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EXPONENTIALLY EQUI-CONTINUOUS C-SEMIGROUPS
IN LOCALLY CONVEX SPACE

Doo ROAN jEONG, JONG YEOUL PARK AND JONG WON Yu

1. Introduction

In this paper we are concerned with exponentially equi-continuous
C-semigroups for calibration. A calibration r for a topological vector
space X is a family of seminorms which induces the topology of X.
Let X be sequentially complete locally convex space and let C ; X -'> X
be an injective bounded linear operator with dense range. A family
{Set) ; t~O} of bounded linear operators from X into itself is called
an exponentially equi-continuous C-semigroup if

(1) S(t+s)C=S(t)S(s) for t, s~O and S(O) =C,
(2) there exists a~O such that {e-atS(t)x; t~O} is equi-continuous

in X.
(3) for every xEX, S(t)x is continuous in t~O.

For every t~O, let T(t) be the closed linear operator defined by
T(t)X=C-lS(t)X for xED(T(t)) = {xEX ; S(t)xER(C)}.
We define the operator G by

D(G) = {XER(C) ; lim T(t)x-x exists}
'-0+ t

and

(1.1) Gx=lim T(t)x-x for xED(G).
t-O' t

G is called the C-c. i. g. (C-complete infinitesimal generator) of
{Set) ; t~O}, where G denotes the closure of G.

In Section 2, we deal with the C-c. i. g. and representation of
exponentially equi-continuous C-semigroups, Section 3 treats the gene­
ration of exponentially equi-continuous C-semigroups and Section 4
investigate a Cauchy problem in locally convex space.
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2. C-complete infinitesimal generator and representation of
exponentiaIIy. eqlli-continuous C-semigroups

Let x be any fixed element· in X and let us put

L).wx=f: e-).tS(t)x dt

for each w>O and ,1>0 (We can define the integral of Riemann type
since e-).tS(t)x is continuous on [0, 00) with values in X). Then we
have for any seminorm pEr,

p(L).wx-L).w'x) :::;;f:~-)'tP(S(t)x)dt

for any O<w'<w. By the assumption (2) there exist aGO and qEr
such that p(S(t)x) ~eatq(x) for all t~O.

Hence if ,1>a, then

p(L).wx-L).w'x)~q(x)5:~-().-a)tdt--tO

as w, :;/~OO. Thus the limit lim L).wx exist. For every A>iz, define
w-'"

the bounded linear operator L). ; X ~ X by

(2.1) L).x=5:e-).tS(t)x dt for xEX.

Similarity as in Banach space [1~ 3J, we have
(a) G is densely defined and closable,
(b) for every .il>a,

(A-G)L).x=Cx for xEX
L).(A-G)X=Cx for xED(G).

In fact, let A>a. For xER(C), L).XER(C) and

~ (T(h) -I)L).x= i Cf:e-J.tS(t+h)x dt-5:e-).tSCt)xdt)

=l(e).k-1)f"'e-).tS (t) x dt- l roo

e- us (t) x dt
h h hJo

~AL).x-Cx

as h ---+ O+' and hence L).XED(G) and GL).X=AL).x-Cx.
Next, for xED(G), L).XER(C) and

i CTCh) -I)L).x=L). [i (TCh) -I)x] ~ L).Gx

as h~ 0+, i. e., GL).x=L).Gx. Therefore
(2. 3) (A-G) L).x=Cx for xER(C),
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L},(:A.-G)x=Cx for xED(G).
Note that

(2.4) lim :A.L},x = lim :A.S=e-}'lS(t)xdt=Cx for xEX.
..i.~oo A._co 0

Since :A. L},CxE D (G) and lim:A. L},Cx=C2X for xEX by (2.3) and (2.
•-=

4), we have that D(G) is dense in X by noting R(C2) is dense in
X. Now the closability of G follows from L},(A-G)x=Cx for xE

D (G) and (2. 4), then (2. 3) implies (2. 2). The proof is complete.
We also see that

d - -(2.5) diS(s)x=S(s)Gx=GS(s)x

for xED(G) and s~O. The proof is similarly as in [1, Lemma 8J.

THEOREM 2.1. The family of operators
(2.6) {[(:A.-a) (A_G)-l]ncx; xED((A-G)-l), A>a, n=l, 2, 3, ...}

is equi-continuous.

Proof. From the resolvent equation
(fl-G) -lCX- (A-G) -lCx= (A- fl) (:A.-G) -1 (fl-G) -lCx

for A, fl>a, we obtain

~(A-G)-lCx = lim (fl-A)-l[(f.l-G)-lC- (:A.-G)-lC]x
d'A ,,-.

=-lim ('A-f.l)-l[(fl-G)-lC- (:A.-G)-lC]X,,-.
= -lim (A-G) -1 (f.l-G) -lCX,,-.
=- (:A.-G)-2CX.

Moreover, since
n-I

(fl-G)-nC- (:A.-G)-nC= (:A.-f.l) L: (f.l-G)-k-1(:A.-G) -n+kC
k=O

for A, f.l>a, we have ~ ('A-G) -nCx= - (A-G) -n-1Cx.

Therefore (A-G)-lCX is infinitely differentiable with respect to A>a

and
dn - -d'An (:A.-G) -lCx= (-l)nn! (A-G) -n-1Cx

for :A.>a and xED((A-G)-l).

On the other hand, we have, by (2. 2) and differenting (2. 1)
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n-times with respect to,
dn - . loo_(A-G)-ICx= e-},t (-t)nS(t) xdt.

dJ..n . 0

Hence [(J..-'-a)(J..-G)-IJn+lCx (J..-a)n+l fooe-},ttnS(t)xdt for xED«(A
n! Jo

-G)-I), and so, for any pEr on X and J..>a, n>O,

p([(J..-a) (J..-G)-IJn+lCX) < (J..-a)n+1s
oo

e-<A-a)t tndt sUPP(e-atS(t)x)
. n! 0 t;;:o

. =suPP(e-atS(t)x).
t~O

This proves theorem by the equi-continuity of {e-atS(t)x ; t~O}.
We now define

n tkJ..2k _
s},n(t)x=e-}'t~o ----n-(J..-G)-kCx for xEX.

For each fi.xed J..>a, t~O and xEX, the sequence {s},n(t)x; n=O, 1,
2, ...} is Cauchy sequence.

Indeed, for any continuous seminorm pEr on X,
n tk)l2k _

p(s},n(t)x-s},m(t)x) ~e-At L; --p«J..-G)-kCx)
k=m+I k!

and there exist qEr by Theorem 2.1., p«J..-G)-kCx) < q(x) for
(A.-a) k

all k, and so that
n tkJ..2k

p(s},n(t)x-s},m(t)x) ~q(x)e-}'tk~+I k! (J..-a)k

~O as m, n~oo.
Then, for each J..>a, t~O and xEX, the limit

00 tkJ..2k _
(2.7) S},(t)x=lim S},n(t)x=e-},t",,£-- (A.-G)-kCx

n_oo k=O k!
exists. By s},n(t) is continuous and S},(t) is uniformly converges in
t, we also see that S},(t) is continuous in t~O.

THEOREM 2.2.' Let {Set) ; t~O} be an exponentially equi-continuous
C-semigroitp. If G is the C-c. z. g. of" {Set) ; t~O} and

S},(t)x=e-},ti; t
k

J..2k (A-G)-kCx
k=O k!

for xEX and t~O. then we have
d - - -(2.8) .. ds (S},(t-s)S(s)x) =S},~t-s)~(s)(Gx~A~(A-G)-lx).



LEMMA 2.2.
(2.10)

Exponentially equi-continuous C-semigroups in locally convex space

for all xECD(G).

Proof. From the definition of S), (t)
d -d;S),(s)Cx=S),(s) (-A+A2(A-G)-1)Cx

=S), (s) AG CA -G) -lCX
for xEX, and we see that

d -
d;S(s)x=S(s)Gx

for xECD(G) by (2.5). By (2.2),
S (s) (A-G) -lCx=S (s) L),x=L),S (s) x= (A-G) -lCS (S) x

for xECD(G) i. e., G(A-G)-lC(=A(A-G)-lC-C) commutes with
S(s). Now, let xECD(G)and x=Cy, yED(G). Then we have

d - - -d;(S),(t-s)S(s)x) =S),(t-s)S(s) (Gx-AGCA-G)-lX)

for xECD(G).

LEMMA 2.1. For each xEX,
(2.9) lim GCA-G)-lCx=O.

1-00

Proof. For all xED(G) and for any pEr, there exists qEr such
that

p(G(A-G)-lCX)=P((A-G)-lCGX):;; q(x) ~O
(A-a)

as A~OO, A>a, and by (2.6).

Since D (G) is dence in X,

limG(A-G)-lG.x=O for any xEX.
1~'"

For each xED(G),
lim AG (A-G) -lCX=GCx.
J.--+co

Proof. Let fl>a, xED(G) and x= (fl-G)-ly for some
yER(fl-G). Then

AG (A-G) -lC2x -GC2x=AG (2-G) -lC (fl-G) -lCy-GC2 (fl-G) -ly
=2G (A- G) -lC (fl- G) -lCy-G(fl- G) -lC2y

= AG ((A-G)-lC2y- (fl- G)-lC2y)
fl-2
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-G(ft-G) -lC2y

=_A-G().-G) -lC2y__ft_G (ft- G) -lC2y•
ft-A ft-A

Thus for any seminorm pEr

pCAG(X-G)-IC2x -GC2X) ~_A_p(G(A-G)-IC2y) +_ft_(G(ft-G)-l
ft-A ft-A

C2y) --+ 0
as A --+ 00 by (2. 9). Since D (G) is dense in X, we have

limAG(A-G)-lCx=GCx for any xEX.
,-00

THEOREM 2.3. Let {Set) ; t~O} be an exponentially equ-continuous
C-semigroup. If G is the C-c. i. g. of {Set) ; t~O}, then

00 tkA2k _
S (t) x=I}~e-,ltk~k!CA-G) -kCx

for xEX and t~O.

Proof. since

S,l (t) x=e-,ltI; tkAk (1-~) -k[I__1_(G-a) J-kCx
k=O k! A A-a

00 tkAk
(2.11) =e-,ltI;-(1+-a_)k[CA-a) (A-G)-lJkCx

k=O k! A-a
for A>a and xEX. there exists qEr such that

00 tkAk a
p(S,l(t)x) ~e-,ltk~k!(1+ A-a )kq(x)

(2.12) =eCa+a2/C,l-a))tq(x)
~e2atq(x)

for any pEr, xEX and A>2a by (2.11) and (2.6).
From (2.8), we have

S(t)C2X-S,l(t)C2X= s:~ S,l(t-s)S(s)Cx ds

- S:S,l(t-s)S(s) (GCx-AG(A-G)-lCx)ds

for xED(G) and O~s~t. By property (2) of {S(t); t~O}, there
exist q, 7E r such that

p(S(t)C2X-S,l(t)C2X) ~S:P(S,l(t-;)S(s) (GCX-AGO-G)-ICX) ds

~S:e2aCt-S)q(S(s) (GCX-AGO-G)-lCx))ds
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:;::;S:eza Ct-s) eaSq (CCX-AC (A-C) -lCx) ds

= --.1 (e-at-1)eZatq (CCX-AC (A-C) -lCX)
a

for any pEr, A>2a and O:;::;s:;::;t, and so, for any pEr and t::;;O,
p(S(t)C2X-S).(t)C2x )-70 as A -700, because (2.10).
Hence lim S).(t) x = S(t)x for each t::;;O and xECZD(C).

A_oo

Since C2D (C) is dense in X, for any x E X, we have
lim S).(t)x=S(t)x for t::;;O.
A-'OO

3. Generation of exponentially equi-continuous C-semigroup

We consider the following conditions:
( i) D(A) is dense in X,
(ii) for each xED((A-A)-l), (A-A)-lCx=C(A-A)-l X.

(iii) for each xEX, {[(A-a) (A-A)-lJkCx; A>a, k=O, 1,2, ...}

is equi-continuous,
(iv) CD(A) is a core of A.

= tkA2k
LEMMA 3.1. Let SA(t)x=e-).\~ok!(A-A)-kCxfor xEX, t::;;O and

A satisfying (i)~- (iv). Then for every bounded set B, the operator

{e-ZatS).(t)x ; A ::;;2a, t::;;O} is equi-continuous for any xEB.

Proof. We already proved in Theorem 2.3.

= tkA2k
LEMMA 3.2. Let S).(t)x=e-Atk~k!(A-A)-kCxfor xEX, t::;;O and

A satisfying (i)~- (iv). Then the limit limS). (t) x exists uniformly with
A-=

respect to t in any bounded interval.

Proof. By definition of S). (t), we have

~S).(t)X=AA(A-A)-lS).(t)xfor xECD(A).

Thus if xECD(A) and x=Cy, yED(A), then

~ S). (t-s) SI' (s) Cx=S). (t-s) /lA(/l- A) -lSI'(s) Cx
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-AA(A-A)-l . S;,(t-s)Sp.(s)Cx
=S;,(t-s)Sp.(s)pA(f.t-A )-12Cy

-S;,(t-s) . Sp.(s)AA(A-A)-lC2y
Hence

Sp.(t)C2x -S;,(t)C2X= f: ~ S;,(t-s) S,,(s) Cx ds

= f:[S;,(t-s)Sp.(s) pA(p-A)-lC2y-S;,(t-s)

. S,,(s)AA(A-A)-lC2y]ds

= f:S;,(t-s)Sp.(s) (pA(f.t- A )-lC2y

-AA(A-A)-lC2y)ds

for every xEC3D(A). By Lemma 3.1., for any pEr, there exists
qEr such that p(S;,(t-s)S" (s)x) ~e2atq(x) for all f.t, A>2a ~md O~s~t,

and (2.10) show that P(fl~(p-A)-lCx-AA(A-A)-lCX)~Qas A.f.t~oo.

Then, for each t~O and pEr, there exist qEr such that

p(S" (t)C2X -S;,(t)C2X ) ~J:e2atq(f.tA(f.t-A)-lCx-AA(A-A)-lCx)ds

~te2atq(pA(f.t-A) -lCX-AA(A- A) -lCx)

~O

as A,p~ 00. Hence for each xEC3D(A) and tE[O, (0), the limit
lim S,,(t)x exists unformly with respect to t in any bounded interval,
1'_00

and from the uniform convergence in t, this limit is a continuous
linear operator from X into itself.

THEOREM 3.1. If {Set) ; t~O} is an exponentially equi-continuous
C-semigroup and A is the C-c. i. g. of {Set) ; t~O}, then A satisfy
the conditions (i)--(iv) .

Proof. We already proved (i)--(iii). We must show that (iv).
Let zEX and t~O. Since D(A) is dense in X, there exists znED(A)
such that lim Zn=Z' Noting S(-r-)zED(A) and

:. S(-r-)zn=AS(r)zn=S('l')Az, we obtain

S(t)zn-Czn=J:S('l') Aznd-r-
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= f:AS Cr) Zndr=Af:S (7-) Zndr.

Since lim StS(r)Zndr=ftS(r)zdr, lim AftS(r) Zndr=S(t) z-Cz
n-toCO 0 0 n-+oo 0

and the closedness of A,

(3.1) f:S(r)zdrED(A) and Af:S(r)zdr =S(t)z-Cz

for zEX and t~O. It suffices to show

(3.2) AlcDCA):::::lA.
To this end, let xED(A) and e>O. Using (3.1) with Z=C-IX, we

have

lftS(r)C-Ix dr ~ x and
t 0

A(;J:S(r)C-Ixdr)=; (S(t)C-IX- X)

=l(T(t)x-x) ~ Ax
t

as t~O+. Hence there is a to>O such that

p( t~ f:oS(r)C-Ixdr-x) +P(A( t~ f:oS(r)C-Ix dr) -Ax)< ~

for any pE r. Since CD (A) is dense in X, we can choose X n E CD (A)

such that xn~C-Ix as n~co. By (3.1) again, lftoS(r)xndrECD(A)
to 0

and

A(lftoS(r)xn dr) =l(S(to)Xn-CXn)
to 0 to

(3.4) ~ l(S(tO)C-IX-C. C-Ix )
to

=A(1af:oS(r)C-Ix dr)

as n ~ co. By (3.4), there is a no~O such that

p(lft
o
S (r) xno dr-lftoS (r) C-Ixdr) +P(A (lfloS (r) xnodr)

to 0 to 0 to 0

-AC~ f:oS(r)C-Ix dr)) < ~

for any pEr. Then we have l:..-ftoS(r)xnodrECD(A) and
to 0
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. pC~f:oS(~)Xno d~-X)+P(AC~f:OS(~)Xnod~-Ax)-AX) <8
for any pEr. Thus (3.2) is satisfied and the proof is complete.

THEOREM 3. 2. If A is a closed linear operator satisfying (i)-­
(iv) , then A is the C-c. i. g. of an exponentially equi-continuous
C-semigroup {Set) ; t~O}.
Further

00 tk).,2k
(3.5) S(t)x=lim e-"tL: -_(A-A)-kCx._00 k=O k!

for all xEX and t~O.

00 tk).,2k
Proof. Put S,,(t) =e-Attt kr().,-A)-kCx for xEX and t~O. By

virtue of Lemma 3.2., we may S(t)x=limS,,(t)x•
• _00

We first prove that {S(t); t~O} satisfies an exponentially equi-

continuous C-semigroup property. Clearly S(O) =C.

Since S,,(t+s)C=S,,(t)S,,(s) [1, Theorem 11J and {e-2atS,,(t) ; t~O,

).,~2a} is equi-continuous, for any pEr, there exists qEr such that
peS (t+s)Cx-S (t) S(s) x)

~p(S(t+s)Cx-S,,(t+s)Cx)+p(S,,(t+s)Cx-S,,(t) S,,(s) x)

+ p(S" (t) S" (s) x-S" (t) S(s) x) +p(S" (t) S (s) x-S (t) S (s) x)

~p(S(t+s)Cx-S,,(t+s)Cx)+e2atq(S"(s)x-S(s)x)

+p((S,,(t) -S(t))S(s)x)
~O

as ).,~ 00, which proves S(t+s)Cx=S(t)S(s)x for t, s~O.
From (2.11) and (iii) , for any pEr, ).,>a and t~O, there exists
qEr such that

P(S,,(t)x)~e-.lti; tk).,k (l+-a -)kp([(A-a) (A-A)-lJkCx)
k=O k! ).,-a

~e-"t~ tkk~k (1+ , a )kq(x)
k-O. A a

=eCa+a2 / C,,-a))tq (x),

this implies Hm p(S,,(t)x) =p(S(t)x) ~eatq(x) for all xEX.
l_oo

Thus the operators {e-atS(t)x ; t~O, ).,>a} are equi-continuous In

X, and from the uniform convergence in t, S (t) x is continuous ID
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t~O.

Next we shall prove that A is the C-c. i. g. of an exponentially equi­
continuous C-semigroup {S (t) ; t ~ O} .

Since ;tS).(t)Cx=S).(t)J.A(J.-A)-ICX for xED(A),

(3.6) -l(S).(t)CX-C2x) =lftS).(s) J.A (J.-A)-ICxds
t t 0

for each xED(A). By (2.10) and Lemma 3.1., for any pEr, there
is qEr and J.o>O such that

p(S).(s) (J.A(J.-A) -ICx- ACx)) ~e2asq(J.A(J.-A)-ICx-ACx)

<~=2
for all J.>max (J.o,2a) and O~s~t. By Lemma 3.2., there exists J.o'

>0 such that p((S).(s) -S(s))ACx) < ~ for all J.>M and O~s~t.

Thus if J.>max (J.o, J.o', 2a), then

p( ; (f:s). (s) J.A (J.- A) -ICxds-s:S (s) ACx dS)

~p( ~ f:S).(s) (J.A(J.- A) -ICX-ACx)ds) +p( ~ s: (S).(s) -S(s) ) ACxds)

~lSt p(S).(s) (J.A(J.-A)-ICX-ACx))ds+lS
t
p((S).(s) -S(s) )ACx)ds

tot 0

<c
for any pEr. Them passing to the limit J. in (3.6) we have

lCS(t)CX-C2X) =lftS(s)ACx ds
t t 0

for xED(A) and thus we see that

l (C-IS(t) x-x) =lftC-IS(S) Axds
t t 0

for xECD(A). Hence

liml(T(t)x-x) =limlftT(s)Ax ds=Ax
t-O' t t-O' t 0

for x E CD CA). Let A' be the C-c. i. g. of an exponentially equi­
continuous C-semigroup {Set) ; t~O} and D(A') be its domain. Since
D(A') :=JCD(A) and ACx=A'Cx for xED(A), thus D(A') -:::)CD(A)
and AlcDW=A'lcDW. Hence AlcDWcA'. Since CD(A) is a core
of A, we have AcA'. On the other hand, by [lJ
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(3.7) (A-A)-lCX=S:e-AtS(t)xdt

and define

LAX= S:e-AtS(t)xdt

for A>a. From (3.7) and (ii) , we have LA (A-A)x=Cx for xED(A)
and for xEX, (A-A')LAx=Cx by (2.2). Thus A'LAx=LAAx for xE

D(A). Letting A~ 00, we see that A'Cx=CAx=ACx for .xED(A)
that is A'::::>A'lcD(A)=AlcD(A) Since CD (A) is core of A, A'::::>A.
Thus the proof is complete.

4. The abstract Cauchy problem

In this section we consider the following abstract Cauchy problem
d(4.1) -atu(t) =Au(t) fort~O and tt(O}.x.

By a solution u(t) of the (4.1) we mean that net) is continuously

differentiable in t~O, u(O) =x, u(t) ED(A) and~ u(t) =Au(t) for

every t~O.

THEOREM 4.1. Let A be a densely defined closed linear operator which
commutes with C. Then A is the C-c. i. g. of an exqonentially equi­
continuous C-semigroup {S(t); t~O} if and only if A satisfies the
following conditions:

(a) The (4.1) has unique solution u(t) for all xECD(A),
(f3) for every xECD(A) and pEr, there exists qEr such that·

p(u(t» ~eatq(C-lx) for t~O,

(r) CD (A) is a core of A.

proof. Let A be the C-c. i. g. of {Set) ; t~O} and let xECD(A),
x=Cy, yED(A). Put u(t) =T(t)x for t~O. Then u(O) =x and
u(t) =S(t)yED(A). By [1, Lemma 8J, we have

T(t)x-x=S(t)y-Cy=S:S('I:') Ayd'l:'

and so
dds S(s)y=S(s)Ay=AS(s)y.
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Thus ;t u(t) =Au(t) and u(t) is continuously differentiable in t~O.

To prove uniqueness, we suppose vet) ED(A), ~ v(t)=Av(t) and

v(O) =xECD(A). For s, t~O

~ [S(t-s) v(s) ] = S(t-s) ;s v(s) + [:s S(t-s) }(s)

=0,
whence S(t-s)v(s) is independent of s. Setting s=O, s=t yields
vet) =C-lS(t)x= T(t)x=u(t). Clearly, the condition (/3) and (r) satisfy
by the definition of exponentially equi-continuous C-semigroup and
Theorem 3. l.

Conversely, let for every xECD(A), (4.1) has a unique continuo­
usly differentiable solution on [0, 00) and let define 'the operator T (t) :
CD(A)->D(A) by T(t)x=u(t; x). From the uniqueness of the solution
T (t) is a linear operator defined on all of CD (A). First we show that

(4.2) T (t)Ax=AT (t)x
for xECD(A2). Let xECD(A2). Since AxECD(A), there exists a
solution u(t ; Ax) of (4.1) such that

(4.3) :s u(s ; Ax) =Au(s ; Ax).

Integrating (4.3) from °to t, we obtain

u(t ; Ax) =Ax+S:Au(s ; Ax)ds

=A(x+S:u(s ; Ax)ds).

put z(t) =x+S:u(s ; Ax)ds. Then z(t) is continuously differentiable,

ddiz(t) =u(t ; Ax) =Az(t) for t~O and z(O) =x.

It follows that z (t) is a solution of (4. 1) with initial value x. From
the uniqueness of solution, z(t) =u(t ; x).
Hence u(t; Ax)=Au(t; x) for t~O. Therefore T(t)Ax=AT(t)x by
the definition of T (t).

Since CT(S)XECD(A), for O~s~t and xECD(A), T(t-s)CT(s)x
is a solution of (4. 1). Using (4.2) and commutating A with C, we
have
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Doo Hoan Jeong. Jong Yeoul Park and Jong Won Yu

is T (t-s) CT (s)x=T (t-s) CAT (s)x-AT (t-s) eT (s)x

whence T(t-s)CT(s)x is independent of s. Setting s=O, s=t yields
(4.4) T (t)Cx=eT(t)x

for xECD(A).
We define w ; [0,00) --'1- X by

{
u(t ; x) (O~t~s)

wet) = u(t-s; u(s ; x» (t>s)
for xECD(A). Since Cu(s ; x) ECD(A) we note that the existance
of solution u (t ; u (s ; x» of (4. 1). Clearly, w (t) is a solution of
(4.1) with initial deta x. By the uniqueness of solution, we may
w(t)=u(t; x) for tE[O, 00). From the uniqueness of the solution
(4.1), w(t+s) =u(t+s; x) =u(t ; u(s ; x». It follows that

(4.5) T(t+s)x=T(t)T(s)x
for xECD(A). From (f3) and (4.4), for any pEr and xECD(A),
there exists q E r such that

(4.6) p(CT(t)x) ~eatq(x).

We define the continuous linear operator by S(t)x=eT(t)x for xE
CD(A). Clearly, for xECD(A), S(t)x is equi-continuous by (4.6),
S(O)x=Cx and S(t)x is continuous in t~O.

From (4.4) and (4.5), we obtain
S(t+s) Cx=CT (t+s) Cx=T (t)CT (s) Cx=CT (t)eT (s)x=S(t)S(s)x

for xEX and t, s~O. Since S(t)x is continuous on CD (A) and CD(A)
is dense in X, S(t)x can be extended to all of X. Consequentely
{Set) ; t~O} becomes an exponentially equi-continuous C-semigroup
on X.

Let G be the operator defined by (1.1) and let xECD(A).
Since T(t)X=C-lS(t)x and

.!!-T(t)x=1im T(t)x-x lim C-lS(t)x-x G
we have dt t-IJ+ t t-J)+ t x,

(4.7) CD (A) cD (G) and G ICD(A)=A ICD(A)·

SO that (r) implies that AcG. To conclude the proof, we shall show
that GcA. Since CD(A) is dense in X, there exists x"ECD(A) such
that lim x,,=x for all xEX. From S(t)x"=CT(t)x,,EGD(A) and

n_oo

(4.7), we obtain AS(t) xn=GS(t) xn=S(t) Gxn.
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Using the closedness of A,

Af~e-.ltS(t)xndt=f~e-).tAS(t)xndt=f~e-'ltS(t)Gxndt, i. e., AL..x n=

L ..Gxn. Combing this with (2.2), AL..xn=J..L..xn-C.rn. Since A IS

closed, LJ.xn~ LJ.x and ALJ.xn=J..LJ.xn-Cxn~ J..L..x-Cx, we have
(4.8) LJ.xcD(A) and ALJ.x=J..L..x-Cx for xEX.

Now (4.8) and (2.2), A(J..LJ.x)=J..LiJ.x for xED(G). By closedness
of A, J..LJ.x ~ Cx and A (J..LJ..'r) =J..LJ.Gx ~ CGx as J.. ~ 00, we obtain

Cx c:: D (A) and ACx = CGx = GCx for x E D (G).
Thus CD(G)cD(A) and GICDiG)=AlcDiG)cA. Since CD(G) is core
of G, we see that G= GICDit) cA. Therefore A = G, i. e., A is the
C-c. i. g. of the equi-continuous C-semigroup {Set) ; t~O}. Thus the
proof is complete.

COROLLARY 4.1. If A ts a closed linear operator satisfying (i)-­
(iv) in Section 3, then A has the condition (a)--(r).

Proof. The....consequence of Theorem ;"3. 2. and Theorem 4. 1.
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