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A Study on the Functions of /c0-Bounded Variations
Young-U Sok and Jae-Keun Park*

Abstract. In this paper, we study some properties of gener

alized function spaces of ic-, 오-and k(卜 bounded variations and 

general bounded variations.

In defining a function of bounded variation on the closed interval 
[a, 5] we considered the supremum of »|f(丁n)| for every collection 
{In} of nonoverlapping subintervals of [a, 6] such that [a, 6] = |JIn 
where /(In) = /(如)一7(：rn), In = kn, !/』• A function f is of bounded 
variation on [a, b\ if V벼(J) = SUP 乞 Lf(丁n)| is finite. Equivalently we 
could say a function is of bounded variation on the closed interval 
[a, b] if there exists a positive constant C such that for every collection 
{In} of subintervals of [a, 이, 乞 Lf(丁n)| < 0. A function f is said to 
be /c-bounded variation of [a, 어 if there exists a positive constant C 
such that for every collection {In} of nonoverlapping subintervals of 
[«,b], X：Lf(In)| < <7X>(I지/(b — «)) where \In\ = yn — xn, In =

On the other hand, Michael Schramm [4, 5] generalized the 
above idea by considering a sequence of increasing convex function 
아 = {<》n} defined on [0, oo); f is of ^-bounded variation on [a, 6] if 
V}(/;a, 6) = sup^n(|/(In)|) is finite. We are going to combine the 
above concepts.

The introduction of the function k can be viewed as a rescaling 
of lengths of subintervals in [<z, 6] such that the length of [a, b] is 1 if 
/c(l) = 1. We are now requiring through the following that k has the 
following properties on [0,1];

(1) k is continuous with k(0) = 0 and k(1) = 1,
(2) k is concave and strictly increasing, and
(3) lim k(x)/x = oo.
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Let <》= {0n} be a sequence of increasing convex functions defined 
on nonnegative numbers and such that 0n(O) = 0, (/>n(^) > 0.

Let a real valued function f be defined on the closed interval [a, 6]. A 
function f is said to be of «^-bounded variation on [a, 6] if there exists 
a positive constant C such that for any collection {In} of nonoverlap
ping subintervals of [a, 6]

》>n(|/(Zn)|)*7£；K(| 지/(5 —a))

where [a, 6] = (J Zn and \In\ is the length of In. The total variation of 
f over [a, &] is defined by

w^f) = 시W；«, 5) = sup 乞。„(|/(4»)|)/ 乞 /이지/(& — a)), 

where the supremum is taken over all nonoverlapping subintervals 
{In} in [«,&]• We denote by n(j)BV the collection of all /c<》-bounded 
variation function on [a, 6]. We note that if f is of (^-bounded variation 
on a closed interval [a, 6], then f is of k^-bounded variation on [a, ft] 
and(l)BV is included in K(f)BV. Let k</>BV6 = {f € /(a) = 0}.
For f in k(/>BVq, let us define the norm as in the Orlicz spaces;

lllflll = |||/||忌 = inf{fc > 0 ; 아(//AM 1}.

Then (k(/)BVq^ ||| • |||) is a Banach space and K(f>BV may be a Banach 
space with the norm |/(a)| + |||/ — /(a)|||.

Let a function f be defined on the interval [a, &]. f is said to be 
«(^-decreasing on [a, 6] if there exists a positive constant C such that 
for any interval I in [a, 5]

^n(|/(I)|) < c K(|I|/(b —a)).

If a function f is /c<》-decreasing on [a, b], then we have the following 
properties;

(1) f is of «^-bounded variation,
(2) f(：2石’) and f(yg) exist for any a < xq < b and a <y^ < 6,
(3) f is continuous on [a, 6]

(But, k-decreasing functions need not be continuous). Also, suppose 
that 써 = {<》in}, <》2 = {hn} and <f)3 = {</%} satisfy <?!心(⑦)싸이⑦) < 

^3n (^) f°r』n- Then for alF/ € g € fg € k^BVq
and ||Lf引11+ 玄 2|||f |||K0j|h|||+，which is proved by the following.
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LEMMA X. Suppose th&t 01 = {01n}, 02 = {02n} 에시 03 = {03n} 
satisfy, for all n, 示허⑦沙거位) <。그(今 Then hn(xy) < 쎄:r) + 
<hn(y) forx.y > 0.

PROOF: From the definition of we have:

己(⑦)) < < 0己(OlnG2〉))-

Given any x.y > 0, either <》in(：r) < <hn(y) or </>ln(x) > (/>2n(y)- If 
< (/>2n(y) then

끼/ < 此:(<Am(:r))0거(<》2n(j/))
< 거(<》=(!/))<》거(<》2n(J/)) 으

<》3n(W)< ^3n(^(^2n(!/))) < <》2n(?/)-

If </>in(하) > </>2n(y\ a similar argument shows that <》3n(:r) < <》in(꾀• 
Therefore,

<》3n(끼/) < max(<》in(:r),<》2n(⑦))
< </>in(x) + <》2n(y) for x,y>0.

By the similar way as Lemma 1, we can prove the following.

LEMMA 2. Suppose that(f>\ = {<》in}, <》2 = {<》2n} and 休 = {(/>3n} 
satisfy。己(하)0；2(⑦) < k(/for all n. Then there exists a con
stant kf such that <》3n(w/k') < </>in(^) + <》2n(y) for aiiy y >0.

LEMMA 3. For 伍, <》2, and 仏 as the above Lemma 2, the following 
are equivalent;

C1)』프% sup<#：(：4》가(=)/<》가(하) <。。 X—*oo
(2) There exists a positive k such that, for all x^y > xq >0, 

hn(xy/k) < <》in(:r) + hn(y)-

LEMMA 4. For 01,(l)2 and <》3 as the above Lemma 2, the followings 
are equivalent ;

(1) lii꺼 sup。己(꾀유2(a:)/(》거(:r)<oo, 
x—0+

(2) There exist numbers k > 0 and xq > Q such that for all x,y < 
幻), hn(xy/k) <(/>ln(x) + <》2n(y).
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Theorem 5. For(f>i = 02 = {02n} and 어 = {03n}, ibe
followings are equivalent;

(1) There exists k > 0 such that <f>in(x)^2n 으 ^3n(x) ^or 흐기 
z 츠 0,

(2) There exists k1 > 0 such that, for all x,y > 0,

成n(이//k') < <》ln(흐) + hn(y\

PROOF: Combine Lemma 3 and 4, we obtain this result.

THEOREM 6. Suppose that 써 = {0in}, <t>2 = {<》z} and 오3 = {^3n} 
satisfy (/>in(x)(l>2n(x) 으 ^3n(a:) ^or 3교 n Then for all f E i仲 1BV6 
and^ e k》>2BV心, fg/k G n(/>3BVQ ajid\\\fg\\\^3 < 2이||/|正시||引|忌2-

Proof： Given any In C [tz,이, either <》ln(|F(In)|) < <》2n(|우(丁n)|) 
or <》ln(Lf(In)|) > ^2n(|^n)|). If ^ln(|/(In)|) < <》2n(0(M|), then 
we have the following inequality;

Lf(/n)g(In)/이 = 유己 (01n(lf(Zn)|))O 거 (<》2n(k7(Zn)|))

< |此:(02n(kKIn)D)<7易(<》2n(|g(In)|)) 
K
1

<T-^(^n(|^(In)|)) 
K

= ^3n (^2n(|^(Ai)|))-

ThuS^n(|/(4Wn)|A) < ^2n(|^n)|). If <》ln(lf(그)|) > ^n(|<7(In)|), 
then a similar argument shows that

<》3n(lf(In)改In)|A) < <仏(|/(그)|).

Therefore we have

’ I>3n(|』f(/n)g(In)|/L)/》>(| 지/(6 —a))

. 玄 [E>l«(lf(M)/E 찌지/(으 - 까)]

’ + [l>n(IW)D/2>(l 지/— «))]
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Thus fg/k € k^BVq.
Let e > 0. Without loss of generality assume |||/|||K^i = |||引||«02 =

1. By the convexity of <》3n, we have

乞 03n(Lf(I«M4J|/2k(l + e)2)/ 乞 K(| 지/(6 — a))

<| 乞 03„(|/(Z„)|h(l„)|/fc(l + 02)/ 乞 K(| 지/(6 — a))

4 J>n(l/Vn)|/1+ 0/1>(1지/— «))

+ } 乞。2>»(|功(4；)|/1-+ £)/乞 '이지/(b - «))

Thus W03Cf9/2fc(l + e)2) < 1, |||九|||+ < 2fc(l + e)2 and the 
theorem follows by letting e — 0.

COROLLARY 7. Suppose that = {<》in}? 02 = {02n} and 於 = 
{hn} satisfy, for all n, > <hn(이 k), where(/>4n(x) = sup\(/)3n(xy)

y>°
— 0in(!/)| for x, j/ > 0 and k constant. Then, for all f E k^BVq 
and g G k^BVq, their product fg/k G k^BVq and ||Lffidl|K03 < 
씨 I/IIIk 시 IlglllK此.

PROOF: For all a:, y 스 0, </>3n(:ty) < <>4n(흐) + <》in(j/) implies that 
<》3n(찌/) < <f>in(y) + <t〉2n(Jcx), which implies(t>3n(xy/k) < <》ln(j/) + 
<》2n(흐)- By Theorem 5, there exists k > Q such that。己包沙거他) < 

k(/)2n(x) for all x > Q. By the same way as Theorem 6, we obtains 
this corollary.

Corollary 8. For <伍 = {(/>in} and (/>3 = {。아}, letting <》2n(y) = 
SUp(<》3n(：n/) —<》ln(끼), (/= SUp(<》3n(：Z：y) — <》2n(!/)) and(/>5n(y) = 
®>0 j/>0
sup(^3n(xj/) — 04n(⑦)) for a/1 n9 x, y > 0, then for all f E k^BVq 
x>0
and g € k^BVq we have k(/)iBVq C kc^BVq, k^BVq = k^BVq and 
fg G for fixed k. Also

lll^lll^s < 2^111/111^111^111^.

Proof： Note that </>4n(x) < <l)in(x) and(f>5n < <》3n(j/) for x,y 之：0. 
Thus <》3n(히/) < </>4n(x) + <》5n(i/) < 4>in(x) + ^2n(j/)- By Theorem 5, 
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sup(<》3n(:q/) — <》4n(：0) for all n, x, y > 0, then for all f e k^BVq 
x>0
and g 6 k^BVq we have k(I)iBVq C k</>sBVq = k^zBVq and
fg G k(/>^BVq for fixed k. Also

IILMI+으씨 ILfH 忌 JllgllL比.

PROOF: Note that 仏쉬⑦) < 0in(^) and <^5n < <》3n(y) for y > 0. 
Thus < <》4n(a：) + (/>5n(y) < hn(x) + <^2n(y). By Theorem 5,
we have 아己(鉛)0거(⑦) < <》거(:r) for all a; > 0, which implies the 
proof.

REMARK 1: The inequality(f>4n(^) < <》in(⑦) may not be replaced 
by equality.

THEOREM 9. Suppose that = {<》in}, 02 = {02n} and(f>3 = 
{<》3n} satisfy 己(흐)가(흐) < (⑦) ^or.all n/and there exist k-
function /q, g, 이七 尺3 such that Then, for
all f E «i<^iBVo and g € 物2<》2리), the product fg/2 is in ks^BVq 
and

111/^111^3 <4|||/||k^|||^|||^2.

PROOF: If «i(|In|/& — a) < «2(|丁n)/b — a), then we have that

|In|/b —a 츠 (|In|/6 —a)(|I시/6 —a)
> 으지/& — a))K21(x2(\In\/b — a))
> 오1(x2(|지/& - «))사(⑦2(|지/b - a)) 
크으1(⑦ 2(| 지/b —a)),

which implies that

=3(|지/b — ⑦) 之 尺2(|지/b — «)•

Also, if Ki(\In\/b — a) > /c2(|In|/b — a), then we have

I지/6 —a 스 자1(何(|/시/6 —a)),

which implies that

k3(|지/6 —a) 츠 句(|지/6 —a).
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4(l + e)2

Therefore
S<》3n(Lf(In)g(Jn)/2|) 三 E<》ln(Lf(In)|) + E<》2n(|g(In)|)

E K3(|I시/6 — «) - 2 £ K3(| 지/6 — a)
< I>ln(L/Vn)|) + »2n(|g(In)|)
— —a) +》>2(| 지/& —a)
< E01n(Lf(AJD . I>2n(|g(In)|)( 오
— 乞何(|지/& —a) + Ek2(|지/6 —a) <

Thus fg/2 E «3<》3BVi). Let e > 0. Without loss of generality, we may 
assume |1I/II|kkAi = 1 = |||引|仏2中2』By the convexity of we 
have

fLf(In)g(In)|、| 丁느 
^hn V“4(i +.e)2 J ^4hn

匕K3(|지/& —a) - 드——흐k3(|지/6-a)
> 시쁘t+M아씌

— 2 乞 에지/b —a)

d|E0ln 十;乞放

— E^(l^|)/6-a) + E«2(|/n|/6-a)
1 〜 fWn)\\ 1 幻』fWn)\\
乞伍 "(TT7) > 으。2"(TT7)

— 乞尺1(1지저-a) 十 匕尺2(|지으 —즈) 

<1(111/111^+111^111^) = 1.
仏 스

Thus «3V^3(/^/4(l+e)2) < 1, llkfllh" 으 4(l+e)2 and the theorem 
follows by letting e — 0.

1 + e

COROLLARY 10. Under the same assumption, if / € «1<》2方汗4)and 
g € ^2(/>iBVq9 then the product fg/2 is in and

111/^11^3 <4111/111,^^115111^.
Proof：

»3n(Lf(4)gGrn)/2|) 1 I>ln(|g(In)|) + l>2n(Lf(In)|)
E K3(|지/6 — a) - 匕 K1(|지/& - a) + 乞 k2(|지/& — a)

< ☆Wl"n)|) , E<》2n(lf(In)|) 〜
— H(| 지/b —a X>1(| 지/b —a)
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Thus fg/2 G Let e > 0. Without loss of generality, we may
assume ||Lf||hi오2 = 1 = |||s『|||k20i- By the similar way as the above,

4（1 +e）2 ） < 5 江어"

1乂 3（L지/6 —⑦） —〉引Cl（| 지/6 —시） X卜2（|지/6 —a）
1

드 5（IH/HIk= +1119111=） = 1.

Thus «3以<》3（/刀4（1 + e）2） < 1. |||/^|||«3^3 < 4（1 + e）2 and the 
corollary follows by e —► 0.

COROLLARY 11. Suppose that <伍 = {<》in}, 02 = {<》2n} and（f>3 = 
{<》3n} satisfy, for all n, <》己（하）<》；2（하） < 즈。；2（즈）, and there exist k- 
function 何, 化 and m such that > 尺丁化）. Then for
all f E ki（（）iBVq and g G 尺2<》2히b the product fg/2k is in k^^BVq 
and

||LMIk30=4 시 H/HMJII9III—.
REMARK 2: If Ki and «2 arc K-function, then the composite func

tion «i o /c2 is a ^-function, which is proved by the definition of zc- 
function. 
Here

For example; /q o Kj is zc-function for i / j, i = 1,2,3.

/幻（x） = x{l — log a;） if ⑦ 尹 0
0 if x = 0

K2（x） = xa for 0 < a < 1,

and

尺3（鉛） = （1 — ；ln 으）

We now return to the space kBVq and BVq on the closed interval 
[a,6]. If / G BVo[a^ 6], then f can be decomposed as / = /i —』z, 
where j\ and f2 are increasing and /i（a） = /2（a） = 0. A particular 
example of such a decomposition is that j\ and are the positive and 
negative variation of /, respectively, which is called the elementary 
decomposition of f. For any such decomposition of /, /i（6） + f2（b） >

If it is the elementary decomposition of /, we have the equality 
in the above inequality. By these properties, we have an simple proof 
of elementary theorem as the followings;



/€(^-BOUNDED VARIATIONS 63

THEOREM 12. Under the concepts of the elementary decomposi- 
tion, we may have that < V〒(f) • V이(gr) for any f and g such
that /(a) = g(a) = 0.

PROOF: Let f = fl — for and = 目！ 一 우2 be the elementary decom
positions of f and g, respectively. Then

f9 = (fi — A) • (ffi — 92)

= (flffl + f2ff2)- +

By the inequality V^(f) < j\(b^f2(b), we have the followings;

V^fg) 으 (figi + /刀2)(6) + (fi어 + f애i)(b)
= (fi(&) + /2(&))(gi(6) + 3『2(6))
= 砂(/1 + /2)匕他1+化)

= KV) 砂(今

COROLLARY 13. Under the same condition as the above theorem, 
we have that W^(fg) < 시이(/) • 시2(우) for any f and g in kV^ wiih 
/(a) = fif(a) = 0.

Remark 3： BV 으 </>BV.
Remark 4： kBV $ k</>BV.
Remark 5： BV 으 kBV in Q.
REMARK 6: (!)BV 으 k</>BV (By Remark 3).
Remark 7： kD c kBV.
REMARK 8: kD & k(I)D (By Remarks 4 and 7).
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