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A CHARACTERIZATION OF SOME FINITE GROUPS WITH
IRREDUCIBLE CHARACTERS OF PRIME DEGREE

SEUNG AHN PARK

1. Introduction

Let G be a finite group. Let Irr (G) be the set of all irreducible
characters of a finite group G over the complex number field and let
c. d. (G) be the set of all degrees of irreducible characters in Irr (G).
In [2J and [3J, 1. M. Isaacs and D. S. Passman have determined the
structure of G with c. d. (G) = fI, m}, m>1. We say that a finite group
G is of type

d. t. (G) =e ~},
if G satisfies the following conditions:

(i) c. d. (G) = fI, m}, and
(ii) G has exactly a linear characters and exactly b irreducible

characters of degree m.

The purpose of this paper is to characterize all the finite groups G
of type

d. t. (G) = e ~}
where p is a prime and 1 :S: b :S: P+ 1. In fact, we will explicitly
determine G.

In section 2 we will prove theorems on the properties of some
special groups. These theorems will be useful in proving our mam
theorems. We will prove our main theorems in section 3.

The notation and the terminology in this paper are standard, and
they are taken fromi [8J.
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Let G be a group. If X is a subset of G, <X) denotes a subgroup
generated by X. If x, yEG, then x'Y and [x, yJ denote y-1xy and
x-1y-lxy, respectively. The commutator subgroup and the center of
G are denoted by G' and Z(G) , respectively.

The cyclic group of order n, the dihedral group of order 2n and
the quaternion group of order 8 are denoted by Cn> D2n and Qs,
respectively. Thus

Cn=<xlxn=l), D 2n=<x, ylxn=y2=1, x'Y=x-1),

Qs=<x, ylx4=y4=1, x2=y2, x'Y=x-1).

2. Properties of some special groups

In this section we will prove several theorems on the properties of
some special groups.

Let r be a prime and let m be a positive integer. Then there exists
a Galois field F withrtn elements. The additive group F+is an
elementary abelian r-group of order r tn and its multiplicative group
F* is a cyclic group of order rtn-l.

Suppose that p is a fixed prime factor of rtn -1. Then 1+dp=rtn

for some positive integer d. Let 0 be a fixed element of F* such that
F*=<O) and let ~=Od. Then <~) is a unique subgroup of F* of order
p. The map

t/J(O) : F+~ F+, t/J«() (a) =()a
is an automorphism of F+, and t/J : F*~ Aut (F+) is a homomorp­
hism of F* into the automorphism group Aut(F+). Thus t/J(F*) is a
cyclic subgroup of Aut (F+) of order r tn-1 and t/J (<~)) is a cyclic
subgroup of t/J (F*) of order p.

Let p=<y) be a cyclic group of order pn, n~l. Then the homomor­
phism T : P~ Aut (F+) given by

T(yi) =t/J(~i)

defines an action of P on F and we have T(P) =t/J«~».
Thus we can consider the. semidirect product

Gn(p, d, rtn) = {(yi, a) laEF, 05i5pn-1}
of F and P with respect to this P-action on F. It is a nonabelian
group of order (1+dp)pn, whose multiplication is given by

(yi, a) (yi, (3) = (yi+i, ~ia+ (3).
If we consider P and F as subgroups of Gn(p, d, rtn), then P IS a
Sylow p-subgroup and F is an abelian normal p-complement.
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The subgroup

G(p,d,rm)={ [: ~JiaEF, O~i~P-l}.

K={~

of the general linear group GL(2, F) is a Frobenaus group of order
with a Frobienius complement H and a Frobenius kernel K, where

°J I ';:i1 [aEF}, H= {Lo

And K is isomorphic to F and H is cyclic of order p.
Let P=(y) be a cyclic group of ordr pn, n~1. Then the map

KXP~ K, (x, yi)~ x yi defined by

11 0Jyi =[1 0IJ
La 1 ';:'a

is an action of P on K, and the group Gn(p, d, rm) is indeed
isomorphic to the semidirect proiduct of K by P with respect to this
P-action on K. In particular we have

Gl (p, d, r m) ~ C (p, d, r m).

THEOREM 2.1. Let G = Gn(p, d, rm ). Then

d. t. (G) = {~ P~ld}'

Proof. The group G has an abelian normal subgroup F (yP) of
index p. Hence XCI) [p for all XEIn(G), by Ito's theorem. Since G
is not abelian, this implies c. d. (C) = {I, p}. Moreover, we have
G' =F, IG : G'I = p. Therefore, the assertion holds.

Assume that m is the order of r modulo p, that is, m=ordp r.
Thus m is the smallest positive integer such that r m == 1 (mod p),
and if rk == 1 (mod p) then m Ik.

THEOREM 2. 2. Let p and r be primes such that
1+dp=rm , m=ordpr.

(1) The only normal subgroups of G=Gn(p, d, rm ) contained in the
normal p-complement Fare {a} and F.

(2) Let G be a finite group such that

G=AP, Anp{l},

where A is an elementary abelian normal subgroup of order rm , P= (y)
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is cyclic of order pn, n~l and Cp(x) = (yP) for all xEA- {1}.
Then G~Gn(P,d, rm).

Proof. (1) The abelian normal p-complement F is an elementary
abelian r-group of order r m•

Let B be a nontrivial normal subgroup of G contained in F. Then
B is an elementary abelian r-group of order rk, where lSkSm. And
for each non-identity element x of B, the conjugacy class containing
x is of size p. Hence

IBI =1 (mod p), and mlk.
Thus k=m and B=F.

(2) By assumption the automorphism T (y) of A defined by
T(y) (x) =xY

is of order p. On the other hand, Aut (A) is of order
rmCm-D/2(rm-I) (rm-1-I) ... (r-I).

Let pe be the highest power of p dividing rm-l. Then it is the
highest power of p which divides Aut (A) since m=ordpr. Hence
Sylow P-subgroups of Aut(A) are of order pe.

We will identify A with the additive group F, where F=GF(rm).

The group Aut(A) has a cyclic subgroup of order rm-I and so it
has a cyclic subgroup of order pe. Hence any Sylow p-subgroup of
Aut (A) is cyclic, and every cyclic subgroup of order p is conjugate
in Aut(A) to (if>(~», where ~ is a fixed element of F* of order p
and if> (~) is defined by

if>(~) (a) =~a, aEF.
In particular (T(y» is conjugate to (if>(~)>in Aut(A). Therefore,

G is isomorphic to Gn (p, d, r m).

It is easy to prove the following proposition.

PROPOSITION 2.3. Let P and r be primes such ,that
I+dp=rm

for some Positive integers d and m.
(1) If IsdsP+I, then m=ordpr.
(2) SUPPose that m=ordpr. Then the following hold.

(i) m] (P-I), and if P=2 then m=l.
(ii) If P is odd and m>I, then (r-I) Id.

In particular if p is odd, d~2 and m>I then r=3 and
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3. A characterization of some finite groups

Let G be a finite group of type

d. t. (G) =[: ~J,
where p is a prime and a and b are positive integers. Then G is a
nonabeIian group such that

IG : G'I =a, IGI =a+bp2.
Since G has an irreducible character of degree p, we have p I IG I by
Ito's theorem. Therefore, we have pI (a+bp2) and pia. We also have
a Ibp2 by Lagrange's theorem.

Set a= pc. Specially, if b is a prime then c is one of the integers
1, p, b, bP, and so the integer a is one of the integers p. p2, bP, bp2.

Now we will characterize the group G under a certain restriction
on a and b.

THEOREM 3. 1. Let p be an odd prime and let G be a finite group of
tyPe

d.t.(G)=e ~}
where 1~b~p+1.

(l) If a=p, then p is an odd prime such that l+bp=rm for some
prime r, and G~G(p, b, rm).

(ll) If a= p2, then one of the following holds.
(1) b=P-1, and G~M(p3) or G~E(p3), where

M(p3) = (x, ylxp2=yP=1, xY=x-1),

E(p3) =(x, y, zlxP=yP=zP=l, [x, y]=z, [x, z]=[y, z]=l>.
(2) p is a Mersenne prime of the form P=2m -1, b=P, and

G~G(p, 1, 2m) XCp or G~G2(P, 1, 2m)

(Ill) If a= bp, b =1= 1 and b =1= p, then p is a Mersenne prime of the
form P=2m-1, and

(rv) The integer a can not be equal to bp2.

Proof. Since c. d. (G) = {l, p}, the group G is nonabeIian and G has
an abelian normal p-complement A. Let P be a Sylow p-subgroup
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of G. Then
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G=AP, An P= {I}.
and we have IG: NG(P) I=1 (mod p) by Sylow's theorem.

The p-group P acts on an abelian P'-group A by conjugation,
and so we have

A=CA(P) X [A, PJ
by [8, Theorem 2.5. 17J. Moreover, if P is abelian then

G' = [G, GJ = [A, PJ.
This can \le proved by using the following identities:

[xy,uJ=[x,uJ" [y,uJ, [u, xyJ=[u,yJ[u, xJY.
In the following proof we will use the above results and the fact

that p is odd.

(I) Assume that a=p. Then
IGI =P(l+bP), IG'1 =l+bp.

The Sylow p-subgroup P is cyclic of order p and A=G'. Hence
we have

A=CA(P) X [A, PJ, [A, PJ=G'=A
and it follows that

CA(P) = {I}, CG(P) =P, Z(G) = {I}.
Moreover,

CG(x) =A, Cp(x) = {l}
for all xEA- {I}.

The factor group NG(P) / P is. isomorphic to a subgroup of AutCP),
and Aut (P) is a cyclic group of order P-l. Hence it follows that

IG : NG(P) I ING(P): PI = IG : PI =1 Cmod p).
This implies that ING(P) : PI =1 (mod p). Hence NGCP) = P and
pnpx={l} for all XEG-P.

Therefore, G is a Frobenius group with Frobenius complement P
and Frobenius kernel A.

Let r be a prime factor of 1+bp. Then A has an element x of
order r. Consider the conjugacy class ~x of G containing x. Then

~x~A, I~xl = IG : CG(x) 1= IG : AI =p.
Suppose that b=l. Then A=~xU {I} and A is an elementary

abelian r-group of order l+p. This implies that r=2 and 1+P=2m•

Suppose that l<bS;P+l. Then the only positive divisors d of l+bp
with d=l (mod p) are 1 and 1+bp. Hence ~x U {l} is not a
subgroup of A. Thus there exist two distinct elements u, vE~x such
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that uVEA-~.x, and w=uv is of order r. Continuing the above
argument, we can show that there exist b elements Xl> X2, ••• , Xb in A
such that

A= {I} U~.xl U~.x2 U... U~.xb·
This implies that A is indeed an elementary abelian r-group and,
by Proposition 2.3, we have

IA!=l+bP=rm, m=ordpr,
Therefore, G~G(p, b, rm) by Theorem 2.2.

(ll) Assume that a=p2. Then
IGI =p2(1+b), !G'I =l+b.

Suppose that pI (b+1). Then b=P-1, and G is a nonabelian group
of order p3 with IG' I= p. Two groups M (p3) and E (p3) are the only
nonabelian groups of order p3, and their commutator subgroups are
cyclic of order p. Hence G~M (p3) or G~E (p3) .

Now suppose that (b+ 1, p) = 1. Then P is of order p2 and it is

either elementary abelian or cyclic. And we have A=G'. Hence
A=CA(P)X[A,P], [A,P]=G'=A,

and if follows that
CA(P) = {I}, CG(P) =P, Z(G) r;;;,P.

Since 1:::;:b:::;:p+1, it follows that
IG : NGCP) I=1+P, NG(P) =P, P=b

And we have
I~:cl = IG: CG(x) I=p, A=~.xU {I}

for any xE A - {I}. Hence A is an elementary abelian r-group of
order l+p. Thus r=2, 1+P= 2"'.

Since P is abelian, we have
P nCG(x) = (P nCG(x))Y=P nCG(xY),

CG(A) =CG(x), CG(A) =CGCx) =Z(G), IZ(G) I=p
for any xEA{l} and yEP.

If P is elementary abelian, then there exists a subgroup (y) of
P of order p such that

P=(y) XZ(G), G=A (y) XZ(G).

Hence, by Theorem 2.2, we have
G=A(y) ~G(p, 1, 2"') X Cp.

If P is cyclic of order p2 and P=(y), then Z(G)=(yP) and so

G=.G2 (p, 1, 2m) by Theorem 2.2.
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(Ill) Assume that a= bp, b*1, b*p. Then
IGI=Pb(l+P), \G'\=l+P·

The Sylow p-subgroup P is cyclic of order p, and so
A=CA(P) X [A, PJ, [A, PJ=G'~A.

Hence the following hold.
CG(P) =PXZ(G), Z(G) =CA(P), IZ(G) I=b,

A=G'XZ(G), G=G'PXZ(G).
Thus by the similar arguments to those in (ll) we can show that G'

. is an elementary abelian group of order l+P, where 1+P=2m for
some m. Therefore, by Theorem 2.2, we have

G=G' PXZ(G) =G(p, 1, 2m) XCb

(IV) Assume that a=bp2. Then IGI=2bp2 and IG'\=2. Thus we
have G'~Z(G).

Suppose that b=p. Then P is of order p and G=G'P. Thus P is
normal in G and GIP is abelian. But this implies that G' ~P, which
is a contradiction.

Now suppose that b* p. Then G=AP and P is abelian of order
p2, Hence

A=CA(P) X [A, PJ, [A, PJ =G' ~Z(G).
and A ~ Z (G). Thus P is normal in G and GIP is abelian, and so
G' ~P. But this is a contradiction.

In Theorem 3.1, if b=l then a must be either p or p2. And if b
is prime then a must be one of the integers p, pbp, bp2. Hence the
following theorem follows from Theorem 3. 1 and Proposition 2. 3.

THEOREM 3. 2. Let p be an odd prime and let G be a finite group of
type

d. t. (G) = {~ ~}.
(1) If b=l, then p is a Mersenne prime of the form P=2m-l,

a=p and G=G(p, 1, 2m).

(2) If b=2, then one of the following holds.
(i) p is a prime such that 1+2P=r for some

odd prime r, a=p, and G=G(p, 2, r).
(ii) P is an odd prime such that 1+2P=3m, m;:::: 3, a=p, and

G=G(P,2,3m).

..
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(iii) P=3, a=p2, and G~M(33) or G~E(33).

(iv) p is a Mersenne prime of the form P=2m -1, n=2p, and
G~G(p, 1, 2m) XCp.

(3) If b is an odd prime such that b < p, then one of the following
holds.

(i) p is a prime such that 1+bp=2m, a=p, and G~G(p, b, 2m).

(ii) p is a Mersenne prime of the form P=2m -1, a=bp, and
G~G(p, 1, 2m ) XCb•

(4) If b=P, then p is a Mersenne prime of the form P=2m -1,
a=p2, and

The next theorem deals with the case when P=2, and and this has
been essentially proved in Theorem 3. l.

Note that there are exactly nine isomorphism classes of nonabelian
groups of order 16 (cf. [1, §§1l3-1l8]). Among them there are
six groups whose commutator subgroups are cyclic of order 2, and
three groups

D16, SI6=<xlx8=y2=1, xY=x3),
QI6=<X, yl x8=y4=1, x 4=y2, xY=x- l )

are groups whose commutator subgroups are of order 4.
Note that if 1+2b=r for some odd prime then

G2(2, b, r) ~<x, Ylxr=y4=1, xY=x- I), G(2, b, r) ~D2r.

THEOREM 3.3. Let G be a finite group of type

d. t. (G) = e ;}.
(1) If b=l, then one of the following holds.

(i) a=2, and G~D6.

(ii) a=4, and G~D8 or G~Q8.

(2) If b=2, then one of the following holds.
(i) a=2, and G~DIO.

(ii) a=4, and G~D6XC2=DI2.

(iii) a=4, and G~<x,ylx3=y4=1, xY=x-I).
(iv) a=8, and G is a nonabelian group of order 16 such that G'

is cyclic of order 2. There are six such groups.
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(3) If b=3, then one of the following holds.
(i) a=2, and G=.D14•

(ii) a=4, and G is a nonabelian group of order 16 such that G'
is cyclic of order 4. Thus

G=.D16, G=.Q16 or G=.S16.
(iii) a=6, and G=.D6 XC3•

(iv) a=12, and G=.D8 XC3 or G=.Q8XC3'
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