EXPONENTIALLY EQUI-CONTINUOUS C-SEMIGROUPS IN LOCALLY CONVEX SPACE

Doo Hoan Jeong, Jong Yeoul Park and Jong Won Yu

1. Introduction

In this paper we are concerned with exponentially equi-continuous C-semigroups for calibration. A calibration Γ for a topological vector space X is a family of seminorms which induces the topology of X. Let X be sequentially complete locally convex space and let $C: X \to X$ be an injective bounded linear operator with dense range. A family $\{S(t): t \ge 0\}$ of bounded linear operators from X into itself is called an exponentially equi-continuous C-semigroup if

- (1) S(t+s)C=S(t)S(s) for $t, s \ge 0$ and S(0)=C,
- (2) there exists $a \ge 0$ such that $\{e^{-at}S(t)x; t \ge 0\}$ is equi-continuous in X.
- (3) for every $x \in X$, S(t)x is continuous in $t \ge 0$.

For every $t \ge 0$, let T(t) be the closed linear operator defined by $T(t)x = C^{-1}S(t)x$ for $x \in D(T(t)) = \{x \in X : S(t)x \in R(C)\}$. We define the operator G by

$$D(G) = \left\{ x \in R(C) \; ; \; \lim_{t \to 0^+} \frac{T(t)x - x}{t} \text{ exists} \right\}$$

and

$$(1.1) Gx = \lim_{t \to 0^+} \frac{T(t)x - x}{t} \text{for } x \in D(G).$$

 \overline{G} is called the C-c. i. g. (C-complete infinitesimal generator) of $\{S(t) ; t \ge 0\}$, where \overline{G} denotes the closure of G.

In Section 2, we deal with the C-c. i. g. and representation of exponentially equi-continuous C-semigroups, Section 3 treats the generation of exponentially equi-continuous C-semigroups and Section 4 investigate a Cauchy problem in locally convex space.

Received February 12, 1988. Revised April 12, 1988.

2. C-complete infinitesimal generator and representation of exponentially equi-continuous C-semigroups

Let x be any fixed element in X and let us put

$$L_{\lambda}^{w}x = \int_{0}^{w} e^{-\lambda t} S(t) x \ dt$$

for each w>0 and $\lambda>0$ (We can define the integral of Riemann type since $e^{-\lambda t}S(t)x$ is continuous on $[0, \infty)$ with values in X). Then we have for any seminorm $p \in \Gamma$,

$$p(L_{\lambda}^{w}x-L_{\lambda}^{w'}x) \leq \int_{w'}^{w} e^{-\lambda t} p(S(t)x) dt$$

for any 0 < w' < w. By the assumption (2) there exist $a \ge 0$ and $q \in \Gamma$ such that $p(S(t)x) \le e^{at}q(x)$ for all $t \ge 0$. Hence if $\lambda > a$, then

$$p(L_{\lambda}^{w}x - L_{\lambda}^{w'}x) \leq q(x) \int_{w'}^{w} e^{-(\lambda - a)t} dt \to 0$$

as $w, w' \to \infty$. Thus the limit $\lim_{w\to\infty} L_{\lambda}^w x$ exist. For every $\lambda > a$, define the bounded linear operator L_{λ} ; $X \to X$ by

(2.1)
$$L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t) x \ dt \text{ for } x \in X.$$

Similarity as in Banach space [1, 3], we have

- (a) G is densely defined and closable,
- (b) for every $\lambda > a$,

(2.2)
$$(\lambda - \overline{G}) L_{\lambda} x = Cx \text{ for } x \in X$$

$$L_{\lambda} (\lambda - \overline{G}) x = Cx \text{ for } x \in D(\overline{G}).$$

In fact, let $\lambda > a$. For $x \in R(C)$, $L_{\lambda}x \in R(C)$ and

$$\begin{split} \frac{1}{h}(T(h)-I)L_{\lambda}x &= \frac{1}{h}(\int_{0}^{\infty}e^{-\lambda t}S(t+h)x\,dt - \int_{0}^{\infty}e^{-\lambda t}S(t)x\,dt) \\ &= \frac{1}{h}(e^{\lambda h}-1)\int_{h}^{\infty}e^{-\lambda t}S(t)x\,dt - \frac{1}{h}\int_{0}^{\infty}e^{-\lambda t}S(t)x\,dt \\ &\to \lambda L_{\lambda}x - Cx \end{split}$$

as $h \to 0^+$, and hence $L_{\lambda}x \in D(G)$ and $GL_{\lambda}x = \lambda L_{\lambda}x - Cx$. Next, for $x \in D(G)$, $L_{\lambda}x \in R(C)$ and

$$\frac{1}{h}(T(h)-I)L_{\lambda}x=L_{\lambda}\left[\frac{1}{h}(T(h)-I)x\right]\to L_{\lambda}Gx$$

as $h \to 0^+$, i. e., $GL_{\lambda}x = L_{\lambda}Gx$. Therefore

(2.3)
$$(\lambda - G)L_{\lambda}x = Cx \text{ for } x \in R(C),$$

$$L_{\lambda}(\lambda - G)x = Cx$$
 for $x \in D(G)$.

Note that

(2.4)
$$\lim_{\lambda \to \infty} \lambda L_{\lambda} x = \lim_{\lambda \to \infty} \lambda \int_{0}^{\infty} e^{-\lambda t} S(t) x dt = Cx \text{ for } x \in X.$$

Since $\lambda L_{\lambda}Cx \in D(G)$ and $\lim_{\lambda \to \infty} \lambda L_{\lambda}Cx = C^2x$ for $x \in X$ by (2.3) and (2.3)

4), we have that D(G) is dense in X by noting $R(C^2)$ is dense in X. Now the closability of G follows from $L_{\lambda}(\lambda - G)x = Cx$ for $x \in D(G)$ and (2.4), then (2.3) implies (2.2). The proof is complete.

We also see that

(2.5)
$$\frac{d}{ds}S(s)x = S(s)\overline{G}x = \overline{G}S(s)x$$

for $x \in D(\overline{G})$ and $s \ge 0$. The proof is similarly as in [1, Lemma 8].

THEOREM 2.1. The family of operators

(2.6)
$$\{ [(\lambda-a)(\lambda-\overline{G})^{-1}]^n Cx ; x \in D((\lambda-\overline{G})^{-1}), \lambda > a, n=1, 2, 3, ... \}$$
 is equi-continuous.

Proof. From the resolvent equation

$$(\mu - \overline{G})^{-1}Cx - (\lambda - \overline{G})^{-1}Cx = (\lambda - \mu)(\lambda - \overline{G})^{-1}(\mu - \overline{G})^{-1}Cx$$

for λ , $\mu > a$, we obtain

$$\begin{split} \frac{d}{d\lambda}(\lambda-\overline{G})^{-1}Cx &= \lim_{\stackrel{\mu\to\lambda}{\mu\to\lambda}} (\mu-\lambda)^{-1} \big[(\mu-\overline{G})^{-1}C - (\lambda-\overline{G})^{-1}C \big] x \\ &= -\lim_{\stackrel{\mu\to\lambda}{\mu\to\lambda}} (\lambda-\mu)^{-1} \big[(\mu-\overline{G})^{-1}C - (\lambda-\overline{G})^{-1}C \big] x \\ &= -\lim_{\stackrel{\mu\to\lambda}{\mu\to\lambda}} (\lambda-\overline{G})^{-1} (\mu-\overline{G})^{-1}Cx \\ &= -(\lambda-\overline{G})^{-2}Cx. \end{split}$$

Moreover, since

$$(\mu - \overline{G})^{-n}C - (\lambda - \overline{G})^{-n}C = (\lambda - \mu)\sum_{k=0}^{n-1} (\mu - \overline{G})^{-k-1}(\lambda - \overline{G})^{-n+k}C$$

for $\lambda, \mu > a$, we have $\frac{d}{d\lambda}(\lambda - \overline{G})^{-n}Cx = -(\lambda - \overline{G})^{-n-1}Cx$.

Therefore $(\lambda - \overline{G})^{-1}Cx$ is infinitely differentiable with respect to $\lambda > a$ and

$$\frac{d^n}{d\lambda^n}(\lambda-\overline{G})^{-1}Cx = (-1)^n n! (\lambda-\overline{G})^{-n-1}Cx$$

for $\lambda > a$ and $x \in D((\lambda - \overline{G})^{-1})$.

On the other hand, we have, by (2.2) and differenting (2.1)

n-times with respect to,

$$\frac{d^n}{d\lambda^n}(\lambda-\overline{G})^{-1}Cx=\int_0^\infty e^{-\lambda t}(-t)^nS(t)\,xdt.$$

Hence $[(\lambda - a)(\lambda - \overline{G})^{-1}]^{n+1}Cx = \frac{(\lambda - a)^{n+1}}{n!} \int_0^\infty e^{-\lambda t} t^n S(t) x dt$ for $x \in D((\lambda - a)^{n+1})$

 $-\overline{G}$)⁻¹), and so, for any $p \in \Gamma$ on X and $\lambda > a$, n > 0,

$$p([(\lambda - a) (\lambda - \overline{G})^{-1}]^{n+1}Cx) \leq \frac{(\lambda - a)^{n+1}}{n!} \int_{0}^{\infty} e^{-(\lambda - a)t} t^{n}dt \sup_{t \geq 0} p(e^{-at}S(t)x)$$

$$= \sup_{t \geq 0} p(e^{-at}S(t)x).$$

This proves theorem by the equi-continuity of $\{e^{-at}S(t)x; t \ge 0\}$. We now define

$$S_{\lambda}^{n}(t) x = e^{-\lambda t} \sum_{k=1}^{n} \frac{t^{k} \lambda^{2k}}{k!} (\lambda - \overline{G})^{-k} Cx \text{ for } x \in X.$$

For each fixed $\lambda > a$, $t \ge 0$ and $x \in X$, the sequence $\{S_{\lambda}^{n}(t) x ; n=0, 1, 2, ...\}$ is Cauchy sequence.

Indeed, for any continuous seminorm $p \in \Gamma$ on X,

$$p(S_{\lambda}^{n}(t)x - S_{\lambda}^{m}(t)x) \leq e^{-\lambda t} \sum_{k=m+1}^{n} \frac{t^{k}\lambda^{2k}}{k!} p((\lambda - \overline{G})^{-k}Cx)$$

and there exist $q \in \Gamma$ by Theorem 2.1., $p((\lambda - \overline{G})^{-k}Cx) \leq \frac{q(x)}{(\lambda - a)^k}$ for all k, and so that

$$p(S_{\lambda}^{n}(t) x - S_{\lambda}^{m}(t) x) \leq q(x) e^{-\lambda t} \sum_{k=m+1}^{n} \frac{t^{k} \lambda^{2k}}{k! (\lambda - a)^{k}}$$

$$\to 0 \text{ as } m, n \to \infty.$$

Then, for each $\lambda > a$, $t \ge 0$ and $x \in X$, the limit

$$(2.7) S_{\lambda}(t) x = \lim_{n \to \infty} S_{\lambda}^{n}(t) x = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k} \lambda^{2k}}{k!} (\lambda - \overline{G})^{-k} Cx$$

exists. By $S_{\lambda}^{n}(t)$ is continuous and $S_{\lambda}(t)$ is uniformly converges in t, we also see that $S_{\lambda}(t)$ is continuous in $t \ge 0$.

Theorem 2.2. Let $\{S(t); t \ge 0\}$ be an exponentially equi-continuous C-semigroup. If \overline{G} is the C-c. i. g. of $\{S(t); t \ge 0\}$ and

$$S_{\lambda}(t) x = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - \overline{G})^{-k} Cx$$

for $x \in X$ and $t \ge 0$, then we have

(2.8)
$$\frac{d}{ds}(S_{\lambda}(t-s)S(s)x) = S_{\lambda}(t-s)S(s)(\overline{G}x-\lambda\overline{G}(\lambda-\overline{G})^{-1}x)$$

Exponentially equi-continuous C-semigroups in locally convex space for all $x \in CD(\overline{G})$.

Proof. From the definition of $S_{\lambda}(t)$

$$\frac{d}{ds}S_{\lambda}(s)Cx = S_{\lambda}(s)\left(-\lambda + \lambda^{2}(\lambda - \overline{G})^{-1}\right)Cx$$

$$= S_{\lambda}(s)\lambda\overline{G}(\lambda - \overline{G})^{-1}Cx$$

for $x \in X$, and we see that

$$\frac{d}{ds}S(s)x=S(s)\overline{G}x$$

for $x \in CD(\overline{G})$ by (2.5). By (2.2),

$$S(s) (\lambda - \overline{G})^{-1}Cx = S(s) L_{\lambda}x = L_{\lambda}S(s) x = (\lambda - \overline{G})^{-1}CS(S) x$$

for $x \in CD(\overline{G})$ i.e., $\overline{G}(\lambda - \overline{G})^{-1}C(=\lambda(\lambda - \overline{G})^{-1}C - C)$ commutes with S(s). Now, let $x \in CD(G)$ and x = Cy, $y \in D(\overline{G})$. Then we have

$$\frac{d}{ds}(S_{\lambda}(t-s)S(s)x) = S_{\lambda}(t-s)S(s)(\overline{G}x - \lambda \overline{G}(\lambda - \overline{G})^{-1}x)$$

for $x \in CD(\overline{G})$.

LEMMA 2.1. For each $x \in X$, $\lim \; \overline{G}(\lambda - \overline{G})^{-1}Cx = 0.$ (2.9)

Proof. For all $x \in D(\overline{G})$ and for any $p \in \Gamma$, there exists $q \in \Gamma$ such that

$$p(\overline{G}(\lambda - \overline{G})^{-1}Cx) = p((\lambda - \overline{G})^{-1}C\overline{G}x) \leq \frac{q(x)}{(\lambda - a)} \to 0$$

as $\lambda \to \infty$, $\lambda > a$, and by (2.6).

Since $D(\overline{G})$ is dence in X,

$$\lim_{\lambda \to \infty} \overline{G}(\lambda - \overline{G})^{-1}Cx = 0 \text{ for any } x \in X.$$

Lemma 2.2. For each
$$x \in D(\overline{G})$$
, (2.10)
$$\lim_{\lambda \to \infty} \lambda \overline{G} (\lambda - \overline{G})^{-1} Cx = \overline{G} Cx.$$

Proof. Let $\mu > a$, $x \in D(\overline{G})$ and $x = (\mu - \overline{G})^{-1}y$ for some $y \in R(\mu - \overline{G})$. Then

$$\begin{split} \lambda \overline{G} (\lambda - \overline{G})^{-1} C^2 x - \overline{G} C^2 x &= \lambda \overline{G} (\lambda - \overline{G})^{-1} C (\mu - \overline{G})^{-1} C y - \overline{G} C^2 (\mu - \overline{G})^{-1} y \\ &= \lambda \overline{G} (\lambda - \overline{G})^{-1} C (\mu - \overline{G})^{-1} C y - \overline{G} (\mu - \overline{G})^{-1} C^2 y \\ &= \frac{\lambda \overline{G}}{\mu - \lambda} ((\lambda - \overline{G})^{-1} C^2 y - (\mu - \overline{G})^{-1} C^2 y) \end{split}$$

$$-\overline{G}(\mu-\overline{G})^{-1}C^{2}y$$

$$=\frac{\lambda}{\mu-\lambda}\overline{G}(\lambda-\overline{G})^{-1}C^{2}y-\frac{\mu}{\mu-\lambda}\overline{G}(\mu-\overline{G})^{-1}C^{2}y.$$

Thus for any seminorm $p \in \Gamma$

$$p(\lambda \overline{G}(\lambda - \overline{G})^{-1}C^{2}x - \overline{G}C^{2}x) \leq \frac{\lambda}{\mu - \lambda}p(\overline{G}(\lambda - \overline{G})^{-1}C^{2}y) + \frac{\mu}{\mu - \lambda}(\overline{G}(\mu - \overline{G})^{-1}C^{2}y) \to 0$$

as $\lambda \to \infty$ by (2.9). Since $D(\overline{G})$ is dense in X, we have $\lim_{\lambda \to \infty} \lambda \overline{G} (\lambda - \overline{G})^{-1} Cx = \overline{G} Cx$ for any $x \in X$.

THEOREM 2.3. Let $\{S(t); t \ge 0\}$ be an exponentially equ-continuous C-semigroup. If \overline{G} is the C-c.i.g. of $\{S(t); t \ge 0\}$, then

$$S(t) x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - \overline{G})^{-k} Cx$$

for $x \in X$ and $t \ge 0$.

Proof. since

$$S_{\lambda}(t) x = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k} \lambda^{k}}{k!} \left(1 - \frac{a}{\lambda}\right)^{-k} \left[I - \frac{1}{\lambda - a} (\overline{G} - a)\right]^{-k} Cx$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k} \lambda^{k}}{k!} \left(1 + \frac{a}{\lambda - a}\right)^{k} \left[(\lambda - a)(\lambda - \overline{G})^{-1}\right]^{k} Cx$$

for $\lambda > a$ and $x \in X$. there exists $q \in \Gamma$ such that

$$p(S_{\lambda}(t)x) \leq e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^{k} \lambda^{k}}{k!} \left(1 + \frac{a}{\lambda - a}\right)^{k} q(x)$$

$$= e^{(a+a^{2}/(\lambda - a))t} q(x)$$

$$\leq e^{2at} q(x)$$

for any $p \in \Gamma$, $x \in X$ and $\lambda > 2a$ by (2.11) and (2.6).

From (2.8), we have

$$S(t)C^{2}x - S_{\lambda}(t)C^{2}x = \int_{0}^{t} \frac{d}{ds} S_{\lambda}(t-s)S(s)Cx \ ds$$
$$= \int_{0}^{t} S_{\lambda}(t-s)S(s) \left(\overline{G}Cx - \lambda \overline{G}(\lambda - \overline{G})^{-1}Cx\right)ds$$

for $x \in D(\overline{G})$ and $0 \le s \le t$. By property (2) of $\{S(t) ; t \ge 0\}$, there exist $q, \tilde{q} \in \Gamma$ such that

$$\begin{split} p(S(t)C^2x - S_{\lambda}(t)C^2x) & \leq \int_0^t p(S_{\lambda}(t-s)S(s)(\overline{G}Cx - \lambda \overline{G}(\lambda - \overline{G})^{-1}Cx)) ds \\ & \leq \int_0^t e^{2a(t-s)}q(S(s)(\overline{G}Cx - \lambda \overline{G}(\lambda - \overline{G})^{-1}Cx)) ds \end{split}$$

$$\leq \int_{0}^{t} e^{2a(t-s)} e^{as} \tilde{q} \left(\overline{G}Cx - \lambda \overline{G} (\lambda - \overline{G})^{-1}Cx \right) ds$$

$$= -\frac{1}{a} (e^{-at} - 1) e^{2at} \tilde{q} \left(\overline{G}Cx - \lambda \overline{G} (\lambda - \overline{G})^{-1}Cx \right)$$

for any $p \in \Gamma$, $\lambda > 2a$ and $0 \le s \le t$, and so, for any $p \in \Gamma$ and $t \ge 0$, $p(S(t)C^2x - S_{\lambda}(t)C^2x) \to 0$ as $\lambda \to \infty$, because (2.10). Hence $\lim_{t \to \infty} S_{\lambda}(t)x = S(t)x$ for each $t \ge 0$ and $x \in C^2D(\overline{G})$.

Since $C^2D(\overline{G})$ is dense in X, for any $x \in X$, we have $\lim S_{\lambda}(t) x = S(t) x$ for $t \ge 0$.

3. Generation of exponentially equi-continuous C-semigroup

We consider the following conditions:

- (i) D(A) is dense in X,
- (ii) for each $x \in D((\lambda A)^{-1})$, $(\lambda A)^{-1}Cx = C(\lambda A)^{-1}x$.
- (iii) for each $x \in X$, $\{ [(\lambda a)(\lambda A)^{-1}]^k Cx ; \lambda > a, k = 0, 1, 2, ... \}$ is equi-continuous,
- (iv) CD(A) is a core of A.

LEMMA 3.1. Let $S_{\lambda}(t) x = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - A)^{-k} Cx$ for $x \in X$, $t \ge 0$ and A satisfying (i)—(iv). Then for every bounded set B, the operator $\{e^{-2at}S_{\lambda}(t)x; \lambda \ge 2a, t \ge 0\}$ is equi-continuous for any $x \in B$.

Proof. We already proved in Theorem 2.3.

Lemma 3.2. Let $S_{\lambda}(t) x = e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - A)^{-k} Cx$ for $x \in X$, $t \ge 0$ and A satisfying (i)——(iv). Then the limit $\lim_{\lambda \to \infty} S_{\lambda}(t) x$ exists uniformly with respect to t in any bounded interval.

Proof. By definition of $S_{\lambda}(t)$, we have $\frac{d}{ds}S_{\lambda}(t)x = \lambda A(\lambda - A)^{-1}S_{\lambda}(t)x \text{ for } x \in CD(A).$

Thus if $x \in CD(A)$ and x = Cy, $y \in D(A)$, then

$$\frac{d}{ds}S_{\lambda}(t-s)S_{\mu}(s)Cx = S_{\lambda}(t-s)\mu A(\mu-A)^{-1}S_{\mu}(s)Cx$$

$$\begin{split} &-\lambda A (\lambda - A)^{-1} \cdot S_{\lambda}(t-s) S_{\mu}(s) Cx \\ = &S_{\lambda}(t-s) S_{\mu}(s) \mu A (\mu - A)^{-12} Cy \\ &-S_{\lambda}(t-s) \cdot S_{\mu}(s) \lambda A (\lambda - A)^{-1} C^{2} y \end{split}$$

Hence

$$\begin{split} S_{\mu}(t)C^{2}x - S_{\lambda}(t)C^{2}x &= \int_{0}^{t} \frac{d}{ds} S_{\lambda}(t-s) S_{\mu}(s) Cx \ ds \\ &= \int_{0}^{t} \left[S_{\lambda}(t-s) S_{\mu}(s) \mu A(\mu-A)^{-1} C^{2}y - S_{\lambda}(t-s) \right. \\ & \cdot S_{\mu}(s) \lambda A(\lambda-A)^{-1} C^{2}y \right] ds \\ &= \int_{0}^{t} S_{\lambda}(t-s) S_{\mu}(s) \left(\mu A(\mu-A)^{-1} C^{2}y - \lambda A(\lambda-A)^{-1} C^{2}y \right) ds \end{split}$$

for every $x \in C^3D(A)$. By Lemma 3.1., for any $p \in \Gamma$, there exists $q \in \Gamma$ such that $p(S_{\lambda}(t-s)S_{\mu}(s)x) \leq e^{2at}q(x)$ for all $\mu, \lambda > 2a$ and $0 \leq s \leq t$, and (2.10) show that $p(\mu A(\mu-A)^{-1}Cx - \lambda A(\lambda-A)^{-1}Cx) \to 0$ as $\lambda, \mu \to \infty$. Then, for each $t \geq 0$ and $p \in \Gamma$, there exist $q \in \Gamma$ such that

$$p(S_{\mu}(t)C^{2}x - S_{\lambda}(t)C^{2}x) \leq \int_{0}^{t} e^{2at}q(\mu A(\mu - A)^{-1}Cx - \lambda A(\lambda - A)^{-1}Cx) ds
\leq te^{2at}q(\mu A(\mu - A)^{-1}Cx - \lambda A(\lambda - A)^{-1}Cx)
\to 0$$

as $\lambda, \mu \to \infty$. Hence for each $x \in C^3D(A)$ and $t \in [0, \infty)$, the limit $\lim_{\mu \to \infty} S_{\mu}(t)x$ exists unformly with respect to t in any bounded interval, and from the uniform convergence in t, this limit is a continuous linear operator from X into itself.

THEOREM 3.1. If $\{S(t); t \ge 0\}$ is an exponentially equi-continuous C-semigroup and A is the C-c. i. g. of $\{S(t); t \ge 0\}$, then A satisfy the conditions (i)——(iv).

Proof. We already proved (i)——(iii). We must show that (iv). Let $z \in X$ and $t \ge 0$. Since D(A) is dense in X, there exists $z_n \in D(A)$ such that $\lim z_n = z$. Noting $S(\tau)z \in D(A)$ and

$$\frac{d}{d\tau}S(\tau)z_n = AS(\tau)z_n = S(\tau)Az, \text{ we obtain}$$

$$S(t)z_n - Cz_n = \int_0^t S(\tau)Az_n d\tau$$

$$= \int_0^t AS(\tau) z_n d\tau = A \int_0^t S(\tau) z_n d\tau.$$

Since $\lim_{n\to\infty} \int_0^t S(\tau) z_n d\tau = \int_0^t S(\tau) z d\tau$, $\lim_{n\to\infty} A \int_0^t S(\tau) z_n d\tau = S(t) z - Cz$ and the closedness of A,

(3.1)
$$\int_0^t S(\tau) z d\tau \in D(A) \text{ and } A \int_0^t S(\tau) z d\tau = S(t) z - Cz$$

for $z \in X$ and $t \ge 0$. It suffices to show

$$(3.2) \overline{A|_{CD(A)}} \supset A.$$

To this end, let $x \in D(A)$ and $\varepsilon > 0$. Using (3.1) with $z = C^{-1}x$, we have

$$\frac{1}{t}\int_0^t S(\tau)C^{-1}x\ d\tau \to x$$
 and

(3.3)
$$A\left(\frac{1}{t}\int_{0}^{t} S(\tau)C^{-1}x \, d\tau\right) = \frac{1}{t}(S(t)C^{-1}x - x)$$
$$= \frac{1}{t}(T(t)x - x) \to Ax$$

as $t\rightarrow 0^+$. Hence there is a $t_0>0$ such that

$$p\Big(\!\frac{1}{t_0}\!\!\int_0^{t_0}\!\!S(\tau)\,C^{-1}xd\tau-x\Big)+p\Big(\!A\Big(\!\frac{1}{t_0}\!\!\int_0^{t_0}\!\!S(\tau)\,C^{-1}x\;d\tau\Big)\!-\!Ax\Big)\!<\!\frac{\varepsilon}{2}$$

for any $p \in \Gamma$. Since CD(A) is dense in X, we can choose $x_n \in CD(A)$ such that $x_n \to C^{-1}x$ as $n \to \infty$. By (3.1) again, $\frac{1}{t_0} \int_0^{t_0} S(\tau) x_n d\tau \in CD(A)$ and

$$A\left(\frac{1}{t_0}\int_0^{t_0} S(\tau) x_n \ d\tau\right) = \frac{1}{t_0} \left(S(t_0) x_n - Cx_n\right)$$

$$(3.4) \qquad \to \frac{1}{t_0} \left(S(t_0) C^{-1} x - C \cdot C^{-1} x\right)$$

$$= A\left(\frac{1}{t_0}\int_0^{t_0} S(\tau) C^{-1} x \ d\tau\right)$$

as $n \to \infty$. By (3.4), there is a $n_0 \ge 0$ such that

$$p\left(\frac{1}{t_0}\int_0^{t_0} S(\tau)x_{n_0} d\tau - \frac{1}{t_0}\int_0^{t_0} S(\tau)C^{-1}xd\tau\right) + p\left(A\left(\frac{1}{t_0}\int_0^{t_0} S(\tau)x_{n_0}d\tau\right) - A\left(\frac{1}{t_0}\int_0^{t_0} S(\tau)C^{-1}x d\tau\right)\right) < \frac{\varepsilon}{2}$$

for any $p \in \Gamma$. Then we have $\frac{1}{t_0} \int_0^{t_0} S(\tau) x_{n_0} d\tau \in CD(A)$ and

$$p\left(\frac{1}{t_0}\int_0^{t_0}S(\tau)x_{n_0}\ d\tau-x\right)+p\left(A\left(\frac{1}{t_0}\int_0^{t_0}S(\tau)x_{n_0}d\tau-Ax\right)-Ax\right)<\varepsilon$$
 for any $p\in \Gamma$. Thus (3.2) is satisfied and the proof is complete.

THEOREM 3.2. If A is a closed linear operator satisfying (i)— (iv), then A is the C-c.i.g. of an exponentially equi-continuous C-semigroup $\{S(t) ; t \geq 0\}$.

Further

(3.5)
$$S(t) x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - A)^{-k} Cx$$

for all $x \in X$ and $t \ge 0$

Proof. Put $S_{\lambda}(t) = e^{-\lambda t} \sum_{k=1}^{\infty} \frac{t^k \lambda^{2k}}{k!} (\lambda - A)^{-k} Cx$ for $x \in X$ and $t \ge 0$. By virtue of Lemma 3.2., we may $S(t)x = \lim_{t \to \infty} S_{\lambda}(t)x$.

We first prove that $\{S(t); t \ge 0\}$ satisfies an exponentially equicontinuous C-semigroup property. Clearly S(0) = C.

Since $S_{\lambda}(t+s)C = S_{\lambda}(t)S_{\lambda}(s)$ [1, Theorem 11] and $\{e^{-2at}S_{\lambda}(t); t \ge 0,$ $\lambda \geq 2a$ is equi-continuous, for any $p \in \Gamma$, there exists $q \in \Gamma$ such that p(S(t+s)Cx-S(t)S(s)x)

$$\leq p(S(t+s)Cx - S_{\lambda}(t+s)Cx) + p(S_{\lambda}(t+s)Cx - S_{\lambda}(t)S_{\lambda}(s)x)$$

$$+ p(S_{\lambda}(t)S_{\lambda}(s)x - S_{\lambda}(t)S(s)x) + p(S_{\lambda}(t)S(s)x - S(t)S(s)x)$$

$$\leq p(S(t+s)Cx - S_{\lambda}(t+s)Cx) + e^{2at}q(S_{\lambda}(s)x - S(s)x)$$

$$+ p((S_{\lambda}(t) - S(t))S(s)x)$$

 $\rightarrow 0$

as $\lambda \to \infty$, which proves S(t+s)Cx=S(t)S(s)x for $t, s \ge 0$. From (2.11) and (iii), for any $p \in \Gamma$, $\lambda > a$ and $t \ge 0$, there exists $q \in \Gamma$ such that

$$\begin{split} p(S_{\lambda}(t) \, x) & \leq e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^k}{k!} \left(1 + \frac{a}{\lambda - a} \right)^k p\left(\left[(\lambda - a) \, (\lambda - A)^{-1} \right]^k C x \right) \\ & \leq e^{-\lambda t} \sum_{k=0}^{\infty} \frac{t^k \lambda^k}{k!} \left(1 + \frac{a}{\lambda - a} \right)^k q\left(x \right) \\ & = e^{(a + a^2 / (\lambda^2 - a))t} q\left(x \right), \end{split}$$

this implies $\lim_{\lambda \to \infty} p(S_{\lambda}(t)x) = p(S(t)x) \le e^{at}q(x)$ for all $x \in X$.

Thus the operators $\{e^{-at}S(t)x; t \ge 0, \lambda > a\}$ are equi-continuous in X, and from the uniform convergence in t, S(t)x is continuous in

 $t \ge 0$.

Next we shall prove that A is the C-c. i. g. of an exponentially equicontinuous C-semigroup $\{S(t); t \ge 0\}$.

Since
$$\frac{d}{dt}S_{\lambda}(t)Cx=S_{\lambda}(t)\lambda A(\lambda-A)^{-1}Cx$$
 for $x\in D(A)$,

$$(3.6) \qquad \frac{1}{t} (S_{\lambda}(t) Cx - C^2 x) = \frac{1}{t} \int_0^t S_{\lambda}(s) \lambda A (\lambda - A)^{-1} Cx ds$$

for each $x \in D(A)$. By (2.10) and Lemma 3.1., for any $p \in \Gamma$, there is $q \in \Gamma$ and $\lambda_0 > 0$ such that

$$p(S_{\lambda}(s) (\lambda A (\lambda - A)^{-1}Cx - ACx)) \leq e^{2as}q(\lambda A (\lambda - A)^{-1}Cx - ACx)$$
$$\leq \frac{\varepsilon}{2}$$

for all $\lambda > \max (\lambda_0, 2a)$ and $0 \le s \le t$. By Lemma 3.2., there exists $\lambda_0' > 0$ such that $p((S_{\lambda}(s) - S(s)) ACx) < \frac{\varepsilon}{2}$ for all $\lambda > \lambda_0'$ and $0 \le s \le t$.

Thus if $\lambda > \max(\lambda_0, \lambda_0', 2a)$, then

$$\begin{split}
& p\left(\frac{1}{t}\left(\int_{0}^{t}S_{\lambda}(s)\lambda A(\lambda-A)^{-1}Cxds - \int_{0}^{t}S(s)ACx\,ds\right) \\
& \leq p\left(\frac{1}{t}\int_{0}^{t}S_{\lambda}(s)\left(\lambda A(\lambda-A)^{-1}Cx - ACx\right)ds\right) + p\left(\frac{1}{t}\int_{0}^{t}\left(S_{\lambda}(s) - S(s)\right)ACxds\right) \\
& \leq \frac{1}{t}\int_{0}^{t}p\left(S_{\lambda}(s)\left(\lambda A(\lambda-A)^{-1}Cx - ACx\right)\right)ds + \frac{1}{t}\int_{0}^{t}p\left(\left(S_{\lambda}(s) - S(s)\right)ACx\right)ds \\
& < \varepsilon
\end{split}$$

for any $p \in \Gamma$. Them passing to the limit λ in (3.6) we have

$$\frac{1}{t}(S(t)Cx-C^2x) = \frac{1}{t}\int_0^t S(s)ACx \ ds$$

for $x \in D(A)$ and thus we see that

$$\frac{1}{t}(C^{-1}S(t)x-x) = \frac{1}{t}\int_{0}^{t}C^{-1}S(s)Axds$$

for $x \in CD(A)$. Hence

$$\lim_{t\to 0^+} \frac{1}{t} (T(t)x - x) = \lim_{t\to 0^+} \frac{1}{t} \int_0^t T(s) Ax \ ds = Ax$$

for $x \in CD(A)$. Let A' be the C-c. i. g. of an exponentially equicontinuous C-semigroup $\{S(t): t \ge 0\}$ and D(A') be its domain. Since $D(A') \supset CD(A)$ and ACx = A'Cx for $x \in D(A)$, thus $D(A') \supset CD(A)$ and $A|_{CD(A)} = A'|_{CD(A)}$. Hence $A|_{CD(A)} \subset A'$. Since CD(A) is a core of A, we have $A \subset A'$. On the other hand, by $\lceil 1 \rceil$

$$(3.7) (\lambda - A)^{-1}Cx = \int_0^\infty e^{-\lambda t} S(t) x dt$$

and define

$$L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t) x dt$$

for $\lambda > a$. From (3.7) and (ii), we have $L_{\lambda}(\lambda - A)x = Cx$ for $x \in D(A)$ and for $x \in X$, $(\lambda - A')L_{\lambda}x = Cx$ by (2.2). Thus $A'L_{\lambda}x = L_{\lambda}Ax$ for $x \in D(A)$. Letting $\lambda \to \infty$, we see that A'Cx = CAx = ACx for $x \in D(A)$ that is $A' \supset A'|_{CD(A)} = A|_{CD(A)}$ Since CD(A) is core of $A, A' \supset A$. Thus the proof is complete.

4. The abstract Cauchy problem

In this section we consider the following abstract Cauchy problem

$$(4.1) \qquad \frac{d}{dt}u(t) = Au(t) \text{ for } t \ge 0 \text{ and } u(0) = x.$$

By a solution u(t) of the (4.1) we mean that u(t) is continuously differentiable in $t \ge 0$, u(0) = x, $u(t) \in D(A)$ and $\frac{d}{dt}u(t) = Au(t)$ for every $t \ge 0$.

THEOREM 4.1. Let A be a densely defined closed linear operator which commutes with C. Then A is the C-c.i.g. of an exponentially equicontinuous C-semigroup $\{S(t); t \ge 0\}$ if and only if A satisfies the following conditions:

- (a) The (4.1) has unique solution u(t) for all $x \in CD(A)$,
- (β) for every $x \in CD(A)$ and $p \in \Gamma$, there exists $q \in \Gamma$ such that $p(u(t)) \leq e^{at}q(C^{-1}x)$ for $t \geq 0$,
- (γ) CD(A) is a core of A.

proof. Let A be the C-c.i.g. of $\{S(t) : t \ge 0\}$ and let $x \in CD(A)$, x = Cy, $y \in D(A)$. Put u(t) = T(t)x for $t \ge 0$. Then u(0) = x and $u(t) = S(t)y \in D(A)$. By [1, Lemma 8], we have

$$T(t)x-x=S(t)y-Cy=\int_0^t S(\tau)Ayd\tau$$

and so

$$\frac{d}{ds}S(s)y=S(s)Ay=AS(s)y.$$

Thus $\frac{d}{dt}u(t) = Au(t)$ and u(t) is continuously differentiable in $t \ge 0$.

To prove uniqueness, we suppose $v(t) \in D(A)$, $\frac{d}{dt}v(t) = Av(t)$ and $v(0) = x \in CD(A)$. For $s, t \ge 0$

$$\frac{d}{ds} [S(t-s)v(s)] = S(t-s) \frac{d}{ds}v(s) + \left[\frac{d}{ds}S(t-s)\right]v(s)$$

$$= 0.$$

whence S(t-s)v(s) is independent of s. Setting s=0, s=t yields $v(t)=C^{-1}S(t)x=T(t)x=u(t)$. Clearly, the condition (β) and (γ) satisfy by the definition of exponentially equi-continuous C-semigroup and Theorem 3.1.

Conversely, let for every $x \in CD(A)$, (4.1) has a unique continuously differentiable solution on $[0, \infty)$ and let define the operator $\tilde{T}(t)$: $CD(A) \to D(A)$ by $\tilde{T}(t)x = u(t; x)$. From the uniqueness of the solution $\tilde{T}(t)$ is a linear operator defined on all of CD(A). First we show that (4.2) $\tilde{T}(t)Ax = A\tilde{T}(t)x$

for $x \in CD(A^2)$. Let $x \in CD(A^2)$. Since $Ax \in CD(A)$, there exists a solution u(t; Ax) of (4.1) such that

$$(4.3) \qquad \frac{d}{ds}u(s;Ax) = Au(s;Ax).$$

Integrating (4.3) from 0 to t, we obtain

$$u(t; Ax) = Ax + \int_0^t Au(s; Ax) ds$$
$$= A(x + \int_0^t u(s; Ax) ds).$$

put $z(t) = x + \int_0^t u(s; Ax) ds$. Then z(t) is continuously differentiable, $\frac{d}{dt}z(t) = u(t; Ax) = Az(t)$ for $t \ge 0$ and z(0) = x.

It follows that z(t) is a solution of (4.1) with initial value x. From the uniqueness of solution, z(t) = u(t; x).

Hence u(t; Ax) = Au(t; x) for $t \ge 0$. Therefore $\tilde{T}(t)Ax = A\tilde{T}(t)x$ by the definition of $\tilde{T}(t)$.

Since $C\widetilde{T}(s)x \in CD(A)$, for $0 \le s \le t$ and $x \in CD(A)$, $\widetilde{T}(t-s)C\widetilde{T}(s)x$ is a solution of (4.1). Using (4.2) and commutating A with C, we have

$$\frac{d}{ds}\tilde{T}(t-s)C\tilde{T}(s)x = \tilde{T}(t-s)CA\tilde{T}(s)x - A\tilde{T}(t-s)C\tilde{T}(s)x$$

whence $\tilde{T}(t-s)C\tilde{T}(s)x$ is independent of s. Setting s=0, s=t yields (4.4) $\tilde{T}(t)Cx=C\tilde{T}(t)x$

for $x \in CD(A)$.

We define $w : [0, \infty) \to X$ by

$$w(t) = \begin{cases} u(t; x) & (0 \le t \le s) \\ u(t-s; u(s; x)) & (t > s) \end{cases}$$

for $x \in CD(A)$. Since $Cu(s; x) \in CD(A)$ we note that the existance of solution u(t; u(s; x)) of (4.1). Clearly, w(t) is a solution of (4.1) with initial deta x. By the uniqueness of solution, we may w(t) = u(t; x) for $t \in [0, \infty)$. From the uniqueness of the solution (4.1), w(t+s) = u(t+s; x) = u(t; u(s; x)). It follows that

$$(4.5) \tilde{T}(t+s)x = \tilde{T}(t)\tilde{T}(s)x$$

for $x \in CD(A)$. From (β) and (4.4), for any $p \in \Gamma$ and $x \in CD(A)$, there exists $q \in \Gamma$ such that

$$(4. 6) p(C\tilde{T}(t)x) \leq e^{at}q(x).$$

We define the continuous linear operator by $S(t)x=C\tilde{T}(t)x$ for $x \in CD(A)$. Clearly, for $x \in CD(A)$, S(t)x is equi-continuous by (4.6), S(0)x=Cx and S(t)x is continuous in $t \ge 0$.

From (4.4) and (4.5), we obtain

 $S(t+s)Cx=C\tilde{T}(t+s)Cx=\tilde{T}(t)C\tilde{T}(s)Cx=C\tilde{T}(t)C\tilde{T}(s)x=S(t)S(s)x$ for $x \in X$ and $t, s \ge 0$. Since S(t)x is continuous on CD(A) and CD(A) is dense in X, S(t)x can be extended to all of X. Consequentely $\{S(t); t \ge 0\}$ becomes an exponentially equi-continuous C-semigroup on X.

Let G be the operator defined by (1.1) and let $x \in CD(A)$. Since $\tilde{T}(t)x = C^{-1}S(t)x$ and

we have
$$\frac{d}{dt}\widetilde{T}(t)x=\lim_{t\to 0^+}\frac{\widetilde{T}(t)x-x}{t}=\lim_{t\to 0^+}\frac{C^{-1}S(t)x-x}{t}=Gx,$$

(4.7)
$$CD(A) \subset D(G)$$
 and $G \mid_{CD(A)} = A \mid_{CD(A)}$.

So that (γ) implies that $A \subset \overline{G}$. To conclude the proof, we shall show that $\overline{G} \subset A$. Since CD(A) is dense in X, there exists $x_n \in CD(A)$ such that $\lim_{n \to \infty} x_n = x$ for all $x \in X$. From $S(t)x_n = C\widetilde{T}(t)x_n \in CD(A)$ and

(4.7), we obtain
$$AS(t)x_n=GS(t)x_n=S(t)\overline{G}x_n$$
.

Using the closedness of A,

$$A \int_{0}^{\infty} e^{-\lambda t} S(t) x_{n} dt = \int_{0}^{\infty} e^{-\lambda t} A S(t) x_{n} dt = \int_{0}^{\infty} e^{-\lambda t} S(t) \overline{G} x_{n} dt, \text{ i. e. , } AL_{\lambda} x_{n} = L_{\lambda} \overline{G} x_{n}. \text{ Combing this with } (2.2), AL_{\lambda} x_{n} = \lambda L_{\lambda} x_{n} - Cx_{n}. \text{ Since } A \text{ is closed, } L_{\lambda} x_{n} \to L_{\lambda} x \text{ and } AL_{\lambda} x_{n} = \lambda L_{\lambda} x_{n} - Cx_{n} \to \lambda L_{\lambda} x - Cx, \text{ we have } (4.8) \qquad L_{\lambda} x \in D(A) \text{ and } AL_{\lambda} x = \lambda L_{\lambda} x - Cx \text{ for } x \in X.$$

Now (4.8) and (2.2), $A(\lambda L_{\lambda}x) = \lambda L_{\lambda}\overline{G}x$ for $x \in D(\overline{G})$. By closedness of $A, \lambda L_{\lambda}x \to Cx$ and $A(\lambda L_{\lambda}x) = \lambda L_{\lambda}\overline{G}x \to C\overline{G}x$ as $\lambda \to \infty$, we obtain $Cx \in D(A)$ and $ACx = C\overline{G}x = \overline{G}Cx$ for $x \in D(\overline{G})$.

Thus $CD(\overline{G}) \subset D(A)$ and $\overline{G}|_{CD(\overline{G})} = A|_{CD(\overline{G})} \subset A$. Since $CD(\overline{G})$ is core of \overline{G} , we see that $\overline{G} = \overline{G}|_{CD(\overline{G})} \subset A$. Therefore $A = \overline{G}$, i.e., A is the C-c. i.g. of the equi-continuous C-semigroup $\{S(t) ; t \geq 0\}$. Thus the proof is complete.

Corollary 4.1. If Λ is a closed linear operator satisfying (i)—(iv) in Section 3, then Λ has the condition (α) — (γ) .

Proof. The consequence of Theorem 3.2. and Theorem 4.1.

Reference

- 1. E.B. Davies and M. M. Pang, The Cauchy problem and generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181-208.
- 2. Jong Yeoul Park, Exponentially bounded C-semigroup in Frechet space, to appear.
- 3. N. Tanaka, On the exponentially bounded C-semigroups, Tokyo J. Math. 10 (1987), 107-117.
- 4. K. Yosida, Functional Analysis, Academic Press, New York, 1965.

Dongeui Technical Junior College Pusan 614–053, Korea, Pusan National University Pusan 609–735, Korea and Dong A University Pusan 604–714, Korea.