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ON n-CYCLIC MAPS

Yeon Soo Yoon*

1. Introduction

The concept of cyclic maps was first introduced and studied by
D.H. Gottlieb [3] and K. Varadarajan [12]. Many properties of
cyclic maps can be found in [6], [9] and [14]. In this paper, we
shall define and study an wm-cyclic map which is a generalization
of a cyclic map. In Section 3, existence of n-cyclic maps is
shown. Also, we study some properties of #n-cyclic maps. In
Section 4, we study the mapping spaces L(2JA4, X) and n-cyclic
maps. In general, the components of L(ZA4, X) almost never have
the same homotopy type [13]. In this section, we study some
sufficient conditions for homotopy equivalence between the compo-
nents of L(ZA, X). Also, we show that if f:2A—X is n-cyclic,
then [2"B, L(ZA, X ; nf)] is isomorphic to [Z(Z"BNA), X 1D[2"B,
X7 where A and B are suspensions.

2. Prelimlnaries

Unless otherwise stated, we shall work in the category of spaces
with base points and having the homotopy type of connected locally
finite CIW complexes. All maps shall mean continuous functions.
As usual, all maps and homotopies are to preserve base points
with the exception of Section 4. The base point as well as the
constant map will be denoted by*. The identity map of space will
be denoted by 1 when it is clear from the context. For simplicity,
we some times use the same symbol for a map and its homotopy
class. Also, we denote by [X,Y] the set of homotopy classes of
pointed maps X—Y. The holding map p : XAX—X is given by
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7 (x, *)=p (¥ x)=x for each x&X. ¥X denote the reduced suspen-
sion of X. Let L(ZA, X) be the space of free maps from ZA to X
with the compact open topology For a pointed map f:JA—X,
L(ZA,X; f) denotes the path component of L(ZA,X) which
contains f.

L,(CA4,X) and L, (Z'A X0 Wﬂl denote the spaces of base
points preserving maps in L(ZA, X) and LA X f) respectlvely
The evalualion map w : L(ZA, X)—X is defined to be (k) =k(*)
for each k.=L(Z A, X). Varadarajan [12] called a map f : A—X is
cyclic if pQAVf): X\VA—X extends to a map F:XxA-X
Also, Lim [9] called a map f: A—»X is cyclic if there exists a
map F:XxA—X such that Fj 7 XVA—-X is homotophlc to
ravy) : X\VA-X, where j: X\/A—XX A is the inclusion. How-
ever, in our category the Lim's definition is equivalent to the
- Varadarajan’s.

3. Definition and existence of n-cyclic maps

Let f and g be (pointed) maps from A to X where A is a co-
H-space with ¢ a comultiplication. Define f+g : A—X to be the
composition ‘

a4t AV LAY xvxl.x
It is known [9] that if f,g: A—X are cyclic maps, then f+g:
A—X is cyclic. When # is a positive integer, define nf by;
1f=f, nf= (n41)f+f for n>1.

Dermvirion 3. 1. Let A be a co-H-space. A map f A—X is said
to be n-cyclic if nf : A—»X is cychc

PROPOSITION 3 2 I f kis odd then the identity map of S" is 2-
cyclic. .

Proof. It is known [11] that there is a map H: SEX SF—SE of
type (1,2), that is, H|g.s has degree 1 and H|.s has degree 2.
Thus 1s : S*>S* is ‘9-cyclic.

Remark 3.3. Let A be a co-H-space. According to [9], it follows
immediately that if f: A—X is cyclic, then f: A—X is n-cyclic
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for any n=N. But the converse does not hold. From Proposition
3.2, the identity map of S° is 2-cyclic. However, it is known [9]
that X is an H-space if and only if 1y is cyclic. Thus the identity
map of S° is not cyclic,

Tueorem 3.4. Any map f: S*H—=S* is 2-cyclic.

Proof. 1f k=0, then f:S5'—S! is cyclic. Thus f:S'->S' is 2-
cyclic. If £2>0, then we have, from the Freudental suspension
theorem, that there is a map g : S¥*—S* such that 2g is homotopic
to f. Since > g is co-H-map and the identity map of S**! is 2-cyclic,
[ §*F -8 s 2-cyclic.

Tueorem 3.5. Let A be a co-H-space. If f: A-X is n-cyclic
and g : X—Y has a right homotopy inverse, then gf: A—Y is
n-cyclic.

Proof. Since f: A—X is n-cyclic, there is a map F: XX A—-X
such that Fi=p(1\/nf). Let h: Y—X be a right homotopy inverse
of g. We define a map G: YXA—-Y by letting G(y,a)=gF
(h(y),a). Then Gj=gFhxX1)j=gFjr\V/ 1D =gr(\/nf)hV1) =
y(gh\Vgnf))~p(1\/n(gf)). This proves the theorem.

Tueorem 3.6. Let A be a co-H-space. If g: X—Y has a left
homotopy inverse and f: A—X is a map such that gf : A—Y 1is
n-cyclic, then f: A—X is n-cyclic.

Proof. Since gf : A—Y is n—cyclic, thereis a map G: YxXA—-Y
such that Gj=p(1\/n(gf)). Let h: Y—>X be a left homotopy
inverse of g. We define a map F : XX A—X by letting F(x,a)=
hG(g(x),a). Then Fj=hG(gx1)j=hGj(gV1)=hr(g\Vn(gr))=
hp(g\Ngnf))=hgr(QN/nf)~p(1\/nf). This proves the theorem.

CoroLLARY 3.7. Let f: S*N—-S*Y pe any map. If g:S*"'—X
has a right homotopy inverse, then gf : S*"'—X is 2-cyclic.
4. Applications in mapping spaces

Let L(ZA, X) be the space of maps from YA to X with the
compact open topology, let f:2A—X and L(ZA,X; f) the path
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component of L(2'A4, X) containing f. Ly(ZA4, X) and Ly(Z4, X5 f)
will denote the spaces of base point preserving maps in L(Z4, X)
and L(JA,X; f) respectively. In general, the components of
L(ZA, X) almost never have the same homotopy type. For exam-
ple, L(S%5%; %) and L(S%S?; 1) have different homotopy type
[13]. However, it is known by Koh [7] that if X is an H-space,
then L(S?, X ; ) and L(5? X ; g) have the same homotopy type
for arbitrary f and g in #,(X). In this section, we study some
sufficient conditions for homotopy equivalence of L(ZA, X; f)
and L(ZA, X ; g) for f,g€[2A,X]. Thus we obtain the above
Koh’s result as a corollary. Also, we study homotopy groups of
free mapping space L(ZA, X) with an #n-cyclic map as base point.

Dermurion 4. 1. Clearly the evaluation map w : L(JA,X)—X is a
fibration. Let f:2A4—X be a pointed map. Since X is path
connected, the restriction w;=w|izaxp : L(ZA, X; f)—X is a fibr-
ation with fiber Lo(ZA4, X ; f). We call this fibration (L(ZA, X ;
), ws, X) the evaluation fibration defined by f.

The evaluation fibration (L(ZA, X ; *), wx, X) defined by the
neutral *¢[Z A, X is called the neutral evaluation fibration. It has
a canonical section py : X—>L(ZA, X ;*) defined by ps(x)(y)=x
for every x=X and every y&JA. The existence of a section is a
very special property for an evaluation fibration.

Lemva 4.2. The evaluation fibration (L(ZA, X ;nf), ow, X)
has a section if and only if f: 2A—X is n-cyclic,

Proof. Let p: X—>L(ZA,X ;nf) be a map such that w.p=Ix.
Define a map H: X xJA—-X by letting H(x, {a,t)) =p(x)<a,t).
Then H : XxX¥A—X is a continuous map and H(x, *)=px) (*) =
wirp(x) =% and H(*,{a, Y=p(*)<a,t). Since p(*) belongs to L,
(ZA, X ; nf), p(*) is homotophic to nf. Thus f:2A—-X is n-
cyclic. On the other hand, suppose that f:ZA—X is n-cyclic,
Then there is a map F : XX 3 A—X such that Ff=p (1\/nf). Define
amap p: X—>L(ZA,X) by letting p(x)<a,t>)=F(x,{a,t>). Since
X is a path connected, p: X—>L(JA, X;nf) is a map such that
W= 1x.
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Two fiber spaces E, and E, over the same space B with projec-
tions p:(E;) =B(i=1,2) are equivalent over B [13] if there exist
mappings ¢, : E,—F,, ¢,: E,—FE, such that i) ¢,¢, and ¢4, are
homotopic to the identity maps of E, and E,, respectively. ii) p,¢,
is homotopic to p; and p,¢, is homotopic to p,.

Remark 4. 3. However, it is known [2. Theorem 6.1] that two
fiber spaces E; and E, are equivalent over B if and only if £,
and E, are fiber homotopy equivalent.

Prorosition 4.4 (G. W, Whitehead). L(S*, X ; f) is equivalent to
L(S" X *) over X if and only if the evaluation fibration (L(S?,
X3 ), w,X) has a section. (p.464, Theorem 2.8 in [13]).

One can generalize Proposition 4.4, without essential changes in
its proof, to the case of an arbitrary sphere S’ into a reduced
suspension 2 A. Thus we have the following theorem.

Tueorem 4.5. The following statements are equivalent ;

i) f:2A-X is n-cyclic

i) (L(ZA, X;nf),w,y, X) has a section

iii) L(JA, X ; nf) is fiber homotopic equivalent to L(ZA, X ; *).

Proof. The assertions 1i)<—>ii) follows from Lemma 4.2, ii)
implies iii). Let p be a section of w, : L(ZA, X ; nf)—X. We can
define a map ¢ : L(ZA,X; *)-L(ZA, X;nf) by ¢(h)=h+plws
(1)), where h+p(wsx(h)) : TA—X is a map given by starting out
with the co-H-structure p:YA—-2A\/JA by applying 2 to the
first factor and p(wy (%)) to the second factor in the wedge product
JAN/ZA., For h&L(JA, X;*), there is a path p,: [-L(ZA, X)
from * to h. Let p, : [5L(2A, X) be defined by p,(¢) =pwp;(t).
Then p, is a path from nf to pwy(h) and w;p,(t) =w«p,(). Thus
we define a map p:I[—-L(ZA,X) by p)=p,&)+p,(t). Then p
is a path from »nf to h+pwx(h). Thus ¢ : L(ZA, X ; *)—>L(ZA,
X nf) is well defined. Similarly, define a map ¢ : L(ZA, X ;
nf)—L(ZA, X;*) by ¢(B)=k+ (— (p(w.s(k)))). Then ¢ is also
well defined. It is easy to see that ¢ and ¢ are fiber preserving
maps and that ¢¢(h) = (h+p(ws(R))) + (—(p(wx(7)))) and ¢¢(k) =
(k+ (— (o(wsE))))) +p(@.:(R)). To show that ¢¢ is homotopic to
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1 and ¢¢ is homotophic to 1, define maps H: (ZA4, X; *) XI-L
(ZA, X5 *) by letting

ha, 4s/(1+3£)> ,0<s<(1+30) /4
H,a,s>= [pw*(h) {a,4s— (1+36)> , (1438 /4<s<(1+1)/2
pws (h)<a,2—2s) , (1+1)/2<s<1
‘and K: L(ZA, X; nf)XI-L(ZA, X; nf) by letting
(k<a,4s/1+38)) ,0<s<(1+30 /4
Kk, ){a, s>= {pw,,f(k) la,2—4s+3t> , (1+30)/4<s<(1+8)/2
pw,(R)<a,2s—1> , 1+ /2<s<1.

Then H is a homotopy from ¢¢ to 1 and K is a homotopy from
¢¢ to 1. Thus, by Remark 4.3, L(FA, X ; nf) is fiber homotopy
equivalent to L(ZA, X ; *).

iii) implies ii). There is a canonical section p, : X—L(ZA, X ; *)
such that wypy=1. From the hypotheses, there is a map ¢:L
(ZA,X;*)-L(ZA, X ; nf) such that w,4 is homotopic to ws. Let
p=0px. Then w,0=w.,Ppx~wspx=1. By the covering homotopy
property, there is a map p: X—L(ZA, X ;nf) such that p is
homotophic to p and w.,p=1. Thus w,;: L(ZA, X ; nf)—X has a
section g.

CoroLLaArY 4.6. If f:2A—>X is m-cyclic and g :2A—-X is n-
cyclic, then L(ZA,X;mf) and I(ZA,X;ng) are homotopy
equivalent.

This corollary tells why all the components in L(S% S? (or L
(87, 5%)) have the same homotopy type.

Gottlieb [4] introduced the evaluation subgroups G.(X) -of
homotopy groups z.(X). G.(X) is defined to be the set of all
fen.(X) for which f : S,—X is cyclic. Also, a space X satisfying
Ga(X) =r.(X) for all m is called a G-space.

CoroLLaRY 4.7. If X is a G-space, then L(S*, X f) and L(S,
X 5 2) have the same homotopy type for arbitrary f and g in
7 (X). |

Cleary, any H-space is a G-space, but the converse is not true
[10]. Thus the above corollary generalize Koh's result to the case
of H-spaces into GG-spaces.

Prorosition 4. 8. ‘[5‘]. For f and g in 7.(SY), if the Whitehead
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product [ f,1L.1=[g, 1.} (or [ f,1.1=—1g, 1.1), then the ecvaluation
fibrations (L(S",S"; f), w;S") and (L(S",S";g), w,S") are
Sfiber homotopy equivalent.

However, it is known [6] that f: YA—-2X is cyclic if and only
if [Ig,, f1=0, where [, is the generalized Whitehead product.
Thus we may can interpret the hypotheses of Proposition 4, 8. in
terms of cyclic maps. Next theorem gives another sufficient condi-
tion for homotopy equivalence of L(ZA, X ; f) and L(ZA, X ; g).

TreorEM 4. 9. For pointed maps f,g : 2A—X, if ft+glor f—g)
: YA—-X s cyclic, then the evaluation fibrations (L(ZA,X; f),
ws;, X) and (L(ZA, X g),w, X) are fiber homotopy equivalent.

Proof. For proving this case the technique is identically the
same as that used by Hansen [5] for proving Proposition 4.8. We
carry out the proof for the case f+g :2A—X is cyclic and the
other case is similar, By Lemma 4.2, there is a section p: X-—
L(ZA, X f+g) for the evaluation fibration defined by f+g. Let
us consider maps ¢ :L(ZA X; f)-»L(ZA X;g) is given by
o) =(—h)+plw;(h)) and ¢ : L(ZA, X; g)->L(ZA,X; f) is given
by ¢ (k) =p(w, (%)) + (—k). Then it follows that ¢ and ¢ are fiber
preserving maps and that ¢¢ and ¢¢ are fiber homotopic to the
respectively identity maps, This prove the theorem.

CoroLLary 4.10. If f:2A-X is n-cyclic, then L(ZA,X;
(n—7r)f) is homotopy equivalent to L(ZA,X;rf), where 0<r<n
and Of is the constant map*.

Prorosition 4.11(G.E. Lang, Jr.). Let f<[Z2A,X]. For any
r>1, we have then a commutative diagram

SIEB, X DL B, LA, X 5 )1 2B, LA, X 5 £)12%
| 7
bs [2"B, L, (A, X; %]
To
[2(Z"BNA), X ]
where 0; 1S the boundary operator in the exact homotopy sequence
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for the evaluation fibration defined by f, 0 is the isomorphism
given by O) (r) is the map taking {a,t)> to kb a,r),t> in X, fx
is the isomorphism induced by the homotopy equivalence f: L,
(A, X;*—>L,CA,X; f) given by f(h)=h-+f, and p; is the
f-Whitehead  homorphism(p:(g)=[g, f]1 for any g in [2'B, X]).

Lemma 4.12. If A and B are suspensions and f:ZA—X is n-
cyclic, then the nf- Whitehead homomorphism P, : [ 2B, X J-[Z (2
BN\A, X] is zero map.

Proof. Tt follows from T heorem 3.2 in [12] and Proposition 3.4
in [1].

Tueorem 4.13. If A and B are suspemsions and f:2ZA—X is
n-cyclic, then [2'B, L(ZA, X ; nf)] is isomorphic to [2(Z"BNA),
X1®[2"B, X1 for any integer r>>1.
 Proof. For nfe[IA, X1, the evaluation map o : L(ZA4, X ; nf)—
X is a fibration with fiber Ly(ZA, X ; nf). Then, by the Proposi-
tion 4.11, there is a long exact nf-component EHP-sequence

Bo, Ly (BALY, X1 [2B, LIZA, X s nf)]25 (2B, X182,

[ZCEBANA), XT
where fy=1.fx0. According to the above lemma, we obtain a short
exact sequence

0—>[Z("BAA), X125[3B, LA, X ; nf)]—%[3B, X]—-0
From Lemma 4.2, there is a section p: X — L(ZA4,X; nf) for
the evaluation fibration defined by #nf. Thus py : [2"B, X]—[2"B,
L(ZA,X;nf)] is a homorphism such that wyp«=lw'sx. Hence
this sequence is split. This completes the proof.

CoroLrary 4. 14 [14]. If f: 8*—X is cyclic, then m,(L(S*, X; f))
is isomorphic 10 7y (X)Dr,(X) for all p,g>1.
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