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SOME LINEARITY OF CYCLIC ACTIONS ON 8 4

WITH TWO FIXED POINTS

SUNGYUN LEE AND DONG YOUP SUH*

1. Introduction

Suppose a group G acts smoothly and effectively on 8 4 with the
fixed point set F(G,84) consisits of two points. A typical example of
such actions is the unit sphere 8 (VffiR) of an orthogonal representa­
tion V8jR of G where R is the trivial representation and V does
not contain the trivial representation. Such actions are called linear
actions. In transformation group theory we usually compare general
actions with some well known actions such as linear actions. In this
paper we consider cyclic group actions on 8 4 with two isolated fixed
points, and try to understand how similar they are to linear actions.

Before we state our main theorems let us study some basic materials
related to the subject. Let t S denote the following complex I-dimens­
ional irreducible representation of a cyclc group Zn of order n : if Zn
= {gkl g =exp2n-i/n, O:S:i:S:n-I}, then g'z=exp2n-si/n'z for zEtS

,

where the right hand side of the equation is the complex multiplication.
It is an elementary fact from group representation theory that (to, tr,
... , tn-I} is the set of all irreducible representations, see [Se]. As a
real representation t i is irreducible and isomorphic to t n- i for I:S: i<

[;J. Here [~ ] is the greatest integer less than or equal to ;. If

n is even, t n / 2 is not irreducible and isomorphic to 2R_. Here R_ is
the nontrivial real I-dimensional representation where the generator
g=exp2n-i/n acts on xER_ by gx= -x.

Note that if a group G acts smoothly on a smooth manifold M and
if xEF(G, M), then the tangent space TxM at x inherits a real
representation structure of G by cp : G~GL(TxM) with cp(g) (v) =dg
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(v) for 'liE TxM and gEG, where dg is the differential of the diffeo­
morphism g : M~M. Such a real representation TxM of G is called
an isortopy representation of G at x. Suppose a cyclic group GEZn

acts linearly on S4 with two fixed points x and y. Then it is easy to
see that the fixed point set F(H, S4) for each subgroup H of G is an
evep. dimensional sphere, and isotropy representations T xS4 and T yS4
of G at x and y are isomorphic.

Our main results are as follows:

THEOREM 1. Suppose a cyclic group G of order n acts smoothly on S4
with two fixed points. Then the fixed point set F(H, S4) for each
subgroup H of G is an even dimensional sphere.

For any representation V of G and a subgroup H of G the repres­
entation resHV is the restriction of V to H, namely resH V is the
composition

H4G~GL(V).

THEOREM 2. Suppose a cyclic group G of order n acts smoothly on S4
with 2 fixed points F(G, S4) = {x, y}. Let V and W be their isotropy

representations· of G at x and y, respectively. Let G2 be the 2-Sylow
subgroup of G. If resG2 V is isormophic to resG2 W, then V and W
are isomorphic.

Suppose G acts smoothly on S4 with two fixed points. Let f : 8 4 ~

S4 be the Thom collapsing map around an invariant neighborhood of
one fixed point x. Then the target sphere of the map f is the unit
sphere S(VEBR) where V is the isotropy representation of G at x.
Then theorem 1 implies that the restriction fH : F(H, S4)~F(H,S4)
of f to the fixed point set F(H, S4) by each subgroup H of G is a
homotopy equivalence. Thus f is a G homotopy equivalence. Hence
we have the following corollary:

CoROLLARY 3. Any cyclic action on S4 with two fixed points is G
homotopy equivalent to a linear action.

Two real representations V and W of a group G is said to be Smith
equivalent if there exists a G homotopy sphere 2 with two fixed
points x and y, and their isotropy representations T x 2 and T y 2 of
G are isomorphic to V and W, respectively. Many interesting questions
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may be asked, and we refer the reader to [Pe], or [SuI] for them.
The question we are interested in here is as follows:

QUESTION 1. What is the minimal dimension of non-isomorphic Smith
equivalent representations?

Cappell and Shaneson [CS] showed that the minimal dimension for
pseudo-free non-isomorphic Smith equivalent representations for cyclic
groups of order 4k with k'? 2 is 9. Pseudo-free representations of a
cyclic group Zn is of the form

v= 2: aiti+R_
(i,n)=l

Namely, the action of Zn on V is free except for one-dimensional
subspace. Note that every pseudo-free representation of a cyclic group
is of odd dimension.

Any Smith equivalent representations of cyclic groups of dimension
less than or equal to 3 are isomorphic. This follows trivially for
representations of dimension 1, by Atiyah-Bott G-signature theorem
for dimension 2, and by the above Capplell and Shaneson's result for
dimension 3 because they are pseudo-free. If Theorem 2 is true for
arbitrary cyclic representations, then we can say that the minimal
dimension of non-isomorphic Smith equivalent representations of any
compact Lie group is greater than 4, because that the set of all
element of finite order in the circle group is dense and that every
compact Lie group can be covered by conjugations of its maximal
torus. We thus conclude this section with the following question:

QUESTION 2. Is the minimal dimension of non-isomorphic Smith
equivalent representation of any compact Lie group greater than 4?

2. Proof of main theorems

Before we prove our main theorems let us state some theorems
which we need for our proofs.

THEOREM 4. [AB] Let a compact Lie group act smoothly on a homotopy
sphere 2 with two fixed points F(G, 2) = {x, y}. If the action of G on };
- F(G, 2) is free (such actions are called semi-free), then isotropy
representations of G at x and y are isomorphic.
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THEOREM 5. [Su2] Let G be a cyclic group of order 2d where d is
odd. Let H be the index 2 subgroup. Suppose G acts on a homotopy
sphere Z with two fixed points F(G, Z) = {x, y}. If H is an isotropy
subgroup of either one of isotropy representations T x Z and T y Z of
G, then T x Z and T y Z are isomorphic.

We also need Atiyah-Bott G-signature theorem; however we only
need the following special form of the case when fixed point sets consist
of finite isolated points. Let G= {gil g=exp21Ci/n, O::;;i::;;n-1} be a
cyclic group of oder n.

THEOREM 6. [AB] Suppose G acts smoothly on a smooth even dimen­
sional manifold M with finite isolated fixed points F(G, M) = {Xl, •.. , xn}.
Then the G-signature Sign(g, M) satisfies the following equation:

Sign (g, M) = L; J,) (Xk)
z.EF(G.M)

with J,) (Xk) = n(+ i~~:) where the isotropy representation T x.M=L;pi.

Here the sign+ depends on the choice of orientation on Tx.M.

Suppose a cyclic group G=Zn acts smoothly and effectively on S4
with two fixed points F(G, S4) = {x, y}. Let V and W be isotropy
representations T xS4 and T yS4 of G at x and y, respectively. The we
may write

V=ta+tb

W=tc+td

where 1::;;a, b, c, d::;; ~, because t i == t n- i as a real representation.

For a G space X and a point xEX. its isotropy subgroup Gx is
equal to {gEGlgx=x}. Let Iso (X) denote the collection {GxlxEX}.
For a representation ts of G=Zn it is easy to see that Iso (tS-O) =Za
where g. c. d (n, s) =a. Next lemma is essential for proofs of our main
theorems.

LEMMA 7. Let V and W be as above, and non isomorphic. Then Iso
(V) = Iso (W). Moreover if Iso (V) = {1, Hb H 2, G}, then HI =I=- H 2 and
g. c. d(IHI!, !H2 1) =1.

Proof. Supose HI= H 2• If HI =1=-1, then V = 2ta where (n, a) *" 1,
and Iso(~-O)=H1• thus dim F(Hb S4) =dim F(Hb V) =4, which
shows that F(Hb S4) =S4. This means that the action of G is not
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effective. Thus HI = H 2= 1. This shows that the action of G on 8 4

is semi-free, otherwise there exists a P-subgroup P of G for prime p
such that F(P, 8 4) =10 {x, y}, and then by Smith theory F(P,84) is a
mod p homology sphere of dimension greater than 0, which is impo­
ssible because F(P, V) =F(P, W) =0. Thus by Theorem 3 representa­
tions V and Ware isomorphic, which contradicts to the hypothesis.
Thus HI =10 H 2. If g. c. d (I HII, IH 21) =a =10 1, then, because F (Za. 8 4) =
84 the action of G on 84 is not effective. Hence g. c. d (I HII, IH 2 1)
= 1. If Iso (W) = {I, H 3, H 4, G}, the by the same arguement as above
H 3 =10 H 4 and g. c. d (I H 3 1, IH 4 1) = 1. Since dim F(P, 8 4) =either 2 or
4 for any p-subgroup P of G by Smith theory

F(P, 8 4) =mod p homology 2-sphere or mod p homology 4-sphere
=82 or 8 4•

Thus IHII must divide either IH 3 1 or IH 4 /, say IH 3 1. By the same
arguement for H 3 its order IH 3 1 must divide IHI]. Hence HI =H3•

Similarly H 2=H4•

We now prove our main theorems.

THEOREM 1. 8uppose a cyclic group G of order n acts smoothly on
54 with two fixed points. Then the fixed point set F(H, 8 4) for each
subgroup H of G is an even dimensional sphere.

Proof. For any subgroup H of G its fixed point set F(H,84) must
contain F(G, 54) = {x, y}. If F(H, 54) =10 F(G, 54), then the component
of F(H,54) containing x must have the dimension either 2 or 4. If
the dimension is 4, then F(H, 84) =84 and we are done. If the
dimension is 2, then by lemma 7 the component of F(H, 54) containing
y must have the dimension 2. Then there is a p-subgroup P of H
such that F(P,84) is a modp homology 2-sphere. Since F(H, 8 4) cF
(P, 54) the observation of their dimensions implies that F(H, 84) =F
(P, 54) =mod p homology 2-sphere=52

•

THEOREM 2. 8uppose a cyclic group G of order n acts smoothly on 8 4

with two fixed points F(G, 54) = {x, y}. Let V and W be isotropy
representations of G at x and y, respectively. Let G2 be the 2-8ylow
subgroup of G. If resC2 V is isomorphic to reSC2 W, then V and W
are isomorphic.
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Proof. Let
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I+gd
and v(y) =+ I-gd

V=t<>+tb

W=tc+td

for l:=;;a,b,c,d:=;;[~J. Let (n,a)=(n,c)=a and (n,b)=(n,d)=fJ.

Then Hl~Za and H2~Zp. Without loss of generality we may assume
that fJ=t= 1. As we have observed in the proof of Theorem 1 F(H2, 8 4)

=82• Then G/H 2 acts on F(H2, 8 4) =82 with two fixed points F(G!H 2,

F(H2, 84)) =F(G, 8 4) = {x, y} and their isotropy representations of G/
H 2 are T x82 =£6 and T y82=td where b=b/ fJ and ?=d/ fJ. By Theorem
5

O=Sign(g, 82) =v(x) +v(y)
where

l+-fj
v(x)=+ g. I-gb

f - 21Ci
or g=exp n/ fJ .

Case I. Both vex) and v(y) are note zero. This IS equivalent to

saying that b=t= ~ and d=t= ~ when n is even. Then

vex) =+(l+g:). (l-
gd

)=+1
• v(y) - I-gb l+gJ _.

Then b=+J (mod n/fJ), which implies that b/fJ=+d/fJ (mod n/fJ).

Thus b=+d (mod n). Since I:=;;b, d:=;;[~ J. b=d. Apply theorem 6

again for G actions on 84• Then
O=Sign(g, 84) =v(x) +v(y)

where

v(x)=+ 1+g4. I+g
b and v(y)=+ l+g

C
.I+gd

-1-g4 I-~ -I-~ I-gd

21Ci N h b L n d n offor g =expn . ote t at y emma 7 a=t=2an c=t=2 1 n even.

vex) =+ (1+g4). (I-~)=+1
v(y) - 1-g4 l+gC -

implies that a= +c(mod n) since l:=;;a, c:=;; [~ Jand a=c. Since a=c and

b=d two representations V and Ware isomorphic.
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Case II. n is even and b=d= ~. If n is not divisible by 4, then

by Theorem 5, V is isomorphic to W 2• If n is divisible by 4, then (n,
a) = (n, c) = 1, otherwise the action of G on 8 4 is not effective. Let
H be the index 2 subgroup of G. Then H2'=ZnI2. Since F(H, 8 4) =82

which IS, III particular, connected reSH V=resH W. Thus if V± W,
then

v=ta+2R_
W=ta+b+2R_=t,,-a-b+2R_=tb-a+2R_.

Since resG2 V=resG2 W, a=a+b (mod IG2 J). Thus b=O (mod IG2 1),
which is a contradiction. Therefore V2'= W.
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