajan [l2]. Many properties of
cyclic maps can be found in [6], [9J and [14]. In this paper, we
shall define and study an n-cyclic map which is a generalization
of a cyclic map. In Section 3, existence of n-cyclic maps is
shown. Also, we study some properties of ll-cyclic maps. In
Section 4, we study the mapping spaces L(XA, X) and n-cyclic
maps. In general, the components of L(XA, X) almost never have
the same homotopy type LI3]. In this section, we study some
sufficient conditions for homotopy equivalence between the compo­
nents of L (XA, X). Also, we show that if f : XA --- X is n-cyclic,
then [XrB, L(XA, X; nf)J is isomorphic to [X (XrB/\A) , XJEB[2rB,
X] where A and B are suspensions.

2. PrelimInaries

Unless otherwise stated, we shall work in the category of spaces
with base points and having the homotopy type of connected locally
finite C TV complexes. All maps shall mean continuous functions.
As usual, all maps and homotopies are to preserve base points
with the exception of Section 4. The base point as well as the
constant map will be denoted by*. The identity map of space will
be denoted by 1 when it is clear from the context. For simplicity,
we some times use the same symbol for a map and its homotopy
class. Also, we denote by [X, YJ the set of homotopy classes of
pointed maps X--- Y. The holding map f7: X/\X---X is given by
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17 (x, *) =17(*, x)=x for each XEX. 2X denote the reduced suspen­
sion of X. Let L (2A, X) be the space of free maps from 2A to X
with the compact open topology. For a pointed map f: 2A-X,
L(2A, X; f) denotes the path component of L(2A, X) which
contains f.

Lo(2A, X) and Lo(2A, X; I) will denote the spaces of ~ase

points preserving maps in L(2A, X) and L(2A,X; f) respectively.
The evalua:J.ion map (J).: L(2A, X)-X is defined to be w(k) =k(*)
for each kEL(2A, X). Varadarajan [l2J called a map f: A-X is
cyclic if 17(lV/) .: XVA-X extends to a map F: Xx A-X.
Also, Urn [9J called a map I : A-X is cyclic if there exists a
map F: XxA-X such that Fj: XVA-X is homotophic to
17(1V/) : XVA-X, where j: XVA-XxA is the inclusion. How­
ever, in our category the Urn's definition is equivalent to the
Yanl<:larajan's.

3. Definit~on and existence of n-cyclic maps

Let I and g be (pointed) maps from A to X where A is a co­
H-space with f.l a comultiplication. Define I+g : A-X to be the
composition

ALAVAIV<¥XvxLx
It is known [9J that if I, g : A-X are cyclic maps, then I+g:
A-X is cyclic. When n is a positive integer, define nf by;

1/=1, nl=(n-l)/+1 for n>1.

DEFINITION 3.. 1. Let A be a cQ-H-space. A map f: A-X is said
to be n-cyclic if nl :.A-X is cyclic.

PROPOSITION 3. 2. If k is odd, thenthe identity map of Sk- is 2­
cyclic.

Proal. It is known [11] that there is a map H: SkX$k_Sk of
type (1,2), that is, Hlskx* has degree 1 and HI*xsk has degree 2.
Thus I sk : Sk_Sk is 2-cyclic.

REMARK 3.3. Let A be a co-H-space. According to [9J, it follows
immediately that if I: A-X is cyclic, then f: A-X is n-cyclic
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for any nEN. But the converse does not hold. From Proposition
3. 2, the identity map of S5 is 2-cyclic. However, it is known [9J
that X is an H-space if and only if Ix is cyclic. Thus the identity
map of S5 is not cyclic.

THEOREM 3. 4. Any map f : S2k+I~S2k+1 is 2-cyclic.

Proof. If k=O, then f : Sl~Sl is cyclic. Thus f: Sl~Sl is 2­
cyclic. If k>O, then we have, from the Freudental suspension
theorem, that there is a map g : S2k~S2k such that ~g is homotopic
to f. Since L;g is co-H-map and the identity map of S2k+1 is 2-cyclic,
f : S2k+I~S2k+l is 2-cyclic.

THEOREM 3.5. Let A be a co-H-space. If f: A~X is n-cyclic
and g : X-~ Y has a right homotopy inverse, then gf: A~ Y is
n-cyclic.

Proof. Since f : A~X is n-cyclic, there is a map F: XxA~X
such that Fj =[7 (lV nf). Let h : Y~X be a right homotopy inverse
of g. We define a map G: YxA~Y by letting G(y,a)=gF
(h(y), a). Then Gj =gF(hx l)j =gFj(hVl) =g17(lVnf) (hVl) =
17(ghVg (nf)) "'17(lVn(gf)). This proves the theorem.

THEOREM 3.6. Let A be a co-H-space. If g: X~Y has a left
homotopy inverse and f : A~X is a map such that gf: A~Y is
n-cyclic, then f : A~X is n-cyclic.

Proof. Since gf : A~ Y is n-cyclic, there is a map G : YxA~ Y
such that Gj=17(lVn(gf)). Let h: Y~X be a left homotopy
inverse of g. We define a map F : XxA~X by letting F(x, a) =
hG(g(x), a). Then Fj =hG(gx l)j =hGj(gVl) =h17(gVn(gf)) =
h17(gVg(nf)) =hg17(lVnf)"'[7(lVnf). This proves the theorem.

COROLLARY 3. 7. Let f: S2k+!~S2k+1 be any map. If g: S2k+1~X
has a right homotopy inverse, then gf : S2k+l~X is 2-cyclic.

4. Applications in mapping spaces

Let L(~A, X) be the space of maps from 2A to X with the
compact open topology, let f : ~A~X and L(~A, X; f) the path
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component of L(ZA, X) containing f. Lo(ZA, X) and Lo(ZA, X ; f)
will denote the spaces of base point preserving maps in L(ZA, X)
and L(ZA, X; f) respectively. In general, the components of
L(ZA, X) almost never have the same homotopy type. For exam­
ple, L(S2, S2 ; *) and L(S2, S2 ; 1) have different homotopy type
[13J. However, it is known by Koh [7] that if X is an H-space,
then L(SP, X ; f) and L(SP, X ; g) have the same homotopy type
for arbitrary f and g in ~P(X). In this section, we study some
sufficient conditions for· homotopy equivalence of L('ZA, X; f)
and L(ZA, X; g) for f, gE[ZA, X]. Thus we obtain the above
Koh's result as a corollary. Also, we study homotopy groups of
free mapping space L(ZA, X) with an n-cyclic map as base point.

DEFINITION 4.1. Clearly the evaluation map W : L(ZA, X)~X is a
fibr.ation. Let f: .E.A.~X be.. a pointed map. Since X. i~path
connected, the restriction WJ = W IL(EA,X;f) : L (1,"A, X ; f)~X is a fibr­
ation with fiber Lo(ZA, X; f). We call this fibration (L(ZA, X;
j), Wj, X) the evaluation fibration defined by f.

The evaluation fibration (L(l'A, X; *), W*, X) defined by the
neutral *E[ZA, XJ is called the neutral evaluation fibration. It has
a canonical section P*: X~L(ZA,X; *) defined by p*(x) (y) =X
for every XEX and every yEZA. The existence of a section is a
very special property for an evaluation fibration.

LEMMA 4.2. The evaluation fibration (L(ZA, X; nf), W"j, X)
has a section if and only if f: ZA~X is n-cyclic.

Proof. Let P : X~L('ZA,X; nj) be a map such that w"JP=lx.
Define a map H: XxZA~X by letting H(x, <a, t» =p(x) <a, t).
ThenH : XxZA~X is a continuous map and H(x, *) =p(x) (*) =
w"JP(x) =X and H(*, <a, t)}=p(*)<a, t). Since p(*) belongs tb Lo
(ZA, X; nf), p(*) is homotophic to nf. Thus f: ZA~X is n­
cyclic. On the other hand, suppo~e that f: 1,"A~X is n-cyclic.
Then there is a map F: XxZA~X such that Fj=vClVn!). Define
a map p: X~L(ZA,X) by letting- p(x)<a,t)=F(x, <a,t». Since
X is a path connected, p: X~L(2A,X; n!) is a map such that
w"JP=lx.
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Two fiber spaces El and E2 over the same space B with projec­
tions A(E;) =B(i= 1,2) are equivalent over B [I3] if there exist
mappings if>l : Ec-~E2' if>2: E2~El such that i) if>1if>2 and if>2if>1 are
homotopic to the identity maps of E 2 and El, respectively. ii) P2if>1
is homotopic to PI and Plif>2 is homotopic to P2.

REMARK 4. 3. However, it is known [2. Theorem 6. 1] that two
fiber spaces El and E2 are equivalent over B if and only if El
and E 2 are fiber homotopy equivalent.

PROPOSITION 4.4 (G. W. Whitehead). L(SP, X; f) is equivalent to
L(SP, X; *) over X if and only if the evaluation fibration (L(SP,
X ; f), Wj, X) has a section. (p. 464, Theorem 2. 8 in [I3]).

One can generalize Proposition 4. 4, without essential changes in
its proof, to the case of an arbitrary sphere SP into a reduced
suspension 2A. Thus we have the following theorem.

THEOREM 4. 5. The following statements are equivalent;
i) f: 2A~X is n-cyclic
ii) (L(2A,X; nf),wnj,X) has a section
iii) L(2A, X ; nf) is fiber homotopic equivalent to L(2A, X ; *).

Proof. The assertions i) ~ii) follows from Lemma 4.2. ii)
implies iii). Let p be a section of Wnf : L(2A, X; nf)~X. We can
define a map if> : L(2A, X; *)~L(2A,X; nf) by if> (h) =h+ p(w*
(h)), where h+p(w*(h)) : 2A~X is a map given by starting out
with the co-H-structure It: 2A~2AV2A by applying h to the
first factor and p(w*(h)) to the second factor in the wedge product
2AV2A. For hEL(2A, X; *), there is a path PI : I~L(2A, X)
from * to h. Let P2: I~L(2A,X) be defined by P2(t)=PW*Pl(t).
Then P2 is a path from nf to pw*(h) and WfP2(t) =W*Pl(t). Thus
we define a map p: I~L(2A,X) by P(t)=Pl(t)+P2(t). Then P
is a path from nf to h+pw*(h). Thus if>: L(2A, X; *)~L(2A,

X; nf) is well defined. Similarly, define a map if;: L(2A, X ;
nf)~L(2A,X; *) by if;(k) =k+ (-(p(wnf(k)))). Then if; is also
well defined. It is easy to see that if> and if; are fiber preserving
maps and that if;if>(h) = (h+ p(w* (h))) +(- (p(w* (h)))) and if>if;(k) =
(k+ (- (p(wnf(k))))) +p((i)nf(k)). To show that if;if> is homotopic to
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1 and if></J is homotophic to 1, define maps H: (2A, X; *) xI.,....,.L
(2A, X; *) by letting

(
h(a, 45/(1 +3t) ,0:::;:s:::;:(1+3t)/4

H(h, t)<a, s)= pw*(h) (a, 4s- (1 +3t» ,(1 +3t)/4:::;:s:::;:(1 +t)/2
pW* (h) (a, 2-2s) , (1 +t)/2:::;:s:::;:1

and K: L(2A, X; nf) xI-+L(2A, X; nf) by letting

{
k<a'4s/1 +3t» ,0:::;:s:::;:0+3t)/4·

K(k,t)(a,s)= pWnf(k)(a,2-4s+3t) ,(l+3t)!4:::;:s:::;:(I+t)/2
pWnf(k)(a,2s-l) ,(1+t)/2:::;:s:::;:1.

Then H is a homotopy from </Jif> to 1 and K is a homotopy from
if></J to 1. Thus, by Remark 4.3, L(2A, X; nf) is fiber homotopy
equivalent to L(2A, X ; *).

iii) implies ii). There is a canonical section P* : X -+L (2A, X ; *)
such that W*P* = 1. From the hypotheses, there is a map ifJ: L
(2A, X; *)-+L(2A, X; nf) such that Wnfif> is homotopic to w*. Let
p=if>p*. Then WnfP=Wnfl!>P*"'W*P*=1. By the covering hornotopy
property, there is a map p: X-+L(2A, X; nf) such that p is
homotophic to p and WnfP=1. Thus Wnf : L(2A, X; nf)-+X has a
section p.

COROLLARY 4.6. If f: 2A-+X is m-cyclic and g: 2A-+X is n­
cyclic, then L(2A, X; mf) and L(2A, X; ng) are homotopy
equivalent.

This corollary tells why all the components in L(53,52
) (or L

(57,54» have the same homotopy type.
Gottlieb [4J introduced the evaluation subgroups Gm(X) ·of

homotopy groups ~m(X). Gm(X) is defined to be the set of all
fE'lrm(JO for which f : 5m-+Xis cyclic. Also, a space X satisfying
Gm(X) ='lrm(X) for all m is called a G.:.space.

CoROLLARY 4.7. If X is a G-:space, then L(5P, X; f) and L(5P,

X ; g) have the same homotopy type for arbitrary f and g in
'lrp(X) .

Cleary, any H-space is a G-space, but the converse is not true
[IOJ. Thus the above corollary generalize Koh's result to the case
of H-spaces into G-spaces.

PROPOSITION 4.8. [5J. For f and g in 'lrm(5n) , if the Whitehead
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product [f, InJ=[g, InJ (or [f, InJ=-[g, InJ), then the evaluation
fibrations (L(Sm,sn;f), Wj,Sn) and (L(Sm,sn;g), wg,Sn) are
fiber homotopy equivalent.

However, it is known [6J that f : ZA~ZX is cyclic if and only
if [hI" fJ =0, where [, ] is the generalized Whitehead product.
Thus we may can interpret the hypotheses of Proposition 4. 8. in
terms of cyclic maps. Next theorem gives another sufficient condi­
tion for homotopy equivalence of L(ZA, X; f) and L(ZA, X; g).

THEOREM 4.9. For pointed maps f,g: ZA~X, if f+g(or f-g)
: ZA->X is cyclic, then the evaluation fibrations (L(ZA,X; f),

Wj, X) and (L(ZA, X; g), Wg, X) are fiber homotopy equivalent.

Proof. For proving this case the technique is identically the
same as that used by Hansen [5J for proving Proposition 4. 8. We
carry out the proof for the case f+g: ZA~X is cyclic and the
other case is similar. By Lemma 4.2, there is a section p: X-->
L(ZA, X ; fT-g) for the evaluation fibration defined by f+ g. Let
us consider maps cjJ: L(ZA, X; f)~L(ZA,X; g) is given by
cjJ(h) c= (- h) + p(w/(h» and rjJ : L(ZA, X; g) ~L(ZA,X; f) is given
by rjJ(k) -e=p(wg(k» + (-k). Then it follows that cjJ and rjJ are fiber
preserving maps and that rjJcjJ and cjJrjJ are fiber homotopic to the
respectively identity maps. This prove the theorem.

COROLLARY 4.10. If f: ZA-->X is n-cyclic, then L(ZA, X;
(n-r)f) is homotopy equivalent to L(ZA, X; rf), where O:5:r:5:n
and Of is the constant map*.

PROPOSITION 4.11(G.E. Lang, Jr.). Let fE[ZA,X]. For any
r> 1, we have then a commutative diagram

~[Zr+IB, XJ~[zrB,Lo(ZA, X; f)J~[zrB,L(ZA, X; f)J~
t A

I f*
Pt [ZrB,Lo(ZA,X; *)J

'"l(j
I

'-------+[Z(ZrBJ\A), X]
where Ot is the boundary operator in the exact homotopy sequence
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for the evaluation fibration defined by f, fJ is the isomorphism
given by fJ(k) (r) is the map taking <a, t) to k «a, r), t) in X; j*
is the isomorphism induced by the homotopy equivalence j: L o
(2A,X;*)~Lo(2A,X;f) given by j(h)=h+f, and PI is the
f- Whitehead, homorphism(Pt(g) = [g, fJ for any g in [2r+IB, XJ).

LEMMA 4.12. If A and B are suspensions and f: 2A~X is n­
cyclic, then the nf-Whitehead homomorphism Pnl : [2rB, XJ~[2(2r-l
B/\A, XJ is zero map.

Proof. It follows from Theorem 3.2 in [12J and Proposition 3.4
in [1J.

THEOREM 4.13. If A and B are suspensions and f: 2A~X is
n-cyclic, then [2rB,L(2A,X; nf)J is isomorphic to [2 (2rB/\A) ,
XJEB[2rB, XJ for .any integer r>l.

Proof. For nfE[2A, X], the evaluation map (j) : L(2A, X; nf)~
X is a fibration with fiber Lo(2A, X; nf). Then, by the Proposi­
tion 4. 11, there is a long exact nf-component EHP-sequence

ft [2 (2rB/\A) , xJ-S[2rB, L[2A, X; nf)J~[2rB,XJ~
[1,'(2r

- 1B/\A) , XJ
where i~=i*j*fJ. According to the above lemma, we obtain a short
exact sequence

4 ~,
0-7[2(2rB/\A),X]---+[2rB,L(2A,X ; nf)]---+[2rB, XJ-70

From Lemma 4.2, there is a section p : X ~ L(2A, X; nf) for
the evaluation fibration defined by nf. Thus P*: [2rB, XJ~[2rB,
L(2A, X; nf)] is a homorphism such that (j)*p*=l[~rB,XJ. Hence
this sequence is split. This completes the proof.

COROLLARY 4.14 [14J. If f: SP~X is cyclic, then 7rq (L(SP, X; f»
is isomorphic to 7rp+q (X) EB7rq (X) for all p, q>1.
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