JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 2, June 1989

C-LINDELÖF SPACES

JONG-SUH PARK

ABSTRACT. In this paper we introduce the notion of C-lindelöf spaces, and we discuss some of the properties that C-Lindelöf spaces satisfy.

Every closed subspace of the Lindelöf space is also Lindelöf. But a closed subspace of the W-Lindelöf space need not be W-Lindelöf. Thus we get the notion of C-Lindelöf spaces. In this paper we introduce the concept of C-Lindelöf spaces and discuss some properties of the C-Lindelöf space.

DEFINITION 1: A space X is said to be *W*-Lindelöf if for each open cover $\{U_i\}$ of X there exist countably many i_k such that $X = \bigcup \operatorname{Cl}(U_{i_k})$.

DEFINITION 2: A space X is said to be *C*-Lindelöf if for each closed subset Y of X and each open cover $\{U_i\}$ of Y there exist countably many i_k such that $Y \subset \bigcup \operatorname{Cl}(U_{i_k})$.

It is easy to show that the following theorem holds.

THEOREM 1. Every Lindelöf space is C-Lindelöf.

A C-Lindelöf space need not be Lindelöf as the following example shows.

EXAMPLE 1: Let $X = R \times R^+$. For $(x, y) \in X$ and r > 0, let

$$N_r(x,y) = \begin{cases} B_r(x,y) & \text{if } r \leq y \\ B_r(x,r) \cup \{(x,0)\} \cup B_r(0,r) & \text{if } y = 0 \end{cases}$$

We take $\{N_r(x, y)\}$ as a basis for the topology on X.

We shall show that X is C-Lindelöf, For a closed subset Y of X, let $Y = Y_1 \cup Y_2$ where $Y_1 = Y \cap (R \times \{0\})$ and $Y_2 = Y - Y_1$. We

1980 Mathematics subject classifications: Primary 54.

Received by the editors on 5 July 1989.

JONG-SUH PARK

may assume that $Y_1 \neq \emptyset$. Let $(a, 0) \in Y_1$. Given an open cover \mathcal{U} of Y, there exists $U \in \mathcal{U}$ such that $(a, 0) \in U$. We can choose r > 0 so that $N_r(a, 0) \subset U$. We claim that $Y_1 \subset \operatorname{Cl}(U)$. Let $(x, 0) \in Y_1$. For any $0 < s \leq r$, $B_s(0, s) \subset N_s(x, 0) \cap N_r(a, 0) \subset N_s(x, 0) \cap U$. Thus $(x, 0) \in \operatorname{Cl}(U)$. Let $\mathcal{A} = \{A \in \mathcal{B} : \text{there exists } V \in \mathcal{U} \text{ such that } A \subset V\}$ where $\mathcal{B} = \{B_r(x, y) : x, y, r \in Q \text{ and } r \leq y\}$. It is clear that \mathcal{A} is countable. Let $\mathcal{A} = \{A_n\}$. For each n, there exists $V_n \in \mathcal{U}$ such that that $A_n \subset V_n$. We claim that $Y_2 \subset \bigcup V_n$. Let $(x, y) \in Y_2$. There exists $V \in \mathcal{U}$ such that $(x, y) \in V$. We can choose $r \in Q$ so that $0 < r \leq y/2$ and $B_{2r}(x, y) \subset V$. There exist $b, c \in Q$ such that $(b, c) \in B_r(x, y)$. Since $B_r(b, c) \subset B_{2r}(x, y) \subset V$, $B_r(b, c) \in \mathcal{A}$. Thus there exists n_1 such that $B_r(b, c) = A_{n_1}$. Then $(x, y) \in B_r(b, c) = A_{n_1} \subset V_{n_1}$. Hence $Y \subset \bigcup V_n \cup \operatorname{Cl}(U)$ and so X is C-Lindelöf.

Let us show that X is not Lindelöf. $\{N_1(x,0)\} \cup \{N_1(x,y) : y \ge 1\}$ is an open cover of X. Since $(z,0) \notin N_1(x,y)$ if $y \ge 1$ and $(z,0) \in N_1(x,0)$ if and only if x = z, above open cover has no countable subcover. Thus X is not Lindelöf.

Every C-Lindelöf space is W-Lindelöf, but its converse does not hold as the following example shows.

EXAMPLE 2: Let $X = R \times R^+$. For $(x, y) \in X$ and r > 0, let

$$N_r(x,y) = \begin{cases} B_r(x,y) & \text{if } r \leq y \\ \bigcup_{z \in Q} B_r(z,r) \cup \{(x,0)\} & \text{if } x \in Q \text{ and } y = 0 \\ B_r(x,r) \cup \{(x,0)\} & \text{if } x \in R - Q \text{ and } y = 0 \end{cases}$$

We take $\{N_r(x, y)\}$ as a basis for the topology on X.

We shall show that X is W-Lindelöf. Let \mathcal{U} be an open cover of X. There is $U \in \mathcal{U}$ such that $(0,0) \in U$. We claim that $R \times \{0\} \subset \operatorname{Cl}(U)$. There exists a > 0 such that $N_a(0,0) \subset U$. Let $x \in R$. For each $0 < b \leq a$, we can choose $y \in Q$ so that $|x - y| < 2\sqrt{ab}$. Since $\sqrt{(x-y)^2 + (b-a)^2} < a+b$,

$$\emptyset \neq B_b(x,b) \cap B_a(y,a) \subset N_b(x,0) \cap N_a(0,0) \subset N_b(x,0) \cap U.$$

Thus $(x, 0) \in Cl(U)$. Let $\mathcal{A} = \{A \in \mathcal{B} : \text{there exists } V \in \mathcal{U} \text{ such that} A \subset V\}$ where $\mathcal{B} = \{B_r(x, y) : x, y, r \in Q \text{ and } r \leq y\}$. Then \mathcal{A} is countable. Let $\mathcal{A} = \{A_n\}$. For each n, there exists $V_n \in \mathcal{U}$ such that

C-lindelöf space

 $A_n \subset V_n$. We claim that $R \times (0, \infty) \subset \bigcup V_n$. Let $(x, y) \in R \times (0, \infty)$. There exists $V \in \mathcal{U}$ such that $(x, y) \in V$. We can choose $r \in Q$ so that $0 < r \leq y/2$ and $B_{2r}(x, y) \subset V$. There exist $a, b \in Q$ such that $(a, b) \in B_r(x, y)$. Since $B_r(a, b) \subset B_{2r}(x, y) \subset V$, $B_r(a, b) \in \mathcal{A}$. Thus there exists n_1 such that $B_r(a, b) = A_{n_1}$. Then $(x, y) \in B_r(a, b) = A_{n_1} \subset V_{n_1}$. Thus $X = \bigcup V_n \cup \operatorname{Cl}(U)$ and so X is W-Lindelöf.

We shall show that X is not C-Lindelöf. Let $Y = (R-0) \times \{Q\}$. Then Y is a closed subset of X. $\{N_1(x,0) : x \in R-Q\}$ is an open cover of Y. We claim that $\operatorname{Cl}(N_1(a,0)) = B_1[a,1] \cup (Q \times \{0\})$ for all $a \in R-Q$. Let $(x,y) \in X$.

(1)
$$(x-a)^2 + (y-1)^2 > 1$$
 and $y > 0$. Let

$$r = \min(y, \sqrt{(x-a)^2 + (y-1)^2} - 1).$$

Since $\sqrt{(x-a)^2 + (y-1)^2} \ge r+1$, $B_r(x,y) \cap N_1(a,0) = \emptyset$. Thus $(x,y) \in X - \operatorname{Cl}(N_1(a,0))$.

- (2) $(x-a)^2 + (y-1)^2 = 1$ and y > 0. For any $0 < r \le y$, since $\sqrt{(x-a)^2 + (y-1)^2} < r+1$, $B_r(x,y) \cap N_1(a,0) \ne \emptyset$. Thus $(x,y) \in \operatorname{Cl}(N_1(a,0))$.
- (3) $x \in R (Q \cup \{a\})$ and y = 0. Let $0 < r < (x a)^2/4$. Since $\sqrt{(x a)^2 + (r 1)^2} > r + 1$, $N_r(x, 0) \cap N_1(a, 0) = \emptyset$. Thus $(x, 0) \in X \operatorname{Cl}(N_1(a, 0))$.
- (4) $x \in Q$ and y = 0. For any r > 0, there exists $b \in Q$ such that $|a b| < 2\sqrt{r}$.

Since $\sqrt{(a-b)^2 + (1-r)^2} < r+1$, $\emptyset \neq B_r(b,r) \cap B_1(a,1) \subset N_r(x,0) \cap N_1(a,0)$. Thus $(x,0) \in \operatorname{Cl}(N_1(a,0))$. Since $(x,0) \in \operatorname{Cl}(N_1(a,0))$ if and only if $x = a, Y \notin \bigcup \operatorname{Cl}(N_1(x_i,0))$ for all countably many x_i . Hence X is not C-Lindelöf.

THEOREM 2. Let X be a space. If every closed subspace of X is W-Lindelöf then X is C-Lindelöf.

PROOF: Let Y be a closed subset of X and let $\{U_i\}$ be an open cover of Y. Since $\{U_i \cap Y\}$ is a cover of Y by sets open in Y, there exist countably many i_k such that $Y = \bigcup \operatorname{Cl}_Y(U_{i_k} \cap Y)$. Since $\operatorname{Cl}_Y(U_{i_k} \cap Y) = \operatorname{Cl}(U_{i_k} \cap Y) \cap Y \subset \operatorname{Cl}(U_{i_k})$ for all $i_k, Y \subset \bigcup \operatorname{Cl}(U_{i_k})$. Thus X is C-Lindelöf.

The converse of above theorem does not hold as the following example shows.

JONG-SUH PARK

EXAMPLE 3: In example 1 let $Y = R \times \{0\}$. Then Y is a closed subspace of X. Since $N_1(x,0) \cap Y = \{(x,0)\}$ for all $x \in R$, Y is an uncountable discrete space. Thus Y is not W-Lindelöf.

THEOREM 3. Let X be a regular space. Then the following statements are equivalent.

(1) X is Lindelöf.

(2) X is C-Lindelöf.

(3) X is W-Lindelöf.

PROOF: $(1) \Rightarrow (2) \Rightarrow (3)$ It is clear.

 $(3) \Rightarrow (1)$ Let \mathcal{U} be an open cover of X. For each $x \in X$ there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since X is regular, there exists a neighborhood V_x of x such that $\operatorname{Cl}(V_x) \subset U_x$. $\{V_x : x \in X\}$ is an open cover of X. Since X is W-Lindelöf, there exist countably many $x_i \in X$ such that

$$X = \cup \operatorname{Cl}(V_{x_i}) \subset \bigcup U_{x_i}.$$

Thus X is Lindelöf.

THEOREM 4. Let X be a locally compact Hausdorff space. Then X is C-Lindelöf if and only if X is σ -compact.

PROOF: (\Rightarrow) For each $x \in X$ there exists a neighborhood U_x of x such that $\operatorname{Cl}(U_x)$ is compact. $\{U_x : x \in X\}$ is an open cover of X. Since X is C-Lindelöf, there exist countably many $x_i \in X$ such that $X = \bigcup \operatorname{Cl}(U_{x_i})$. Thus X is σ -compact.

 (\Leftarrow) Let $X = \bigcup X_n$ and X_n compact. Given a closed subset Y of X, let $Y_n = Y \cap X_n$. Then $Y = \bigcup Y_n$ and Y_n is compact. For any open cover \mathcal{U} of Y, since \mathcal{U} is an open cover of Y_n , there eixst finitely many $U_{n,i} \in \mathcal{U}$ such that $Y_n \subset \bigcup U_{n,i}$. Then $Y = \bigcup Y_n \subset \bigcup \bigcup U_{n,i}$. Thus X is C-Lindelöf.

THEOREM 5. A space X is C-Lindelöf if and only if for each closed subset Y of X and each regular open cover $\{U_i\}$ of Y there exist countably many i_k such that $Y \subset \bigcup \operatorname{Cl}(U_{i_k})$.

PROOF: (\Rightarrow) It is clear.

 (\Leftarrow) Let Y be a closed subset of X. Given any open cover $\{U_i\}$ of Y, since $\{\operatorname{Int}(\operatorname{Cl}(U_i))\}$ is a regular open cover of Y, there exist countably many i_k such that $Y \subset \bigcup \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(U_{i_k}))) = \bigcup \operatorname{Cl}(U_{i_k})$. Thus X is C-Lindelöf.

C-lindelöf space

THEOREM 6. A space X is C-Lindelöf if and only if for each closed subset Y of X and each family $\{A_i\}$ of closed subsets of X such that $\bigcap \operatorname{Int}(A_{i_k}) \cap Y \neq \emptyset$ for all countably many $i_k, \bigcap A_i \cap Y \neq \emptyset$.

PROOF: (\Rightarrow) Suppose that $\bigcap A_i \cap Y = \emptyset$. Since $Y \subset X - \bigcap A_i = \bigcup(x - A_i)$, $\{X - A_i\}$ is an open cover of Y. Since X is C-Lindelöf, there exist countably many i_k such that $Y \subset \bigcup \operatorname{Cl}(X - A_{i_k}) = X - \bigcap(X - \operatorname{Cl}(X - A_{i_k})) = X - \bigcap \operatorname{Int}(A_{i_k})$. Then $\bigcap \operatorname{Int}(A_{i_k}) \cap Y = \emptyset$, this is a contradiction. Hence $\bigcap A_i \cap Y \neq \emptyset$.

 (\Leftarrow) Let Y be a closed subset of X and let $\{U_i\}$ be an open cover of Y. Suppose that $Y \not\subset \bigcup \operatorname{Cl}(U_{i_k})$ for all countably many i_k . $\{X - U_i\}$ is a family of closed subsets of X and

$$\cap \operatorname{Int}(X - U_{i_k}) \cap Y = \cap (X - \operatorname{Cl}(U_{i_k})) \cap Y$$
$$= (X - \cup \operatorname{Cl}(U_{i_k})) \cap Y \neq \emptyset$$

for all countably many i_k . Thus $(X - \bigcup U_i) \cap Y = \bigcap (X - U_i) \cap Y \neq \emptyset$. Then $Y \not\subset \bigcup U_i$, this is a contradiction. Hence there exist countably many i_k such that $Y \subset \bigcap \operatorname{Cl}(U_{i_k})$ and so X is C-Lindelöf.

DEFINITION 3: Let X be a space. A filter \mathcal{A} in $Y \subset X$ is said to *r*-accumulate to $x \in Y$, denoted by $\mathcal{A} \propto x$, if for each neighborhood U of x and each $A \in \mathcal{A}, A \cap \operatorname{Cl}(U) \neq \emptyset$.

DEFINITION 4: Let X be a set. A faimly \mathcal{A} of nonempty subsets of X is said to be a δ -filter in X if

(1) if $A_1, A_2, \dots \in \mathcal{A}$, then $\bigcap A_n \in \mathcal{A}$,

(2) if $A \subset B \subset X$ for some $A \in \mathcal{A}$, then $B \in \mathcal{A}$.

THEOREM 7. A space X is C-Lindelöf if and only if for each closed subset Y of X and each δ -filter \mathcal{A} in Y there exists $x \in Y$ such that $\mathcal{A} \propto x$.

PROOF: (\Rightarrow) Suppose that $\mathcal{A} \not \propto x$ for all $x \in Y$. For each $x \in Y$ there exist a neighborhood U_x of x and $A_x \in \mathcal{A}$ such that $A_x \cap \operatorname{Cl}(U_x) = \emptyset$. Then $A_x \subset X - \operatorname{Cl}(U_x)$ for all $x \in Y$ and $\{U_x\}$ is an open cover of Y. Since X is C-Lindelöf, there exist countably many $x_i \in Y$ such that $Y \subset \bigcup \operatorname{Cl}(U_{x_i})$. Since

 $\cap A_{x_i} \subset \cap (X - \operatorname{Cl}(U_{x_i})) = X - \cup \operatorname{Cl}(U_{x_i}) \subset X - Y \text{ and } \cap A_{x_i} \subset Y,$

.

 $\bigcap A_{x_i} = \emptyset$. This is a contradiction for $\bigcap A_{x_i} \in \mathcal{A}$. Thus there exists $x \in Y$ such that $\mathcal{A} \propto x$.

 (\Leftarrow) Let Y be a closed subset of X and let $\{U_i\}$ be an open cover of Y. Suppose that $Y \not\subset \bigcup \operatorname{Cl}(U_{i_k})$ for all countably many i_k . Let \mathcal{A} be the family of all subsets of Y containing $\bigcap (X - \operatorname{Cl}(U_{i_k})) \cap Y$ for some countably many i_k . Then \mathcal{A} is a δ -filter in Y and $(X - \operatorname{Cl}(U_i)) \cap Y \in \mathcal{A}$ for all i. There exists $x \in Y$ such that $\mathcal{A} \propto x$. There exists i_1 such that $x \in U_{i_1}$. Since $(X - \operatorname{Cl}(U_{i_1})) \cap Y \in \mathcal{A}$, $\operatorname{Cl}(U_{i_1}) \cap (X - \operatorname{Cl}(U_{i_1})) \cap Y \neq \emptyset$. This is a contradiction. Thus there exist countably many i_k such that $Y \subset \bigcup \operatorname{Cl}(U_{i_k})$ and so X is C-Lindelöf.

THEOREM 8. If X is C-Lindelöf and $f : X \to Y$ is a continuous surjection, then Y is C-Lindelöf.

PROOF: Let A be a closed subset of Y and let $\{U_i\}$ be an open cover of A. $f^{-1}(A)$ is a closed subset of X and $\{f^{-1}(U_i)\}$ is an open cover of $f^{-1}(A)$. Since X is C-Lindelöf, there exist countably many i_k such that $f^{-1}(A) \subset \bigcup \operatorname{Cl}(f^{-1}(U_{i_k}))$. Since

$$A = ff^{-1}(A) \subset f(\cup \operatorname{Cl}(f^{-1}(U_{i_k})))$$

= $\cup f(\operatorname{Cl}(f^{-1}(U_{i_k}))) \subset \cup \operatorname{Cl}(ff^{-1}(U_{i_k})) = \cup \operatorname{Cl}(U_{i_k}),$

Y is C-Lindelöf.

8

References

J. S. Park, *H-closed spaces and W-Lindelöf spaces*, Journal of the Chungcheong Mathematical Society 1 (1988), 55-64.

Department of Mathematics Chungnam National University Taejon, 302-764, Korea