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The Image of Derivations on Banach Algebras
of Differential Functions

DAL-WoON PARK

ABSTRACT. Let D : C®(I) — M be a derivation from the
Banach algebra of n times continuously differentiable functions
on an interval I into a Banach C"(I)-module M. If D is
continuous and D(z) is contained in the k-differential subspace,
the image of D is contained in the k-differential subspace. The
question of when the image of a derivation is contained in the
k-differential subspace is discussed.

1. Introduction

Let C™(I), I = [0,1], be the algebra of all complex valued function
on I which have n continuous derivatives (n = 1,2,...). With the

norm
n

_ If9 @)l n
£l —rglg;c; T fecn,
C™(I) is a Banach algebra singly generated by the coordinate function
z (where 2(t) =t for t € I) and we denote the dense subalgebra of

complex polynomials by . We use the notation
Mo (\) ={f € C*(D[fP(N) =0,j=0,1,2,...,k}, A€ L.

These are the closed ideals of finite codimension contained in the
maximal ideal M, o()) of functions vanishing at A . A Banach C"(I)-
module is a Banach space M together with a continuous homomor-
phism

p:C"(I) — B(M).
A derivation, or a module derivation of C*(I) into M is a linear map
D : C™*(I) —» M which satisfies the identity

D(fg) = p(f)D(g) + p(9)D(f), f, 9 € C"(I).
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Derivation from C™(I) into Banach C"(I)-module have been studied
by Bade, Curtis and Laursen. In [3], they show that the restriction of
such a derivation to the subalgebra (C2"(I), ||||2») is continuous. But
discontinuous derivations from C"(I) do exist because of the existence
of continuous point derivations. Note that each point derivation on
C*°(I) is continuous from Theorem 3.7. of [4].

Separating space S(D) is the subspace of M defined by

S(D) = {m € M |there exists {f,} C C"(I), fn = 0and D(f,) — m}.

The derivation D is continuous if and only if S(D) = {0}. The conti-
nuity ideal for a derivation D : C*(I) — M is

(D) = {f € C*(D]o(f)S(D) = {0}}.

Clearly (D) is a closed ideal in C™([I). It is proved in Theorem 3.2 of
[1] that (D) = {f | Dy is continuous}, where for f € C*(I), Ds(-) =
p(f)D(-)(Note Dy is also a derivation). Let D : C*(I) — M be a
discontinuous derivation. We can know from Theorem 4.2. of [1] that
(D) has finite codimension. Let F' = {);,..., A} be the finite hull
of (D). It follows from [1] that ({{Mpn (N)|X € F} C (D).

THEOREM 1.1. Let n be a positive integer, Then

(1) Mz o(0) = 2Mno = {f|f(0) = £'(0) = 0 and f("+1)(0) exists},

(2) Mz,k(o) = zk+1Mn,k(0)’ 1<k<n-1,

(3) My 4 (0) = 2" My,n(0).

Part (1) is from example of [1]. Part (2) is due to Dales and McClure
[4]. The proof of part (3) can be found in [2].

We shall need the following Theorem from [2].

THEOREM 1.2. Let D : C™(I) — M be a derivation. There exists
a finite set F = {)1,...,\m} such that

ﬁ M, n_1(X) C (D).

=1

The hull F of I(D) is called the singularity set for D. The algebras
C™(I) are regular, semisimple unital commutative Banach algebras,
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as standard arguments readily show. Also, the primary closed ideals
are easily described, by the order of which the functions in the ideal
vanish. Explicity we have that since ®cn (1) = I for every n > 0, any
primary closed ideal must be of the form M, x(A), ¥k =0,1,...,n, A €
I. M, (A)is topologlcally generated as an ideal in C"(I) by (z -
)\)k+1

2. C*(I)-module and derivation

If M is a C™(I)-module, the module structure imposes certain re-
strictions on the operator p(z) and the continuity ideal of a derivation.
Recall that the ascent of an eigenvalue A for a linear operator T is the
smallest integer k such that (T'— AI)**'z = 0 implies (T —\I)*z = 0.

DEFINITION 2.1: Let M be a Banach C"(I )-module. The k-differ-
ential subspace is the set Wi (k = 0,1,...,n) of all vectors m such
that the map

p— p(p")m
is continuous for the C*¥+1(I) norm on 8.

THEOREM 2.2. p — p(p))m is continuous for the C™(I) norm
on B if and only if p — p(pC+))m is continuous for the C™+i(I)
norm on f on (i, j =0,1,2,...).

Proor: For p € 3,

i+
0 — p (t)l
llp™* 1 r?g;ci S

(i+1) t
W SElgt
er I+ 1)
<(n+ 1)HP('_1)||n+1-
Using the mean value theorem, for p € 8N M, j—1

(i—-1) < O 1<:<79).
ntqeajxlp (t)|_.filg}(|P () (1<i<y)
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(n+1) |\
||P(i_1)||n+1 = max |p(' 1+1)(t)|

tel 4]
=0

< (i-1) Ip (
< el Ol g ),
< 2/lp®la.

Hence .
(5)’|IPI|#+J‘ < 11PDNln < (0 + 5)lplln+s-

If [lo(p®)ml| < Lllplla, L > 0, p € B, then
o )ml| < L|lpP|la < L(n + j)!llpllns ;-
Conversely, suppose

o+ )m|| < L|lplln+j> L > 0.

Let 1)
pU1(0) ,_
g=p—p(0)-p'(0)z — -+ — =2
(0)-#(0) o
Then o o
e+ )m|| = ||p(g¢*)ml|

< L”q”n+j

<2 L||gD||,

=2 L||pY]|n.
Hence

le(e®)m|| < 29L||p]|a, p € B-
COROLLARY 2.3. (1)m € Wy if and only if p — p(p)m is contin-
uous for the C""‘(I) normonf. (2)W,CWp_1C---C Wy =M.

PROOF: We have replaced n by n — k . Put ¢ = 0, j = 1. This
proves (1).
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THEOREM 2.4. Let M be a C™(I) module with k-differential sub-
space W. For m € Wi, we define ||[mllx = sup{ |o(e)ml] | lIplln—x <

1}.
Then
(1) {lmll < lllmlllo < llIm|lls < --- < lImllx, ™ € Wi.
(2) Wi is a Banach space under the norm ||| - |||&.
(3) Wi is a C™*(I) module and there exists a unique continuous

homomorphism
vk : C" k(1) — B(Wy)
such that yx(p)m = p(p)m,m € Wy,p € B.
(4) If S € B(W;) and Sp(z) = p(2)S on Wi, i = 0,1,...,k, then
SWi C Wy and |||S|||x < ||S||, where |||S|||x is the norm of S
in B(Wy).

ProOOF: If m € Wy,

llml] = llo(V)m|| < [llm][lo-
If ||plla-i £1,0< i <k, ||p|ln—j £ 1,7 < 5 < k. Since Wy C Wi—1 C
e C Wo,
llmlllo < lllmll < -+ < [llm]|]&.

This proves (1). Let {m;} be a Cauchy sequence in Wi. By (1),
{m;} is a Cauchy sequence in M. So m; — mg in M. For m € Wy,
let U,, be the unique operator in B(C™ ¥(I), M) such that U,,(p) =
p(p)m,p € B. The operators {Um, } are convergent in B(C™~*(I), M)
to an operator V. Since V(p) = 11_1_5.10 Unm;(p) = p(p)mo, p € B,

lle(p)moll < [IVIlIplln—-
Hence mg € Wi. Since |||mj — mo||x = ||[Um; — Um, [t — 0, Wi is
complete. This proves (2). Let S € B(W;) and Sp(z)m = p(z)Sm,
for m € Wiyi = 0,1,...,m. Then [|o(p)Sml < (IS llmlllc/lpllos
for p € B,m € Wi. So Sm € W} and |||S|||x < ||S]|. This shows (4).
If p,q € B,m € Wi, we have

—Nle(@)p(p)m|| = [lp(pg)m|| < |llmll|kllplln-kllglln—k-
So p(p)m € Wi and |||p(p)m||lx < |Iplla—klllm]|[x. Hence the map
p — p(p)m is a continuous homomorphism of § into B(W}) for the
C"_k(I ) norm. Its unique continuous extension 7 : crkI) —

B(W}) makes Wi a C"~*(I)-module.
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THEOREM 2.5. If v, : C"~%¥(I) — B(W4) is a continuous homo-
morphism, every eigenvalue for yi(z) has ascent at most n — k + 1.

PROOF: Suppose m € Wi, (vk(z) — AD)*H'm = 0, but (yx(z) —
AI)'m # 0. For any polynomial p,

g () .
OLEDY p—i!(i)(yk(z) ~ A)'m.

=0

If agm + a1 (k(2) = AD)m + - -+ +ai(7x(2) — AI)!m = 0, then o =
oy = -+ = oq = 0. Hence m, (1x(2) = AD)m,...,(7k(z) — \I)'m are
linearly independent. Since |||ve(p)m|||x < ||[|m||lk|lplln-k, I < n —k.

THEOREM 2.6. If D is a continuous derivation of C™(I) into M,
then D(z) € Wy and D(f) = w1(f')D(2),f € C*{(I). Moreover
D(C™(I)) C W;.

PROOF: See Theorem 4.5 of [2].

THEOREM 2.7. If D : C™(I) — M is a continuous derivation and
D(z) € Wy, then D is continuous as a derivation of C™(I) into Wj.

PRrOOF: For any f € C*(I), by Theorem 2.4,
D(f) = n(f)D(z) = v(f')D(2).

DA = v (f D)l
< 1 ln=&lllD(2)] i
< | fllalllD(2)l] -

A nontrivial derivation D : C*(I) — M will be singular if D
vanishes on f, i.e. D(z) =0.

THEOREM 2.8. Let D : C*(I) — M be a discontinuous derivation
with singularity set F' = {A1,Az2,...,Am}. Then
D(z) € Wy and (=, My n—x(Xi) C (D) iff D(C™(I)) C Wk.

PROOF.: Choose ex € C™(I),k =1,...,m, such that ex(A\) =1 in
a neighborhood of A\x and ex(\) = 0 in a neighborhood of F — {\;}.
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Let g =1—Y_1", ei. Then

€o € ﬁ Mn,n(/\i) C g(D),

i=1

D(f) = p(e:)D(f), f € C™(1).

1=0
Let D;(-) = p(e;)D(-), Dy is continuous and D,,z =1,2,...,m, is
discontinuous. We have

hull(S(Dy)) = {\i}, i =1,2,.

and
(D) = ﬂ 3(D;).
Suppose D(z) € Wi and N2, My n—k(Xi) C (D). Sincee; € My n—i (i),
L # 7,
gej € [ Man—k(Xi), for g € Mpn—k(};)-
p(9)D;(-) = p(g)p(e;)D(-)
= p(9e;)D()

Hence

is continuous. We have
Mn,n—k(/\j) - S(D]), ] = 1,2, ceeym

Since D(z) € Wy, we have Dj(z) € Wy, j = 1,2,...,m, from Theo-
rem 2.4. Thus it suffices to prove the theorem when the hull of (D)
is a single point, which we may suppose to be the point zero. Since

D(z) € Wi C Wi, by Theorem 4.6 of [2],
D=E+F

where E is continuous and F' is singular. Since D(z) = E(z) €
Wi, E(C™(I)) C Wy. From (D) = S(F),

My n—k(0) C S(F).
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So 2"~k ¢ §(F). For all f € C™(I),
p(=" () = () )P () =0,
For f € Cn(I)’ pEPB,
(n—k)
o) F = lop(0) + ')z + - + T Shan=tyF )|

< Lflplla—s, I > 0.

So F(f) € Wy for all f € C™(I).
Conversely, suppose D(f) € W, for f € C*(I).

Dz(f) = p(et)D(f) € Wk, i = 0,1,2,.. -y M.
It is sufficient to prove z"~**+! € 3(D) when the hull of (D) is zero.
In Wk, the ascent of the eigenvalue 0 for p(z) has at most n — k + 1
from Theorem 2.5. From 2" € I(F),
p(z")F(f) =0 implies p(z""**!)F(f) =0.
Hence 2"~ **1 € (D), so My, n—+(0) C (D). In result,
M k(X)) C (D)), i=1,2,...,m.

Since (D) = Nz, S(Ds),

=1

ﬁ Mn,n-—k(Ai) C 3(D)

i=1

COROLLARY 2.9. Let D : C™(I) — M be a derivation. If D(z) €
Wl, then D(C"(I)) C Wl.

PRroOOF: If D is continuous, it is proved by Theorem 2.7. Suppose
D is discontinuous. We can know N2y My, n—1(A;) C (D) from The-
orem 1.2 where hull(3(D)) = {A1,..., An}.
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THEOREM 2.10. Let D:C™I)— M bea derwatmn Then

(1) D(\S‘(D)Z) Cc W;.
(2) I D(2) € Wy, D(f) n(f)D(z), f € J(D)z

PROOF: If f € S(D)2, f = gh for some g, h € J(D)
D(f) = D(gh) = p(9)D(h) +p(h)D(9) .
Since p(g)D(-) and p(h)D(-) are continuous denvaiion on C™(I),

p(9)D(h), p(h)D(g) € W1.

If D(Z) € Wl,
D(f) = 11(k")p(9)D(2) + 1 (g )o(k)D(2)
=v(h'g + g'h)D(z)

=»’71(f')D(2’.)-

COROLLARY 2.11. Let D : C’"(I) — M be a singular
derivation, then D(S(D)?) = .

COROLLARY 2.12. Let D: C*(I) — M be a der1vat10n If
D(z) € Wy, then D(3(D)?) C Ws. ,

PROOF: It is easily proved from Theorem 2.4.

THEOREM 2.13. Let D be a continuous deri‘v’atiqn from
C™(I) into M. D(z) € Wy, iff there exists a unique continuous
derivation Dy : C"~%+1(I) —s W}, such that Dilonry = D.

PRrOOF: If D(z) € Wy, by (3) of Theorem 2.4, there exists
a unique continuous homomorphism

i : C* (1) — B(Ws)
such that vx(p)m = p(p)m,m € Wi,p € B. Since D is contin-

| D(f) =1 (f")D(2), f € C"(I).
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We define Dy : C~*+1(I) — M such that Di(f) = y&(f')D(2).
Since D(z) € Wi, Di(f) € Wi, by Theorem 2.4

HD(HIllx < [1F ln-#ID()I
< (n =k + Dllflln—r42 [1D(2)][]x-

Conversely, suppose Dy : C*~*¥+1(I) — W; is the continuous
derivation such that Di|cn(r) = D. Then

Di(2) = D(2) € Wi,
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