Electronic-hydraulic Hitch Control System for Agricultural Tractor -Draft Control-

트랙터의 전자유압식(電子油壓式) 히치 제어(制御) 시스템에 관한 연구(硏究)(II) -견인력제어(牽引力制御)-

  • 유수남 (전남대학교 농과대학 농공학과) ;
  • 류관희 (서울대학교 농과대학 농공학과) ;
  • 윤여두 (국제종합기계(주))
  • Published : 1989.12.31

Abstract

The purposes of this study were to develop an electronic-hydraulic draft control system for tractor implements, to investigate the control performance of the system and the possibility of adaptation to the conventional tractor. Experiments were carried out to investigate the responses of the system to the step and sinusoidal inputs in draft control. The effects of control mode, hydraulic flow rate, reference deadband, and proportional constant on control performance of the system were investigated. Moreover, the effects of filtering signals from draft sensor were also investigated. The following conclusions were derived from the study; 1. In draft control, there were hunting problems in controlling the implement without filtering the draft signals. Filtering was performed by a control program of electronic controller and the control performance and stability of the system were improved significantly. 2. For the draft control system operated on on-off control mode, draft was controlled within ${\pm}27-{\pm}55kg_f$ to the reference draft when the hydraulic flow rates were 5-15 l/min. For the draft control system operated on PWM control, draft was controlled within ${\pm}27kg_f$ to the reference draft regardless of hydraulic flow rates. 3. In the frequency responses of the draft control system, control performance on PWM control mode was not better than on on-off control mode because of characteristics of hydraulic valve and drafe sensor. As the hydraulic flow rates increased for the system operated on on-off control mode, the corner frequency of amplitude attenuation increased, but the corner frequency of phase-angle change remained nearly the same. But, the system was unstable beyond the frequency of 3.1 rad/s. 4. The electronic-hydraulic hitch control system developed in this study showed superior control performance, stability and convenience compared to conventional mechanical-hydraulic hitch control system. It is considered to be a superior replacement for the conventional mechanical-hydraulic hitch control system.

Keywords

Acknowledgement

Supported by : 한국과학재단