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How to Smooth Data in Two Way Tables 
with the Order Restriction

Seiyoung Chung

ABSTRACT. To smooth a given data in two-way tables with the 
order restriction, we propose the dual problem and construct 
an algorithm utilizing the network flows which ends up with 
the minimum Zl-norm after a finite number of iterations.

1. Introduction
Suppose that an m x n matrix of data A = (a^) is given and we 

wish to find ri < r2 < • • - < rm and Si < S2 < • • • < 3n so that

m n
(p): E〕E〕어』'-江-이 

i=l j=l

is minimized.

This problem rises from smoothing of data in two way tables with 

the order restriction. This without the order restriction has been 

discussed in [1], [2], [3] and [4]. Tukey [1] introduces the method of 

median polish and it is known to converge for physical data, [2]. It de­

creases the LI norm of the matrix but does not necessarily converges 

to the minimum LI norm. Kemperman [3] has basically proposed 

an algorithm suggesting that a flow model be used and Fink [4] has 

developed an algorithm utilizing a flow, which produces the minimum 

LI norm. But there is no algorithm for the problem with the order re­

striction known to us. Taking advantage of the linearity, the dual (D) 

of the primal (P) is proposed. An algorithm which utilizes network 

flows is constructed that solves the primal and the dual simultane­

ously. All the material related to the network and the flow, which is 

necessary for developing the algorithm, can be found in Rockafellar 

[5, Chapter 1 and 2].

Received by the editors on 2 July 1989.
1980 Mathematics subject classifications: Primary 49B36.

65



66 SEIYOUNG CHUNG

2. Dual Problem
In the present section, the dual problem for the minimum problem 

(P) is proposed and it is given a necessary and sufficient condition for 

the problems (P) and (D) to exhibit the optimal solutions. The dual 

is :

m n

(D):max 乞乞 (〕旧 이)ij

«=i i=i

subject to

(D — 1) : 인阿 G {0, ±1} for all (i, j)

(D — 2) : ft, > 0, i = 1,2, • •., m — 1

Cj > 0, j = 1,2,.1

n

(D — 3) : 으2 Wij = —bi-i + i = 1,2, … , m

i=i
m

y^wij = -cj—l +c方 i = 1,2,

t=l

bo = bm = Co = Cn = 0

Any sets {r,} and {sj} are called feasible for the primal (P) if they 

satisfy the order restriction and any sets {w</}, {&»} and {cj} are 

called feasible for the dual (D) if they satisfy the constraints (D — 1), 
(D — 2) and (JD — 3). Define sgn(:r) = 1 if a: > 0 ; —1 if x < 0 ; 0 if 

x = 0. Let Wi = 리니 Wij for each i and for each j.

Two conditions, which turn out to be optimal criteria, are defined as:

CONDITION A: For each (i, J), Wij = sgn(aij — r, — 3j) whenever

r, — Sj is nonzero.

Condition B： 乞흐rtW, =0 = 리 =1 sjWL

LEMMA 2.1. Assume that d, > 0 for i = 1,2,..., fc — 1 and do = 

0 =(1보 If 臥 = di — dj_i, i = 1,2, • •., fc and yi 玄 地 玄 … :玄 yjt, then 

ELi Vixi 玄 °-

The above lemma is an easy consequence of mathematical induc­

tion.
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LEMMA 2.2. Let {wij} be feasible for the dual (D), and {r,} and 

{sj} for the primal (P). The following inequality then holds:

m n m n

乞 乞 어*0 < 乞 221어> - n — 에, 
i=i j=i i=i j=i

where the equality holds if and only if both Conditions A and B are 

satisfied.

PROOF: It follows directly from the constraint (D—1) that the right 

hand side is greater than or equal to 乞스 22；=i(aO — ri — 5i)Mj 

and that they are equal to each other if Condition A is satisfied. 
Notice that f 各 리八八 + Sj)wij = 乞各 r" + 리x SjWh It is 

the immediate consequence of Lemma 2.1 that 乞후 riWi < 0 and 

으/VK’ < 0, which completes the proof.

In Lemma 2.2, it has been shown that the maximum of the dual 

is always less than or equal to the minimum of the primal and hence 

that the feasible solutions are optimal if they are equal. Therefore 

the sufficiency of Theorem 2.3 stated below is proved. The necessity 

is proved after constructing an algorithm in section 3.

THEOREM 2.3 (Duality Theorem). Under the same assumption in

both Conditions A and B.

Assume the necessity is proved. By Lemma 2.2 again, the optimal 

values then are the same. They hence are dual to each other.

3. Algorithm

Our aim is to solve both the primal and the dual simultaneously 

using a network. Our basic strategy is: start with an obvious feasible 

solutions, seek improved ones satisfying Condition B and stop when 

Condition A is also satisfied. To construct an network for this purpose, 
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let’s define the node sets and the arc sets:

丘 = { 요 1, •凡 2, • • • 5 요 m }, 

C ={C1,C2,...,Cn}, 

N =2?UC, 

Lrc = 2? x C,

Lr = {(凡十三凡) | i = —1},

Zc = {(Cj,Cj+i) | j = 1,2,...,n — 1}, 

L = Lrc U JDr U Lc.

The network being considered here is a network with the node set 

N and with the arc set L. Noticing that {w^}, {&,}, {cj}, {r,} and 

{이j} may be regarded as the functions on Zrc, £r, Lc, R and C 

respectively, they will be denoted by the functions w, 6, c, r 앸jd s 

respectively. From now on, Ri and Cy <ill be denoted by i arid j 

respectively. The following abbreviations also will be used:

b(i) for 5(21 十1, 凡) and hence for 하,

e(J) for c(Cj, Cj+i) and hence for Cj.

The incedence functions for a node set S and a circuit P are defined 

by:

,、 ( 1 ifxeS
eS(X)=to otherwise,

{
1 if J G 1사

—1 if J 6 P-

0 otherwise.

Without loss of generality, we may assume that aij > 0. For both 

ZXi E&=i I어i — n — 이 히서 ZXi Ej=i I어j + ⑦ 一 H — 에 assume 

their minimum at the same {r,} and {sj} for any real x.

Dual argorithm 3.1.

Initially, w 三 0, 6 三 0, c&O, r&O and 昌三 0.



SMOOTHING DATA IN TWO WAY TABLES 69

Step 1: Given any w, r and 5, set

UL = {(i, j) G Lrc | r(i) + 3(j) < w(i J) = 0}.

If UL = 0, then stop. The current w, 6, c, r and s are optimal. 

Step 2: Given w, 6, c, r and 昌, paint the network:

1) Any arc (i, j) in Lrc is painted;

red if w(i, j) = sgnfay — r(i) — s(j)] whenever a\j 羊 r(i) —

巧),
black if r(i) + s(j) = g, w(i,j) = 1, 

white if [r(i) + s(jj < j) = 이 or 

[r(i) + 3(j) = a^, w(i, j) = -1], 

green if r(i) + s(j) = a터, w(i, j j = 0.

2) Any arc (i + 1, i) in Lr is painted; 

red if r(i + 1) > r(i), 6(i) = 0, 

white if r(i + 1) = r(i), &(i) = 0, 

green if r(i + 1) = r(i), b(i) > 0.

3) Any arc (j, j + 1) in Lc is painted; 

red if s(j + 1) > 5(j), c(j) = 0, 

white if s(j + 1) = s(j), c(j) = 0, 
green if s(j + 1) = s(j\ c(j j = 0.

Step 3: Select in UL and apply PNA(Painted Network Algo­

rithm) with = {j*} and with 2V” = {i*}. The same arc 

should be selected as long as it is still in UL.

1) If PNA ends up with a path P, let

w =w + ep,

= b + ep, 

c' = c + ep,

and go to Step 1.

2) If PNA ends up with a cut Q = [S, 2\『 一 S], define

I
r(0 + 昌 (J) — g 

어j — 히 (0 — 昌(J) 

r(i + l) —r(i) 

s(j + 1) —3(j)

for (i,J) € Q+ with w(i, j) = —1 

for (i, j) G Q~ with w(i, j) = 0 or 1 

for (i + l,i) G Q十

for (jj + 1) 6 Q+,
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and set

r' = r + 6cn-s 스 

s' = s — Sejq—s*

Go to Step 1.

In Propositions 3.2 through 3.5, we will show that the functions w, 

6, c, r and s remain feasible and Condition B is satisfied after each 

iteration. Notice that 6 in Step 3 is positive, which follows from the 

painting conditions.

PROPOSITION 3.2. New w', V and d remain feasible after each 

iteration.

PROOF: Since there occurs a change in them only after a circuit P, 

it suffices to prove in such a case. Let (i, j) E Lrc be in the circuit P. 

If (i, j) is green, then w(i, j) = 0 and hence w'(i,j) = 1 if .(i, j) G 2서’ 
; —1 if (i,j) G P-. If it is black, then w(i,j) = 1 and w'(i,J) = 0. 

If it is white, then w(i, j) = 0 or —1 and w'(i, j) = 1 or 0. Since the 

color of any arc in a circuit is green, black or white, the constraint 

(D — 1) holds for w'. By the same manner we can show that W > 0 

and c' > 0.

Noting that for any node i E Rin the circuit P, there exist exactly 

two arcs in P, say Li and using it as their end node, we can 

classify all the cases into three different cases according to where the 

arcs Li and L2 belong to:

Case 1: Both arcs are in Lrc,

Case 2: Both arcs are in Lr,

Case 3: One is in Lr and the other in Lrc.

In Case 1, w at Li is increased by one and w at L2 decreased by 1 or 

vice versa and hence in (D — 3) is unchanged. But b(i) and b(i — 1) 

remain unchanged since (i + l,i) and (i,i — 1) should not be in P. 

Now the first part in (2) — 3) holds. In Case 2, b(i) and b(i — 1) are 

increased by 1 if both arcs are in P十 and decreased by 1 if in P~. But 

Wi is the same as before since no arcs in Lrc connected to the node 

i is in P, and the first part of (Z) — 3) holds. For Case 3, the similar 

argument can be employed, and the first part in (P — 3) holds for 

any case. We can employ the same argument to show that the second 

part holds. Since they are feasible at the beginning, mathematical 

induction completes the proof.
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PROPOSITION 3.3. The order restriction is satisfied by new r' and 

s'.

PROOF: Initially the restriction is satisfied. Assume this is the case 

before a certain iteration. Notice that there occurs a change in r and 

s after a cut Q = [S^N ― S] and that r' = r and 昌' = s except on 

N — S. For any (i + l,i) in Q—, r'(i + l) = r(i + l) + 5 but r'(i) = r(i). 

For any (i +1, i) in r'(i +1) = r(i +1) but r'(z) = r(i) + 6. From 

the definition of 6 in Step 3, it follows that < r(i + 1) — r(i). In all 

we conclude that r'(i + 1) < r'(i) for any i. By the same manner it 

follows that the restriction holds for new s9.

PROPOSITION 3.4. Condition B holds after each iteration.

PROOF: After a circuit P, there occurs a change in w only at the 

arcs in P and no change in r. For any node i in P, we have three 

different cases as in the proof of Proposition 3.2. Let’s use the same 

classification there. For Case 1 and Case 2, we have shown in the 

proof of Proposition 3.2 that W remains unchanged. In Case 3, there 

should exist the subpath P of P using i as its end node and consisting 

of only nodes in R. For we can go forward or backward from B to C 

only through the arcs in Lrc. Let ii be the other end node of P. Then

= Wi + l and — 1 or vice versa. But r is constant on

the set of nodes in P since all the arcs in P are green or white. In all, 

we’ve shown that 乞흐x riW- = 0 holds after a circuit. Now assume 

that the outcome is a cut Q = [S, 2V — S]. Then rf = r on R Cl S and 

r' = r •+• 5 on 1? — S. Because w experiences no change after a cut, we 

have:
m m

乞己比' = 乞+ 5 乞 比 =슈 乞 Wi- 

t=l i=l S i€K—S

The constraint (Z> — 3) can be rewritten as 으그니 W} = 6化 for k = 

1,2, • • • ,m. So W》= &m = 0 if JR PI S = 0. We thus may

assume that R(1 S is not empty. Let {i0 + 1,io + 2, • • •,io + k} be in 

R(1S for some integer fc > 0. Any arc (i + 1, i) in LrDQ is red or white 

and hence b(i) = 0. Therefore &(to) = 0 = &(io + fc), which implies 

that 으페그 Wi = 0 and that ^ieRnSWi = 0. Now 乞흐 = 0 

shows that 乞正요_日* = 0. The same argument can be employed to 

prove the second part in Condition B.
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PROPOSITION 3.5. IfUL = $, then w, r and s are optimal.

Proposition 3.5 is simply a corollary of the sufficiency of Theo­

rem 2.3 and Propositions 3.2, 3.3 and 3.4. Now we will prove the 

finitedness of the algorithm.

Proposition 3.6. New UL is a subset of old UL. Furthermore 

new UL is a proper subset of old UL after a circuit.

PROOF: Assume that PNA ends up with a circuit P. Let any arc 

(i,J) G Lrc be not in old UL. If the arc (i,j) is in P, it is green, 

white or black. For any color it is that r(i) + = Gjj. Because no

change occurs in r and s after a circuit, the node (i, J) is not in new 

UL. Since w is unchanged on the set of arcs outside P, the first part 

holds after a circuit. The second part follows from the fact that the 

arc is in 2거" and hence becomes 1. For the case of

a cut Q = [S', N — S'], assume that (i, j) in Lrc is in new UL but not 

in old UL. Since there occurs no change in w after a cut, w(i, j) = 0 

and (i, j) is green, which in turn shows that both nodes are either in 

S or in jV ― S. It is easy to show that r'(i) + s'(J) = 어, for any case. 

This contradicts to the fact that (i, j) is in new UL.

Proposition 3.7. The algorithm is finite.

PROOF: Because of Propostion 3.6, it suffices to show that when­

ever PNA ends up with a cut Q = [S, 八 一 S] at a certain iteration, 

either

(a) New UL is a proper subset of old UL 

or

(b) The outcome of PNA is a circuit after a finite number of iter­

ations in which there occur only cuts.

If 5 = ajj _ r(i) _ s(j) for any (ij) G Q- with w(i,j) = 0, then 

aij = r'(i) + 昌'(우) and (a) occurs. Assume this is not the case and let 

8 attain its minimum at an arc Lq. It is easy to show that the arc 

Lq becomes green or white if it is in and black if in Q”. The arc 

is still in UL and PNA is supposed to be initiated with the 

same jV너" = {j*} and N~ = {i*}. If we have another Q9 = [义 川一S'], 

then S is a proper subset of S1. For there occurs no change in r and 

s on S, the colors of the arcs inside S are unchanged after the cut Q 
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and finally one end node of the arc Lq comes in Sf. But there are 

only finite number of nodes, so there must be a circuit after a finite 

number of cuts in a row, which establishes the proof.

We have shown that the algorithm produces the optimal solutions 

and the optimal values are the same. Therefore the necessity of the­

orem 2.3 is proved by lenuna 2.2.
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