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EXPONENTIALLY EQUI-CONTINUOUS C-SEMIGROUPS
IN LOCALLY CONVEX SPACE

Doo Hoan Jeong, Jone YeouL Park anp Jone Won Yu
1. Introduction

In this paper we are concerned with exponentially equi-continuous
C-semigroups for calibration. A calibration I for a topological vector
space X is a family of seminorms which induces the topology of X.
Let X be sequentially complete locally convex space and let C; X —» X
be an injective bounded linear operator with dense range. A family
{S®) ; t=0} of bounded linear operators from X into itself is called
an exponentially equi-continuous C-semigroup if

1) S¢+s)C=S(#)S(s) for ¢,s=0 and S(0)=C,

(2) there exists a=0 such that {e *S(¢)z ; t=0} is equi-continuous

in X.

(8) for every x€X, S()x is continuous in #=0.

For every t=0, let T(¢) be the closed linear operator defined by
T@)xz=C18@)x for 2€D(T(t))={z€X; S@)z=R(C)}.

We define the operator G by
D(G)= {xER(C) ; Itirg——————~T (t);c—-x exists}
and
@D Ge=lmTWE=Z for 2eD(G).
G is called the C-c.i.g. (C-complete infinitesimal generator) of
{S(#) ; £=0}, where G denotes the closure of G.

In Section 2, we deal with the C-c.i.g. and representation of
exponentially equi-continuous C—semigroups, Section 3 treats the gene-
ration of exponentially equi-continuous C-semigroups and Section 4
investigate a Cauchy problem in locally convex space.
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2. C-complete infinitesimal generator and representation of
exponentially equi-continuous C-semigroups

Let z be ans? fixed element in X and let us put
Lj"’x=f:’e"”S @z dt
for each w>0 and >0 (We can define the integral of Riemann type

since ¢~#S(¢)z is continuous on [0, ) with values in X). Then we
have for any seminorm p<7’,

pLiws—Liv') < [ p(S@ ) de

for any 0<w’<w. By the assumption (2) there exist a=0 and g’
such that p(S()z) <e#g(x) for all £=0.
Hence if >4, then
PLima— L) Sq(@) | e 4 d1-0 .

as w, w'—oo. Thus the limit lim Lf"x exist. For every Z>a, deﬁne
the bounded linear operator L;; X — X by

(2.1) sz_j HS(f)z dt for z€X.

Similarity as in Banach space [1,3], we have

(a) G is densely defined and closable,

(b) for every A>a,

. 2) (A—G)L;z=Cz for z€X
) L,(A—G)2=Cz for z€D(G).
In fact, let £>a. For x&R(C), Lz=R(C) and

L@ —D L=t ([ s @+n e di—[ e #S@zdr)

=L D N g
h(e I)Ihe NMGEY kjoe Sz dt

— AL;z—Cx
‘as b — 0%, and hence L;z€D(G) and GLjz=AL;z—Cx.
Next, for zeD(G), leeR(C) and

1(T(h) —DILg=L, [ (T(h) Dz]— LGz

as h— 0% ie, GLx=LGxz. Therefore
2.3) (A—G)Lx=Cz for zeR(C),

—_— 2 —
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L,(A—G)x=Cz for z&D(G).
Note that

2.4) lim AL,z = Iim A :e’”S (1) xdt=Czx for z€X.

A—co Ao

Since A1 L,Cz=D(G) and lim 2 L,Cx=C2%x for z€X by (2.3) and (2.
A—00

4), we have that D(G) is dense in X by noting R(C?) is dense in

X. Now the closability of G follows from L;(A—G)z=Cz for z&

D(G) and (2.4), then (2.3) implies (2.2). The proof is complete.
We also see that

(2.5) 4 5()2=5()Ga=GS ()=
for z&D(G) and s=0. The proof is similarly as in [1, Lemma 8].

TueoreM 2.1. The family of operators
(2.6) {[(A—a) A—G)"J"Cz ; zeD((A—G) 1), I>a,7=1,2,3,...}

is equi—-continuous.

Proof. From the resolvent equation
(u—G)"1Cx— (A—G) Cz= A—p) A—G) 1 (z—G)"'Cx
for 2, x>a, we obtain
2 (—6)7Cz = lim (u—D) [ (1=8)C— (A—F)IClz
= —‘linll A= [ (e-—G)1C— (2A—G)Cl=z
= —linll QA—G) Y (¢—G)"ICz
=—(2—G) "2Cxz.
Moreover, since

(#=8)"C— A—B) "C= (=) 2, (u—B) "+ (A—G) ~HC
for 4, >, we have -£-(1—G) Cz=—(—8) "'Cx.

Therefore (A—G)~'Cz is infinitely differentiable with respect to >a
and

_6%’;_(1—5) “10z— (—1)"n! A—G) ~""1Cx
for I>a and 2&€D((A—G)7Y).

On the other hand, we have, by (2.2) and differenting (2.1)

—_ 3 —



Doo Hoan Jeong, Jong Yeoul Park and Jong Won Yu
n—times with respect to,

i__—1.=w‘-lt_n
7 (Z» G)Czx Le (—&)»S () zdt.

. -1t — ()‘_a)n'*‘l © —itsn
Hence [(A—a) (1—G) 1] Cx—-——n—’———— .° 28 (&) x dt for x=D((A
—G)7Y), and so, for any p&I" on X and 1I>a, n>0,
P(LG—a) A—G)11C2) =A@ [“ -0 gy sup p(e S () 2)
- =sup ple2S(H)x).
This proves theorem by the equi-continuity of {¢ Sz ; t=0}.
We now define
e tRA2E =N —
Sr{E)z=e ”I;O —k—‘——(l——G) kCx for z=X.

For each fixed 1>>a, t=0 and z=X, the sequence {Sp()z; »=0,1,
2, ...} is Cauchy sequence. -
Indeed, for any continuous seminorm p&[" on X, .

= k 2k —
pSr@e—Sr@nse* % T p (-8

and there exist ¢g&I" by Theorem 2.1., p((A—G)*Cz) < (gya)) - for

all 2, and so that
s k2%
7 —Qm < — 2 - L —
pSr@)z—Sr@)2) =q(2)e k=zm:+1 H(A—a)*
—(0 as m, n—>co,
Then, for each 1>a, t=0 and z€X, the limit
o SE92k —
@7  Si@s=lnSp@a—e L A-5)
7n—s00 =0 .
exists. By S#() is continuous and S;(#) is uniformly converges in
t, we also see that S;(#) is continuous in £=0.

THEOREM 2. 2. Let {S@ ;t=0} be an exponentially eqm'—'contz"nuous
C-semigroup. If G is the C—c.i.g. of {S() ; t=0} and

o k2% —
S, (t)x-—-—e"‘tkz_,‘o%(l—G) ~iCy
Sfor z€X and t=0, then we have

@8 %(Sl(t—s)S(s) D) =S:¢—95() Ca—IGA—B) )

A—4.'—‘
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for all zeCD(G).

Proof. From the definition of S;(z)
—;Z?S,I(S)CxZSz(s) (—A+2G—8C) ") Cz

=8,(s)AG(A—G) " 1Cx
for z&X, and we see that
iS’ () z=8(s)Gz
ds

for zeCD(G) by (2.5). By (2.2),
S() (A—G) " WCz=S8(s) Lyx=L;S(s)z=(A—G)"1CS(S) z
for zeCD(G) i.e., GA—G)IC(=1(A—G)IC—C) commutes with
S(s). Now, let zeCD(G)and 2=Cy, yeD(G). Then we have
%—(S;(t—s)S(s)x) —S;(t—5)S(5) Gz—AG (A—C) ~12)
for zeCD(G).

Lemma 2.1. For each z€ X,
2.9 lim G(A—G)"Cz=0.

Proof. For all z&D(G) and for any p</’, there exists g=/I' such
that

$GQ—8)1Cr) =p((A=8) CGr) =4 f% -0

as A—oo0, A>>a, and by (2.6).
Since D(G) is dence in X,
lim G(A—G)"1Cz=0 for any z&X.

Ar00

Lemma 2.2. For each x=D(G),
(2. 10) Eim AG(A—G) 1Cx=GCx.
Proof. Let £>>a, z&€D(G) and z=(¢u—G) 1y for some
yER(u—G). Then
G (A—G) "1C2—GC%x=1G (A—G)"1C(1—G) "1Cy—GC2(u—G) 1y
=1G(A—G)IC(¢1—G)"ICy—G (u—G) 1C2y

=22 ((=5)Cy— (1= B)IC%)

— 5 —
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—G(u—G)1C%
=7i-2—§ (=) 1y —— T (u—T) iC.
Thus for any seminorm p&rl’
PUBGA—B)1C%~EC%) S—A1p@U-5)10%) + A G u—C)™
C?%y) — 0

as A— oo by (2.9). Since D(G) is dense in X, we have
lim A\G(A—G) "1Cz=GCz for any z&X.

A0

Tueorem 2.3. Let {S() ; t=0} be an exponentially equ—continuous
C-semigroup. If G is the C-c.i. g. of {S® ;t=0}, then

SE)z= hm e X Z (l— G)*Cz

Jor z€X and t=0.

Proof. since
0 ok _—
s, (t)x=e-uz‘—1k (1—i)-k[1—_1_(c—a)]-kcx

(2.11) —e‘”Z: (l-l- )"[(1 a) (A—G) 1J*Cz
for >a and z€X. there ex1sts qEP such that
p(5:0)2) <e‘”Z a2 ) (@)

(2. 12) _.e(a‘hzz/ (2"‘a))tq (x)
=e?q(z)
for any pel, z€X and i>2a by (2.11) and (2.6).
From (2.8), we have

S Cz—8,(@) C'%=J;-%S; (t—5)S(s)Cz ds

= J :sl (t—5)S (s) (GCz—AG(A—G) ~1Cz) ds

for z&D(G) and 0<s<z. By property (2) of {S() ;¢=0}, there
exist g, =TI such that

5(S () C2a—S8,() C2x) < j :)p (S:G—9)S(s) (GCz—AT(A—8)-1Cz) ds
< j :)ez“(’"")q(S (s) (CCz— G (A—8)~'C2)) ds

— 8 —
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§r e2¢=9 055 (GCz— AG (A—G) ~1Cx) ds

0

I

—% (79t —1) 25 (GCx — G (A—G) ~1Cx)
for any perl, 1>2a and 0<s=¢, and so, for any p&/l and =0,
(S C2z—S8,;(t)C2x) -0 as A — oo, because (2.10).
Hence lim S;(#)z = S(&)z for each =0 and z&C2D(G).
A—+00

Since C2D(G) is dense in X, for any x=X, we have
Iim S; (&) z=8 () x for t=0.
2-vo0

3. Generation of exponentially equi-continuous C-semigroup

We consider the following conditions:

(i) D(A) is dense in X,

(ii) for each 2€D((A—A)7Y), (A—A) ICz=C(A—A) iz

(iii) for each z€X, {{(A—a) A—A)1)*Czx ; 1>a, k=0,1,2,...}
is equi-continuous,

(iv) CD(A) is a core of A.

a2k

k!
A satisfying (1) (iv). Then for every bounded set B, the operator
{e72atS, () x 3 A =2a, t=0} is equi—continuous for any x< B.

(A—A) *Czx for z€X, t=0 and

Lemma 3.1.  Let Sl(t)x:g“llki
e

Proof. We already proved in Theorem 2. 3.

o 1kA2k
Lemma 3.2, Let Sl(t)x=e_’-‘k§t—£—‘— (A—A) *Cz for z€X, t=0 and

A satisfying (1)

(iv). Then the limit 1imS,(t) x exists uniformly with

10

respect to t in any bounded interval.
Proof. By definition of S;(¢), we have
4 5:()2=140—A) 78Oz for 26CD(A).
Thus if z€CD(A) and z=Cy, yeD(A), then

%S; (t—5) 8, (s) Cx=5,(t — ) A (u— A) ~18,,(s) Cz

_ 7 —
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—2A(A—A4)71 - 8;¢—5)S,(s)Cz
=8;(—5)8,(s) pA(u—A)"12Cy
—8:(t—s) - S, (s)AA(A—A)"1C%
Hence

S, () C2z—8; () czx=f%sz (t—s)8,(s)Cz ds
0

13
~ [ £8:6—9) 8, 1A (u— 2) 7102y~ G—9)
« S, () AA(A—A)"1C%y]ds
3
=[ 8:6—5)8,() (WA (u—a)71C%y
—AA(A—A)"1C2y) ds
for every x=C3D(A). By Lemma 3.1., for any p=TI, there exists
g€ such that p(S;(—s)S,(s) z) Setq(x) for all g, 1>>2a and 0=s=¢,
and (2. 10) show that p(uA(p—A)7'Cz—AA(A—A)"'Cx)—0 as 4, p—o.
Then, for each =0 and p<r, there exist g1 such that
(8, Cz—$;) ) < "t (uA (p— A) ICz—AA(A— A) IC2) ds
=te?qg(uA(u—A) 1Cx—AA(A—A)"Cx)
—(
as A, p— oo, Hence for each z=(C3D(4) and t<[0, ), the limit
lim S,(¢)z exists unformly with respect to ¢ in any bounded interval,

and from the uniform convergence in #, this limit is a confinuous
linear operator from X into itself.

TueoreMm 3.1. If {S(¢) ; =0} is an exponentially equi—continuous
C-semigroup and A is the C-c.i.g. of {S(t) ;t=0}, then A satisfy
the conditions (1) (iv).

Proof. We already proved (i) (iii). We must show that (iv).
Let z=X and #=0. Since D(A) is dense in X, there exists z,=D(4)
such that lim z,=z. Noting S(r)2&D(4) and

n—c0

d;‘i_S (t)z,=AS(1)z,=S(r) Az, we obtain
S (&) 2 cz,,=J:S () Azdc

— 8§ —
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=JtAS () 2 dr= AJtS (7)) z,dz.
0 0

4

Since 1,22 OS (T)z,,dz'=Lt)S (7) zdr, 1"12 AJ;S (t)2,dr=S({t)z—Cz
and the closedness of A,

(.1) J;S(T)zdreD(A) and AJ;S(T)zdf —S(t)z—Cx
for z&X and £20. It suffices to show

(3-2) Alepaw DA
To this end, let r&D(A) and £>0. Using (3.1) with 2=C"lz, we
have

%fos (©)C 1z dr — z and
G a(tfs@ca) =Lt soc—s

=L (T®2—2) - Az
as t—0%. Hence there is a £,>>0 such that
p(iroS )] C—lxdz'—x) +p<A (L toS(z‘) Clx d2'> ——Ax> <L
t() 0 to 0 2
for any p&l. Since CD(A) is dense in X, we can choose z,=CD (A)
such that x,—C 1z as n—oco. By (3.1) again, —}—YOS (v) z,dreCD(A)
0J0

and
1 (% 1
A( Ejo S0z, df) =L S a—Ca
(3.4) - %(s (t)Clz—C - C12)
— 1 (% -1
——A<—t—O-LS(T)C x d’z’)

as n— oco. By (3.4), there is a n,=0 such that
s i les@C ) +a(a( s @ r)
p(tOLS(T)x,,O dr tOLS@C zd)+p(A tOJOS(T)x,,adT
1 (% —~ 3
—A<ELS(T)C . dr>> <<
for any p=7I. Then we have %J;OS (t)z,, dr=CD(A) and
0

—_ g —



Doo Hoan Jeong, Jong Yeoul Park and Jong Won Yu

p(to NG Zyy dT— x) -I-p< (—j S (7) zppdr— Ax) Ax) <e
for any pI. Thus (3.2) is satisfied and the proof is complete.

TuEOREM 3.2. If A is a closed linear operator satisfying (i)
(iv), then A is the C—c.i.g. of an exponentially equi—continuous
C-semigroup {S(z) ; t=0}.

Further

(3.5) S@z= hm e"“Z (X A) " Cx
for all z€X and tZO.

Proof. Put S,(2) —-e'l"k;) (Z A)*Cz for z=X and £=0. By
virtue of Lemma 3.2., we may S(t)x=£1m S, (@) .

We first prove that {S() ; £=0} satisfies an exponentially equi-
continuous C-semigroup property. Clearly S(0)=C.
Since S;(+s)C=8,()S;(s) [1, Theorem 11] and {e7248,(¢) ; £=0,
A=2a} is equi-continuous, for any p&rl, there exists g&I" such that
p(St+5)Cx—SE)S(s)x)
Sp(SE+s5)Cx—8;(t+5)Cx) +p(S:(2+5) Cz—8,() S;(s) x)
+p(8:(@) S2(8) z—S5:() S () 2) +p(S2:(®) S (5) z—S ) S (5) )
=p(SE+s)Cx—S8;(t+5)Cx) +e2g(S;(s) z—S (s) z)
+2((5:@) —S@)S(s) x)

-0
as A— oo, which proves S(+s5)Cz=S()S(s)z for ¢,s=0.
From (2.11) and @ii), for any p€l, A>a and #=0, there exists
g& T such that

p&ODseHE L
<g Ry ol (

= 11
9 —
=e(a+a /Q a))tq (.’Z:) s

this implies llim 28 x)=p(S ) x) <evtq(x) for all z€X.

Thus the operators {e"“S()x; £20,1>a} are equi-continuous in
X, and from the uniform convergence in z,S()x is continuous in

) (- G—A)11Ca)
2 )i (@)
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t=0.
Next we shall prove that A is the C-c.i. g. of an exponentially equi-
continuous C-semigroup {S(2) ; £=0}.

Since %SA () Cz=5;(t) AA (A— A)"1Cz for z=D(A),

(3. 6) % (8:(5) Cz—C?2) =% ’OSZ (s) AA (A— A) "1Cads

for each z&D(A). By (2.10) and Lemma 3.1., for any p=rI, there
is g€’ and A;>0 such that

2(8:() QA(A—A) "1Cz— ACz)) <e%5g (AA (A— A) "'Cz— ACZ)
<&
=7
for all A>max (4, 2a) and 0=<s=<¢. By Lemma 3. 2., there exists 1,
>0 such that p((S;(s) —S(s)) AC2) <§ for all 2> and 0<s<:.
Thus if A>max (A, A, 22), then

p<—1— ( j ;sl () A4 (O—A) ‘1des-—ﬁS (5) ACx ds)
p(L'5:9 GAG—4)71Ca—AC)ds) +5( L[ (8:() —55)) ACads)

<1l ; 5(S:() AA(A— A)"1Cz— ACxz)) ds-}—%ﬁp((S; (s) —S(s)) ACz) ds

e
for any peI. Them passing to the limit 1 in (3.6) we have

%(s () Cz—C2x) =%j:s (s)ACz ds
for z&D(A) and thus we see that
Lc1s@)z—2) =ij‘c-ls () Azds
t tJo
for zeCD(A). Hence
lim L (T z—2) =lim—1—JtT(s)Ax ds— Az
t—or L -0t £ Jo

IIA

A

for z&CD(A). Let A’ be the C-c.i.g. of an exponentially equi-
continuous C-semigroup {S() ; t=0} and D(A’) be its domain. Since
D(A’) DCD(A) and ACx=A’Czx for zxeD(A), thus D(A’)>CD(A)
and Alcpcs=4A"cpy. Hence Alopy=A’. Since CD(A) is a core
of A, we have ACA’. On the other hand, by [1]
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3.7 (A—4) "1Cx=j:e’1tS &) xdt
and define :
Lyz= J :e’ltS @) zdt

for 2>a. From (3.7) and (ii), we have L;(A—A)z=Cz for xD(A)
and for z€X, (A—A")L;z=Cz by (2.2). Thus A’Lz=L;Ax for z&
D(A). Letting A— co, we see that A’Cx=CAz=ACz for x€D(A)
that is A’DA’{cpiay=Alcpway Since CD(A) is core of A, A’DA.
Thus the proof is complete.

4. The abstract Cauchy problem

In this section we consider the following abstract Cauchy problem

4D Luo=a@ for 120 and w(0)=s.

By a solution «(f) of the (4.1) we mean that #(f) is continuously
differentiable in =0, z(0)==z,«@() €D(A) and%u &) =Au(t) for
every t20.

Tureorem 4. 1. Let A be a densely defined closed linear operator which
commutes with C. Then A is the C—c.i.g. of an exqonmentially equi—
continuous C-semigroup {S(&) ; t=0} if and only if A satisfies the
following conditions:

(@) The (4.1) has unique solution u(t) for all xCD(A),

(B) for every z=CD(A) and p<T, there exists g1 such that -

p@@)) =eq(Cz) for 20,
(1) CD(4) is a core of A. :

proof. Let A be the C-c.i.g. of {S(¢) ; t=0} and let 2=CD(4),
z=Cy,yeD(A). Put u@® =Tz for £=0. Then #(0)==z and
u(@)=8EyceD(A). By [1, Lemma 8], we have

T () 2—2=S8() y—Cy— j ;S(z-) Aydr
and so

7?;5 (s)y=S8(s) Ay=AS (s) 5.
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Thus %u (#)=Au(t) and u(z) is continuously differentiable in £=0.

To prove uniqueness, we suppose v(t) €D(A), %—a &) =Av() and
v(0)=2CD(A). For s5,t=0
L ISG—)0()1=86—s) 44 +[§S—S(t—s) }o(s)
:O,
whence S(z—s)v(s) is independent of s. Setting s=0, s=¢ yields
v(#)=C1S@)2=T () z=u(t). Clearly, the condition (8) and (y) satisfy

by the definition of exponentially equi-continuous C-semigroup and
Theorem 3. 1.

Conversely, let for every 2&CD(A), (4.1) has a unique continuo-
usly differentiable solution on [0, oo) and let define the operator T () :
CD(A)— D(A) by T(@)x=u(t ; z). From the uniqueness of the solution
T () is a linear operator defined on all of CD(A). First we show that

(4.2) T@Az=AT D=z
for xeCD(A2). Let z&€CD(A?. Since Az&CD(A), there exists a
solution «(¢ ; Az) of (4.1) such that

(4.3 gs—u (s; Ax)=Au(s ; Ar).

Integrating (4. 3) from 0 to ¢, we obtain

u(t 5 Azx) =A:t—l—ﬁ)Au (s; Ax)ds
=A(z —}—ﬁu (s ; Ax)ds).
put 2(z) =x—l-ﬁu (s 5 Az)ds. Then z(f) is continuously differentiable,

%z(t)r—u(t ; Az) =Az(t) for 20 and 2(0) =z

It follows that z(¢) is a solution of (4.1) with initial value . From
the uniqueness of solution, 2z () =u(z; x).
Hence u(z ; Ax)=Au(t ; z) for :=0. Therefore T (1) Az=AT (t)z by
the definition of T ().

Since CT (s)z€CD(A), for 0<s<t and z&CD(A), T(¢—s)CT (s)z
is a solution of (4.1). Using (4.2) and commutating A with C, we
have
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%:T" (t—5) CT () =T (¢ —s) CAT (s) z— AT (t—5)CT (5) z

whence T'(¢—s)CT (s)z is independent of s. Setting s=0, s=¢ yields

4.4 T@Cz=CT )z
for x&CD(4).

We define w ; [0, ) — X by

u(t; z) (0=¢=s)
w() = {u(t——s su(ss x)) (>s)

for z&CD(A). Since Cu(s ; z) €CD(A) we note that the existance
of solution z(t;z(s;z)) of (4.1). Clearly, w(t)is a solution of
(4.1) with initial deta z. By the uniqueness of solution, we may
w(@) =u(t; z) for t€[0, ). From the uniqueness of the solution
“.1), wtts)=ult+s; z)=u@; u(s; z)). It follows that

4.5) TE+s)z=TOT )z
for z&CD(A). From (B) and (4.4), for any p&I" and 2=CD(4),
there exists g&I" such that

.6  p(CTO)Se (). )
We define the continuous linear operator by S z=CT (¢)z for z&
CD(A). Clearly, for zCD(A), S z is equi-continuous by (4.6),
S()z=Cz and S(¢)z is continuous in £=0.
From (4.4) and (4.5), we obtain

S(t+s5)Cz=CT @¢t+s5)Cz=T @) CT (s)Cz=CT ¢)CT (s)2=8 () S(s)
for z€X and ¢,s=0. Since S(¢)x is continuous on CD(A) and CD(A)
is dense in X, S(#)z can be extended to all of X. Consequentely
{S(@) ; t=0} becomes an exponentially equi-continuous C-semigroup
on X,

Let G be the operator defined by (1.1) and let z&CD(A).
Since T () z=C 1Sz ani
%T(t).Z:]im T(t)::—x =Hm C 1S(t)x—x =G

0% 0+ 4

i
we have ’

4.7 CD(A)<=D(G) and G

So that () implies that AcG. To conclude the proof, we shall show
that G A. Since CD(A) is dense in X, there exists z,&CD(A4) such
that im z,=z for all ze€X. From S(@)z,=CT (®)z,=CD(4) and

N~I0O

(4.7), we obtain AS()z,=GS®)z,=S () Gz,

cow=A ’cn(m-
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Using the closedness of A,
AJO e %S () xndtzj e 2AS(2) xndtZJ e 2S()Gx, dt, i.e., ALux,~
0 0

L,Gz,. Combing this with (2.2), ALx,—AL,x,—Cz, Since A is

closed, L;x,— L,x and AL;r,=AL,x,—Cz,— AL, x—Czx, we have
4.8 L.xcD(A) and AL;z=2L;z—Cxzx for z€X.

Now (4.8) and (2.2), A(AL;x) =iL;,Gz for 2&D(G). By closedness

of A, ALz — Cz and A(AL,x)=2AL;Gx — CGz as A —> oo, we obtain

CzxzD(A) and AC2=CGz=GCx for 2 D(G).

Thus CD(G)=D(A) and Glepsy=Alcpe TA. Since CD(G) is core

of G, we see that G=G|cp<A. Therefore A=G, i.e., A is the

C-c.i.g. of the equi—continuous C-semigroup {S(¢) ; t=0}. Thus the

proof is complete.

CoroLLarY 4.1. If A is a closed linear operator satisfying (1)——
(iv) in Section 3, then A has the condition (&) .

Proof. The consequence of Theorem 3.2. and Theorem 4. 1.
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