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of Differential Functions
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ABSTRACT. Let D : Cn(I) —► M be a derivation from the 
Banach algebra of n times continuously differentiable functions 
on an interval I into a Banach Cn (Z)-module M. If D is 
continuous and D{z) is contained in the ^-differential subspace, 
the image of D is contained in the k-differential subspace. The 
question of when the image of a derivation is contained in the 
k-differential subspace is discussed.

1. Introduction
Let Cn(I), I = [0,1], be the algebra of all complex valued function 

on I which have n continuous derivatives (n = 1,2,...). With the 

norm
|Lf||n = = 〜 쓰〉!,/eC"(i), 

1 j=0 J ‘

(7n(I) is a Banach algebra singly generated by the coordinate function 

之 (where z(t) = t for t E !) and we denote the dense subalgebra of 

complex polynomials by 0. We use the notation

Mn,k(A) = {/ e C"(I) I /(>)(A) = 0J = 0,1,2,, A：}, A G 1.

These are the closed ideals of finite codimension contained in the 

maximal ideal Mn,o(A) of functions vanishing at A . A Banach (7n(I)- 

module is a Banach space M together with a continuous homomor

phism

p : Cn(I) — B(M).

A derivation, or a module derivation of (7n(Z) into M is a linear map 

D : Cn(I) — M which satisfies the identity

D(fg) = P(f)D(g) + P(g)D(f), f, g e C\I).
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Derivation from Cn(j『) into Banach Cn(I)-module have been studied 

by Bade, Curtis and Laursen. In [3], they show that the restriction of 

such a derivation to the subalgebra (C2n(I), || • ||2n) is continuous. But 

discontinuous derivations from Cn(I) do exist because of the existence 

of continuous point derivations. Note that each point derivation on 

(7°°(J) is continuous from Theorem 3.7. of [4].

Separating space S(D) is the subspace of M defined by

S(D) = {m G M | there exists {fn} C Cn(J\ fn — 0 and Z>(/n) — m}.

The derivation D is continuous if and only if S(D) = {0}. The conti

nuity ideal for a derivation D : Cn(I) —► M is

令(刀) = {/ e = {0}}.

Clearly is a closed ideal in Cn(I). It is proved in Theorem 3.2 of

[1] that = {f \ Df is continuous}, where for f € (7n(I), !?/(•) = 

p(y)Z)(-)(Note Py is also a derivation). Let D : (7n(I) ——► Af be a 

discontinuous derivation. We can know from Theorem 4.2. of [1] that 

安(£>) hus finite codimension. Let F = {Ai,..., Am} be the finite hull 

of 예〕)• It follows from [1] that「){Mn,n(A)|A G F} C S(P).

THEOREM 1.1. Let n be a positive integer. Then

(1) M：()(0) = 之Mn,o = {/Lf(O) = /'(0) = 0 and /(n+1)(0) exists},

(2) M크(0) = 才■HMvW 1 으 % 으 — 1,

(3) <n(0) = 그"Mn,n(0).

Part (1) is from example of [1]. Part (2) is due to Dales and McClure

[4].  The proof of part (3) can be found in [2].

We shall need the following Theorem from [2].

THEOREM 1.2. Let D : Cn(J) —> M be a derivation. There exists 

a finite set F = {Ai，. . .，人m} such that

m
H Mn—KV) c 分(P).

i=l

The hull F of 分(』D) is called the singularity set for D. The algebras 

(7n(Z) are regular, semisimple unital commutative Banach algebras, 
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as standard arguments readily show. Also, the primary closed ideals 

are easily described, by the order of which the functions in the ideal 

vanish. Explicity we have that since ①cn(i) = 丁 for every n > 0, any 

primary closed ideal must be of the form Afn,j$(A), A: = 0,1,..., n, A G 

I. Mn,k(A) is topologically generated as an ideal in Cn(J) by (z — 

A) 아1.

2. Cn(I)-module and derivation

If M is a (7n(l)-module, the module structure imposes certain re

strictions on the operator p(z) and the continuity ideal of a derivation. 

Recall that the ascent of an eigenvalue A for a linear operator T is the 

smallest integer k such that (T —Aiy서“1：z: = 0 implies (T — AI)kx = 0.

Definition 2.1: Let M be a Banach Cn(/)-module. The k-differ- 

ential subspace is the set Wk (k = 0,1,. •., n) of all vectors m such 

that the map

p ——> p(p')m

is continuous for the Cn—*서‘1 (I) norm on /?.

THEOREM 2.2. p —> p(p(l),m is continuous for the Cn(I) norm 

on 0 if and only if p ——> p(p(+『))m is continuous for the C저더(I) 

norm on /3 on (i, J = 0,1,2,... /

Proof： For p e /?,

||p(D|| …쮸헤이 그t：2 . I •1=0

= Iw후！票쀄…) 
w 스 (Gl)!

<(n + l)||p(-1)||n+1.

Using the mean value theorem, for p E 0 Q Afn,j-i

imcc Ip⑵(t)| (i<i<j).
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II洪-1)11— = i暗eg ☆하0! 

*C-< ■ - *•Z=0
幻”…(*%흐！—⑴!

/=1 ’
<2||pW||n.

Hence
(jyHpHn+jWP^IIn 引n+j)!||  끼 |=,

If ||/>(?(°)7끼| < 피p||n, L>o,pe 0, then

||p(p(i+>))m|| < L||p(i)||n < 刀(n+j)!||끼ln+义

Conversely, suppose

||p(p어느))m|| < 이IpILw，刀 > 0.

Let

9 = P _ P(0) _ p'(0>----- : 丄gU-1.

Then
| |p(p(=))m|| = ||Xg=))m||

玄 이|?||n+j

<2^||^ | |n

= 2江||p(»||n.

Hence

||/>(p(°)m|| <2jL\\p\\n,pe /3.

COROLLARY 2.3. (1) m 6 Wk if and only if p —> p(p)m is contin

uous for the (7n—*(/) norm on 0. (2) Wn C Wn-i C • • • C Wq = M.

PROOF: We have replaced n }yy n — k . Put i = 0, j = 1. This 

proves (1). '
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THEOREM 2.4. Let M be a Cn(I) module with k-differential sub

space Wk. For m € M, we define |||m|||jt = sup{||p(p)m|| | ||p||n-A： < 

1}.

Then

(1) 11^11 < ll|m|||o < III께Hi < < IINIL日 m e Wk.
(2) Wk is a Banach space under the norm ||| • |||스.
(3) Wk is a Cn—fc(I) module and there exists a unique continuous 

homomorphism

: Cn-*(I) — B(M)

such that 7jt(p)m = p(p)m,m 6 仁 /?.
(4) If S E B(Wi) and Sp(z) = p{z)S on i = 0,1,..., A, then 

SWk C Wk and |||이||스 < ||S||, where |||이|h is the norm of S 

in B(M).

Proof： If m e M,

||m|| = ||p(l)m|| < |||m|||o.

If ||p||n—i < 1,0 < z < fc, ||p||n—j <l,i <j <k. Since Wk C Wk-i C 

… C Wo,

lllmlllo 引 Ilmllh—.WmIlh.

This proves (1). Let {mj} be a Cauchy sequence in Wk- By (1), 

{rrij} is a Cauchy sequence in M. So mj ——> mo in M. For m G 

let Um be the unique operator in such that Um(p) =

/>(p)m,p 6 /3. The operators {Umj} are convergent in B(Cn—%T), Af) 

to an operator V. Since V(p) = lim Um>(p) = p(p)m(), p € 0,

||p(p)mo|| < ||V||||끼|….

Hence m0 € Wk. Since |||m； — m0||h = \\Umj - GJh —+ 0, Wk is 

complete. This proves (2). Let S € B(Wi) and Sp(z)m = />(g)Sm, 

for m 6 14$, i = Then ||p(p)Sm|| < ||S|| |||7끼||己|2?||—化
for p G /?,m 6 Wk- So Sm 6 Wk and |j|&||h < ||S||. This shows (4). 

If p, g G 0, m G we have

||p(?W>)m|| = \\p(Pq)m\\ < |||m||h|[p||…||?||….

So p(p)m e Wk and |||z>(p)m||h < ||p||n-fc|||^||k- Hence the map 

p —> P(P)m is a continuous homomorphism of /3 into B(Wk) for the 

(7n—fc(Z) norm. Its unique continuous extension 7人 : Cn~k(I) —> 

B(Wk) makes Wk a Cn‘아(/)-module.
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Theorem 2.5. If n : Cn~fc(Z) —> B(Wk) is a continuous homo

morphism^ every eigenvalue for 7胃(之) has ascent at most n — k + 1.

Proof： Suppose m G M,(7k(X)— AI)/+1m = 0, but (作⑵ 一 
X!)lm 羊 0. For any polynomial p,

If aom + 伏1(7人(之) — XI)m + … + 07(7人(之) 一 Al/m = 0, then a()= 

ai = • • • = «/ = 0. Hence m,(7Jt(2：) — AI)m,...,(7人(之) 一 XI)lm are 

linearly independent. Since |||?*：(p)m|||jt < |||m|||k||p||n—k, I < n — k.

THEOREM 2.6. If D is a continuous derivation of Cn(I) into M, 

then D(z) G Wi and P(J) = 7i(f')P(^), f G (7n(I). Moreover 

P(C"(I))CTTi.

PROOF: See Theorem 4.5 of [2].
THEOREM 2.7. If D : Cn(I) ——► M is a continuous derivation and 

P(之) € Wk, then D is continuous as a derivation of Cn(I) into Wk-

PROOF: For any f G Cn(I), by Theorem 2.4,

刀 Cf) = 71(/')P(2)= 7jb(/')2?(z).

Ill 刀 C0Hh = HW/') 刀⑵ Hh
< ILflln-k|||P0이Ilk
☆ ILfllnlllP(끼 ||k.

A nontrivial derivation D : (7n(I) ——> M will be singular if D 

vanishes on 0, i.e. 刀(之) = 0.

THEOREM 2.8. Let D : Cn(I) ——► M be a discontinuous derivation 

with singularity set F = {Ai, A2, • • •, Am}. Then

P⑵ e M and A흐 1 Mn,—k(Ai) C ^(D) iff P(C"(/)) C

PROOF.: Choose G Cn(I), A: = 1, … ,m, such that q(A) = 1 in 

a neighborhood of 사; and ejt(A) = 0 in a neighborhood of F — {AaJ.
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으/江

Hence

Let e()= 1 — 으리i ei* Then

m
eo E p| Mn,n(人) C 安(刀), 

i=l

m
刀 cn = £xo 刀 cn,/ec"(i).

i=0

Let Z?i(-) = p(ei)Z)(-), Dq is continuous and Di,i = 1,2, is 

discontinuous. We have

hull(S5(Dt)) = {Ai}, i = 1,2,..., m

and
m 

安 (P) = P| 安 (A). 

i=l

Suppose D(z) e Wk and PI까C ^(P). Since 句 G Mn ,n—A:(人 i),

m

g어 石 •必n,n—A:(人i), 9 仁 化(入/)흐

i=l

p(g)DjQ) = X오)p(句)刀0)

= p(5月)刀 (•)

is continuous. We have

必n,n—A:(人j) C j = 1,2,..., m.

Since 2?(之) G we have 2刀(之) G j = 1,2, … , m, from Theo

rem 2.4. Thus it suffices to prove the theorem when the hull of 分(P) 

is a single point, which we may suppose to be the point zero. Since 

D(z) 6 Wk C Wi, by Theorem 4.6 of [2],

D = E + F

where E is continuous and F is singular. Since D(z) ==• G 

M, 日(C"(I)) C Wk. From 安(P) = SJ(F),

Mn,n_fc(0) C 安(2구).
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So zn-k^ G 安(F). For all f G Cn(Z),

x 才-어느※/)= 7i(r)x^^+1w)= o.

For f e C"(i), pe0,

IWW)H = Hp(p(o)+p'(o> + … + 에gL"“W)ll
(n — K)\

玄 지p||—k, L>0.

So FQf) e Wk for all f e Cn(I).

Conversely, suppose D(f) G M, for f € Cn(I).

刀i(/) = p(ei)D(f) G Wk, i = 0,1,2,, m.

It is sufficient to prove 之n—버'1 三 9〈(P) when the hull of 安(P) is zero. 

In M, the ascent of the eigenvalue 0 for />(之) has at most n — k + 1 

from Theorem 2.5. From zn G 安(刀),

p(z")F(f) = 0 implies p(z"-바1)F(/) = 0.

Hence —이너"1 g 結(Z)), so Mn,n_jt(0) C In result,

必n,n—A:(사) C i = 1,2,. • ., m.

Since 安(」D) = Q호x

m
H %,n—k(Ai) C Q(D).

i=l

COROLLARY 2.9. Let D : Cn(J) —> M be a derivation. If D(z) E 

胎, thenP(Cn(I))C 0.

PROOF: If D is continuous, it is proved by Theorem 2.7. Suppose 

D is discontinuous. We can know A-lj Afn)n-i(Ai) C 安(Z>) from The

orem 1.2 where hull(安(D)) = {Ai,..., Am}.
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THEOREM 2.10. Let D : Cn(I) ―수 M be a derivations Then

(1) poxp)2)c Wi. £

(2) if 刀仏) G W1, PCf) = 71(/')刀(히, f e 分(Z))2.
. - ■ . . 스. 三 ‘ - ' ‘ \

PROOF: If / € $j(D)2, f = gh for some g, h E Sj(P).

P(/) = D(gh) = p(g)D(h) + P(h)D(g).
. ■ .' 스 '• m 三 x 1 i 引' ’ '

Since p(gr)」D(9 and p(/i)P(-) are continuous derivation on Cn(丁),

p(g)D(h),p(h)：D(g) 仁 Wt.

IfP(2)G 0,

D(f) = 71( 시)P(心日(2)+ 7i(XW>(2)

= 71(^9+ gfh)D(z)

= 71(/') 刀⑵.

Corollary 2.11. Let D : Cn(I) —> M be a singular 

derivation, then P(9(D)2) = 0.

COROLLARY 2.12. Let D : Cn(I) ——> M be a derivation. If 

刀0) e M, then 刀(結(P)2) G M.

PROOF: It is easily proved from Theorem 2.4.

THEOREM 2.13. Let D be a continuous derivation from 

Cn(J) into M. D{z) G Wk iff there exists a unique continuous 

derivation Dk : (7—*서'1 (I) ——> Wk such that Dk\cn(i) = 刀•

PROOF: If D^z) E Wk, by (3) of Theorem 2.4, there exists 

a unique continuous homomorphism

竹 : C—k(I) — B(M)

such that 7jt(p)m = p(p)m, m € € /?. Since D is contin

uous,

D(f) = yk(f)D(z),feC"(I、).
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We define Dk : Cn"서”1 (I) —> M such that Dk(f) = 7人(/')27(20.

Since D(z) € Dk(f) € M, by Theorem 2.4

||四Cf)|||k < ILf'lln시IIP(이Ilk
玄 (n—fc +l)|Lf||—k+xlllP^lllk.

Conversely, suppose Dje : Cn~fc+1(I) ——> Wk is the continuous 

derivation such that Dk]cn(i) = 刀 Then

p,(之) = p ⑵ e wk.
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