A Study on the Functions of $\kappa \phi$-Bounded Variations

Young-U Sok and Jaf-Kfun Park*

Abstract

In this paper, we study some properties of generalized function spaces of κ-, ϕ-and $\kappa \phi$ - bounded variations and general bounded variations.

In defining a function of bounded variation on the closed interval $[a, b]$ we considered the supremum of $\sum\left|f\left(I_{n}\right)\right|$ for every collection $\left\{I_{n}\right\}$ of nonoverlapping subintervals of $[a, b]$ such that $[a, b]=\bigcup I_{n}$ where $f\left(I_{n}\right)=f\left(y_{n}\right)-f\left(x_{n}\right), I_{n}=\left[x_{n}, y_{n}\right]$. A function f is of bounded variation on $[a, b]$ if $V_{a}^{b}(f)=\sup \sum\left|f\left(I_{n}\right)\right|$ is finite. Equivalently we could say a function is of bounded variation on the closed interval $[a, b]$ if there exists a positive constant C such that for every collection $\left\{I_{n}\right\}$ of subintervals of $[a, b], \sum\left|f\left(I_{n}\right)\right| \leq C$. A function f is said to be κ-bounded variation of $[a, b]$ if there exists a positive constant C such that for every collection $\left\{I_{n}\right\}$ of nonoverlapping subintervals of $[a, b], \sum\left|f\left(I_{n}\right)\right| \leq C \sum \kappa\left(\left|I_{n}\right| /(b-a)\right)$ where $\left|I_{n}\right|=y_{n}-x_{n}, I_{n}=$ $\left[x_{n}, y_{n}\right]$. On the other hand, Michael Schramm [4,5] generalized the above idea by considering a sequence of increasing convex function $\phi=\left\{\phi_{n}\right\}$ defined on $[0, \infty) ; f$ is of ϕ-bounded variation on $[a, b]$ if $V_{\phi}(f ; a, b)=\sup \sum_{n}\left(\left|f\left(I_{n}\right)\right|\right)$ is finite. We are going to combine the above concepts.

The introduction of the function κ can be viewed as a rescaling of lengths of subintervals in $[a, b]$ such that the length of $[a, b]$ is 1 if $\kappa(1)=1$. We are now requiring through the following that κ has the following properties on $[0,1]$;
(1) κ is continuous with $\kappa(0)=0$ and $\kappa(1)=1$,
(2) κ is concave and strictly increasing, and
(3) $\lim _{x \rightarrow 0^{+}} \kappa(x) / x=\infty$.

[^0]Let $\phi=\left\{\phi_{n}\right\}$ be a sequence of increasing convex functions defined on nonnegative numbers and such that $\phi_{n}(0)=0, \phi_{n}(x)>0$.

Let a real valued function f be defined on the closed interval $[a, b]$. A function f is said to be of $\kappa \phi$-bounded variation on $[a, b]$ if there exists a positive constant C such that for any collection $\left\{I_{n}\right\}$ of nonoverlapping subintervals of $[a, b]$

$$
\sum \phi_{n}\left(\left|f\left(I_{n}\right)\right|\right) \leq C \sum \kappa\left(\left|I_{n}\right| /(b-a)\right)
$$

where $[a, b]=\bigcup I_{n}$ and $\left|I_{n}\right|$ is the length of I_{n}. The total variation of f over $[a, b]$ is defined by

$$
\kappa V_{\phi}(f)=\kappa V_{\phi}(f ; a, b)=\sup \sum \phi_{n}\left(\left|f\left(I_{n}\right)\right|\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right),
$$

where the supremum is taken over all nonoverlapping subintervals $\left\{I_{n}\right\}$ in $[a, b]$. We denote by $\kappa \phi B V$ the collection of all $\kappa \phi$-bounded variation function on $[a, b]$. We note that if f is of ϕ-bounded variation on a closed interval $[a, b]$, then f is of $\kappa \phi$-bounded variation on $[a, b]$ and $\phi B V$ is included in $\kappa \phi B V$. Let $\kappa \phi B V_{0}=\{f \in \kappa \phi B V ; f(a)=0\}$. For f in $\kappa \phi B V_{0}$, let us define the norm as in the Orlicz spaces;

$$
|\|f\||\|=\mid\| f \|_{\kappa \phi}=\inf \left\{k>0 ; \kappa V_{\phi}(f / k) \leq 1\right\} .
$$

Then $\left(\kappa \phi B V_{0},\| \| \cdot \| \mid\right)$ is a Banach space and $\kappa \phi B V$ may be a Banach space with the norm $|f(a)|+|||f-f(a)|||$.

Let a function f be defined on the interval $[a, b] . f$ is said to be $\kappa \phi$-decreasing on $[a, b]$ if there exists a positive constant C such that for any interval I in $[a, b]$

$$
\phi_{n}(|f(I)|) \leq C \quad \kappa(|I| /(b-a)) .
$$

If a function f is $\kappa \phi$-decreasing on $[a, b]$, then we have the following properties;
(1) f is of $\kappa \phi$-bounded variation,
(2) $f\left(x_{0}^{-}\right)$and $f\left(y_{0}^{-}\right)$exist for any $a \leq x_{0}<b$ and $a<y_{0} \leq b$,
(3) f is continuous on $[a, b]$
(But, κ-decreasing functions need not be continuous). Also, suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$ satisfy $\phi_{1 n}^{-1}(x) \phi_{2 n}^{1}(x) \leq$ $\phi_{3 n}^{-1}(x)$ for all n. Then for all $f \in \kappa \phi_{1} B V_{0}, g \in \kappa \phi_{2} B V_{0}, f g \in \kappa \phi_{3} B V_{0}$ and $\left|\left||f g|\left\|_{\kappa \phi_{3}} \leq 2| ||f|\right\|_{\kappa \phi_{1}}\||g|\|_{\kappa \phi_{2}}\right.\right.$, which is proved by the following.

Lemma 1. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$ satisfy, for all $n, \phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq \phi_{3 n}^{-1}(x)$. Then $\phi_{3 n}(x y) \leq \phi_{1 n}(x)+$ $\phi_{2 n}(y)$ for $x, y \geq 0$.

Proof: From the definition of $\phi_{1 n}^{-1}$, we have:

$$
\phi_{1 n}\left(\phi_{1 n}^{-1}(x)\right) \leq x \leq \phi_{1 n}^{-1}\left(\phi_{1 n}(x)\right) .
$$

Given any $x, y \geq 0$, either $\phi_{1 n}(x) \leq \phi_{2 n}(y)$ or $\phi_{1 n}(x)>\phi_{2 n}(y)$. If $\phi_{1 n}(x) \leq \phi_{2 n}(y)$ then

$$
\begin{aligned}
x y & \leq \phi_{1 n}^{-1}\left(\phi_{1 n}(x)\right) \phi_{2 n}^{-1}\left(\phi_{2 n}(y)\right) \\
& \leq \phi_{1 n}^{-1}\left(\phi_{2 n}(y)\right) \phi_{2 n}^{-1}\left(\phi_{2 n}(y)\right) \leq \phi_{3 n}^{-1}\left(\phi_{2 n}(y)\right) . \\
& \phi_{3 n}(x y) \leq \phi_{3 n}\left(\phi_{3 n}^{-1}\left(\phi_{2 n}(y)\right)\right) \leq \phi_{2 n}(y) .
\end{aligned}
$$

If $\phi_{1 n}(x)>\phi_{2 n}(y)$, a similar argument shows that $\phi_{3 n}(x) \leq \phi_{1 n}(x)$.
Therefore,

$$
\begin{aligned}
\phi_{3 n}(x y) & \leq \max \left(\phi_{1 n}(x), \phi_{2 n}(x)\right) \\
& \leq \phi_{1 n}(x)+\phi_{2 n}(y) \quad \text { for } \quad x, y \geq 0 .
\end{aligned}
$$

By the similar way as Lemma 1 , we can prove the following.
Lemma 2. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$ satisfy $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq k \phi_{3 n}^{-1}(x)$ for all n. Then there exists a constant k^{\prime} such that $\phi_{3 n}\left(x y / k^{\prime}\right) \leq \phi_{1 n}(x)+\phi_{2 n}(y)$ for any $x, y \geq 0$.

Lemma 3. For ϕ_{1}, ϕ_{2}, and ϕ_{3} as the above Lemma 2, the following are equivalent;
(1) $\lim _{x \rightarrow \infty} \sup \phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) / \phi_{3 n}^{-1}(x)<\infty$
(2) There exists a positive k such that, for all $x, y \geq x_{0} \geq 0$,

$$
\phi_{3 n}(x y / k) \leq \phi_{1 n}(x)+\phi_{2 n}(y) .
$$

Lemma 4. For ϕ_{1}, ϕ_{2} and ϕ_{3} as the above Lemma 2, the followings are equivalent ;
(1) $\lim _{x \rightarrow 0^{+}} \sup \phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) / \phi_{3 n}^{-1}(x)<\infty$,
(2) There exist numbers $k>0$ and $x_{0}>0$ such that for all $x, y \leq$ $x_{0}, \phi_{3 n}(x y / k) \leq \phi_{1 n}(x)+\phi_{2 n}(y)$.

Theorem 5. For $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$, the followings are equivalent;
(1) There exists $k>0$ such that $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1} \leq k \phi_{3 n}^{-1}(x)$ for all $x \geq 0$,
(2) There exists $k^{\prime}>0$ such that, for all $x, y \geq 0$,

$$
\phi_{3 n}\left(x y / k^{\prime}\right) \leq \phi_{1 n}(x)+\phi_{2 n}(y) .
$$

Proof: Combine Lemma 3 and 4, we obtain this result.
Theorem 6. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$ satisfy $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq k \phi_{3 n}^{-1}(x)$ for all n. Then for all $f \in \kappa \phi_{1} B V_{0}$ and $g \in \kappa \phi_{2} B V_{0}, f g / k \in \kappa \phi_{3} B V_{0}$ and $\left|\left||f g|\left\|_{\kappa \phi_{3}} \leq 2 k| ||f|| |_{\kappa \phi_{1}}| ||g|\right\|_{\kappa \phi_{2}}\right.\right.$.

Proof: Given any $I_{n} \subset[a, b]$, either $\phi_{1 n}\left(\left|F\left(I_{n}\right)\right|\right) \leq \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)$ or $\phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)>\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)$. If $\phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right) \leq \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)$, then we have the following inequality;

$$
\begin{aligned}
\left|f\left(I_{n}\right) g\left(I_{n}\right) / k\right| & =\frac{1}{k} \phi_{1 n}^{-1}\left(\phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)\right) \phi_{2 n}^{-1}\left(\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)\right) \\
& \leq \frac{1}{k} \phi_{1 n}^{-1}\left(\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)\right) \phi_{2 n}^{-1}\left(\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)\right) \\
& \leq \frac{1}{k} \cdot k \phi_{3 n}^{-1}\left(\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)\right) \\
& =\phi_{3 n}^{-1}\left(\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)\right) .
\end{aligned}
$$

Thus $\phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right)\right| / k\right) \leq \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)$. If $\phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)>\phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)$, then a similar argument shows that

$$
\phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right)\right| / k\right) \leq \phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right) .
$$

Therefore we have

$$
\begin{aligned}
& \sum \phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right)\right| / k\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right) \\
\leq & {\left[\sum \phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right)\right] } \\
& +\left[\sum \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right)\right]
\end{aligned}
$$

Thus $f g / k \in \kappa \phi_{3} B V_{0}$.
Let $\varepsilon>0$. Without loss of generality assume $\left\|\left|f\left\|_{\kappa \phi_{1}}=\left|\|g \mid\|_{\kappa \phi_{2}}=\right.\right.\right.\right.$ 1. By the convexity of $\phi_{3 n}$, we have

$$
\begin{aligned}
& \sum \phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right)\right| / 2 k(1+\varepsilon)^{2}\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right) \\
\leq & \frac{1}{2} \sum \phi_{3 n}\left(\left|f\left(I_{n}\right)\right|\left|g\left(I_{n}\right)\right| / k(1+\varepsilon)^{2}\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right) \\
\leq & \frac{1}{2} \sum \phi_{1 n}\left(\left|f\left(I_{n}\right)\right| / 1+\varepsilon\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right) \\
& +\frac{1}{2} \sum \phi_{2 n}\left(\left|g\left(I_{n}^{\prime}\right)\right| / 1+\varepsilon\right) / \sum \kappa\left(\left|I_{n}\right| /(b-a)\right) \\
\leq & \frac{1}{2}+\frac{1}{2}=1 .
\end{aligned}
$$

Thus $\kappa V \phi_{3}\left(f g / 2 k(1+\varepsilon)^{2}\right) \leq 1,\| \| g \|_{\kappa \phi_{3}} \leq 2 k(1+\varepsilon)^{2}$ and the theorem follows by letting $\varepsilon \rightarrow 0$.

Corollary 7. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=$ $\left\{\phi_{3 n}\right\}$ satisfy, for all $n, \phi_{2 n}(x) \geq \phi_{4 n}(x / k)$, where $\phi_{4 n}(x)=\sup _{y \geq 0} \mid \phi_{3 n}(x y)$ $-\phi_{1 n}(y) \mid$ for $x, y \geq 0$ and k constant. Then, for all $f \in \kappa \phi_{1} B V_{0}$ and $g \in \kappa \phi_{2} B V_{0}$, their product $f g / k \in \kappa \phi_{3} B V_{0}$ and $\left\|\|f\|_{\|^{\prime} \phi_{3}} \leq\right.$ $2 k\left|\left||f|\left\|_{\kappa \phi_{1}}| | g| |\right\|_{\kappa \phi_{2}}\right.\right.$.

Proof: For all $x, y \geq 0, \phi_{3 n}(x y) \leq \phi_{4 n}(x)+\phi_{1 n}(y)$ implies that $\phi_{3 n}(x y) \leq \phi_{1 n}(y)+\phi_{2 n}(k x)$, which implies $\phi_{3 n}(x y / k) \leq \phi_{1 n}(y)+$ $\phi_{2 n}(x)$. By Theorem 5, there exists $k>0$ such that $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq$ $k \phi_{3 n}^{-1}(x)$ for all $x \geq 0$. By the same way as Theorem 6 , we obtains this corollary.

Corollary 8. For $\phi_{1}=\left\{\phi_{1 n}\right\}$ and $\phi_{3}=\left\{\phi_{3 n}\right\}$, letting $\phi_{2 n}(y)=$ $\sup _{x \geq 0}\left(\phi_{3 n}(x y)-\phi_{1 n}(x)\right), \phi_{4 n}(x)=\sup _{p}\left(\phi_{3 n}(x y)-\phi_{2 n}(y)\right)$ and $\phi_{5 n}(y)=$ $x \geq 0$ $y \geq 0$ $\sup \left(\phi_{3 n}(x y)-\phi_{4 n}(x)\right)$ for all $n, x, y \geq 0$, then for all $f \in \kappa \phi_{1} B V_{0}$ $x \geq 0$ and $g \in \kappa \phi_{2} B V_{0}$ we have $\kappa \phi_{1} B V_{0} \subset \kappa \phi_{4} B V_{0}, \kappa \phi_{5} B V_{0}=\kappa \phi_{3} B V_{0}$ and $f g \in \kappa \phi_{3} B V_{0}$ for fixed k. Also

$$
\left|\left\|f g | \| _ { \kappa \phi _ { 3 } } \leq 2 k | | | f | \| _ { \kappa \phi _ { 1 } } | \left||g| \|_{\kappa \phi_{2}} .\right.\right.\right.
$$

Proof: Note that $\phi_{4 n}(x) \leq \phi_{1 n}(x)$ and $\phi_{5 n} \leq \phi_{3 n}(y)$ for $x, y \geq 0$. Thus $\phi_{3 n}(x y) \leq \phi_{4 n}(x)+\phi_{5 n}(y) \leq \phi_{1 n}(x)+\phi_{2 n}(y)$. By Theorem 5,
$\sup \left(\phi_{3 n}(x y)-\phi_{4 n}(x)\right)$ for all $n, x, y \geq 0$, then for all $f \in \kappa \phi_{1} B V_{0}$ $x \geq 0$
and $g \in \kappa \phi_{2} B V_{0}$ we have $\kappa \phi_{1} B V_{0} \subset \kappa \phi_{4} B V_{0}, \kappa \phi_{5} B V_{0}=\kappa \phi_{3} B V_{0}$ and d. $f g \in \kappa \phi_{3} B V_{0}$ for fixed k. Also

$$
\left|\left||f g|\left\|\left.\right|_{\kappa \phi_{3}} \leq 2 k| ||f|\right\|\left\|_{\kappa \phi_{1}}| ||g|\right\|_{\kappa \phi_{2}}\right.\right.
$$

Proof: Note that $\phi_{4 n}(x) \leq \phi_{1 n}(x)$ and $\phi_{5 n} \leq \phi_{3 n}(y)$ for $x, y \geq 0$. Thus $\phi_{3 n}(x y) \leq \phi_{4 n}(x)+\phi_{5 n}(y) \leq \phi_{1 n}(x)+\phi_{2 n}(y)$. By Theorem 5, we have $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq \phi_{3 n}^{-1}(x)$ for all $x \geq 0$, which implies the proof.

REMARK 1: The inequality $\phi_{4 n}(x) \leq \phi_{1 n}(x)$ may not be replaced by equality.

Theorem 9. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=$ $\left\{\phi_{3 n}\right\}$ satisfy $\phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq \phi_{3 n}^{1}(x)$ for all n, and there exist κ function κ_{1}, κ_{2}, and κ_{3} such that $\kappa_{1}^{-1}(x) \kappa_{2}^{-1}(x) \geq \kappa_{3}^{-1}(x)$. Then, for all $f \in \kappa_{1} \phi_{1} B V_{0}$ and $g \in \kappa_{2} \phi_{2} B V_{0}$, the product $f g / 2$ is in $\kappa_{3} \phi_{3} B V_{0}$ and

$$
\left|\left|| f g | \| | _ { \kappa _ { 3 } \phi _ { 3 } } \leq 4 | | | f | \| \left\|_ { \kappa _ { 1 } \phi _ { 1 } } \left|\|g \mid\|_{\kappa_{2} \phi_{2}}\right.\right.\right.\right.
$$

Proof: If $\left.\kappa_{1}\left(\left|I_{n}\right| / b-a\right) \leq \kappa_{2}\left(\mid I_{n}\right) / b-a\right)$, then we have that

$$
\begin{aligned}
\left|I_{n}\right| / b-a & \geq\left(\left|I_{n}\right| / b-a\right)\left(\left|I_{n}\right| / b-a\right) \\
& \geq \kappa_{1}^{-1}\left(x_{1}\left(\left|I_{n}\right| / b-a\right)\right) \kappa_{2}^{-1}\left(x_{2}\left(\left|I_{n}\right| / b-a\right)\right) \\
& \geq \kappa_{1}^{-1}\left(x_{2}\left(\left|I_{n}\right| / b-a\right)\right) \kappa_{2}^{1}\left(x_{2}\left(\left|I_{n}\right| / b-a\right)\right) \\
& \geq \kappa_{3}^{-1}\left(x_{2}\left(\left|I_{n}\right| / b-a\right)\right)
\end{aligned}
$$

which implies that

$$
\kappa_{3}\left(\left|I_{n}\right| / b-a\right) \geq \kappa_{2}\left(\left|I_{n}\right| / b-a\right)
$$

Also, if $\kappa_{1}\left(\left|I_{n}\right| / b-a\right) \geq \kappa_{2}\left(\left|I_{n}\right| / b-a\right)$, then we have

$$
\left|I_{n}\right| / b-a \geq \kappa_{3}^{-1}\left(\kappa_{1}\left(\left|I_{n}\right| / b-a\right)\right)
$$

which implies that

$$
\kappa_{3}\left(\left|I_{n}\right| / b-a\right) \geq \kappa_{1}\left(\left|I_{n}\right| / b-a\right)
$$

Therefore

$$
\begin{aligned}
\frac{\sum \phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right) / 2\right|\right)}{\sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} & \leq \frac{\sum \phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)+\sum \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)}{2 \sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{\sum \phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)+\sum \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)}{\sum \kappa_{1}\left(\left|\left(I_{n}\right)\right| / b-a\right)+\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{\sum \phi_{1 n}\left(\left|f\left(I_{n}\right)\right|\right)}{\sum \kappa_{1}\left(\left|I_{n}\right| / b-a\right)}+\frac{\sum \phi_{2 n}\left(\left|g\left(I_{n}\right)\right|\right)}{\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right)}<\infty
\end{aligned}
$$

Thus $\mathrm{fg} / 2 \in \kappa_{3} \phi_{3} B V_{0}$. Let $\varepsilon>0$. Without loss of generality, we may assume $\left|\left||f|\left\|_{\kappa_{1} \phi_{1}}=1=\left||g| \|_{\kappa_{2} \phi_{2}}\right.\right.\right.\right.$. By the convexity of $\phi_{3 n}(x)$, we have

$$
\begin{aligned}
\frac{\sum \phi_{3 n}\left(\frac{\left|f\left(I_{n}\right) g\left(I_{n}\right)\right|}{4(1+\varepsilon)^{2}}\right)}{\sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} & \leq \frac{\sum \frac{1}{4} \phi_{3 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon} \cdot \frac{\left|g\left(I_{n}\right)\right|}{1+\varepsilon}\right)}{\sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{\frac{1}{2} \sum \phi_{1 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon}\right)+\frac{1}{2} \sum \phi_{2 n}\left(\frac{\left|g\left(I_{n}\right)\right|}{1+\varepsilon}\right)}{2 \sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{d \frac{1}{2} \sum \phi_{1 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon}\right)+\frac{1}{2} \sum \phi_{2 n}\left(\frac{\left|g\left(I_{n}\right)\right|}{1+\varepsilon}\right)}{\left.\sum \kappa_{1}\left(\left|I_{n}\right|\right) / b-a\right)+\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{1}{2} \sum \phi_{1 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon}\right) \\
\sum \kappa_{1}\left(\left|I_{n}\right| b-a\right) & \frac{1}{2} \sum \phi_{2 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon}\right) \\
& \leq \frac{1}{2}\left(| | | f | \left|\kappa_{\kappa_{1} \phi_{1}}+\left|||g|| I_{\kappa_{2} \phi_{2}}\right)=1 .\right.\right.
\end{aligned}
$$

Thus $\kappa_{3} V \phi_{3}\left(f g / 4(1+\varepsilon)^{2}\right) \leq 1,\|\mid g f\|_{\kappa_{3} \phi_{3}} \leq 4(1+\varepsilon)^{2}$ and the theorem follows by letting $\varepsilon \rightarrow 0$.

Corollary 10. Under the same assumption, if $f \in \kappa_{1} \phi_{2} B V_{0}$ and $g \in \kappa_{2} \phi_{1} B V_{0}$, then the product $f g / 2$ is in $\kappa_{3} \phi_{3} B V_{0}$ and
$|||f g|||_{\kappa_{3} \phi_{3}} \leq 4| ||f|| |_{\kappa_{1} \phi_{2}}| ||g| \|_{\kappa_{2} \phi_{1}}$.
Proof:

$$
\begin{aligned}
\frac{\sum \phi_{3 n}\left(\left|f\left(I_{n}\right) g\left(I_{n}\right) / 2\right|\right)}{\sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} & \leq \frac{\sum \phi_{1 n}\left(\left|g\left(I_{n}\right)\right|\right)+\sum \phi_{2 n}\left(\left|f\left(I_{n}\right)\right|\right)}{\sum \kappa_{1}\left(\left|I_{n}\right| / b-a\right)+\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{\sum \phi_{1 n}\left(\left|g\left(I_{n}\right)\right|\right)}{\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right.}+\frac{\sum \phi_{2 n}\left(\left|f\left(I_{n}\right)\right|\right)}{\sum \kappa_{1}\left(\left|I_{n}\right| / b-a\right)}<\infty
\end{aligned}
$$

Thus $f g / 2 \in \kappa_{3} \phi_{3} B V_{0}$. Let $\varepsilon>0$. Without loss of generality, we may assume $\left|\left||f|\left\|_{\kappa_{1} \phi_{2}}=1=\left|\left||g| \|_{\kappa_{2} \phi_{1}}\right.\right.\right.\right.\right.$. By the similar way as the above,

$$
\begin{aligned}
\frac{\sum \phi_{3 n}\left(\frac{\left|f\left(I_{n}\right) g\left(I_{n}\right)\right|}{4(1+\varepsilon)^{2}}\right)}{\sum \kappa_{3}\left(\left|I_{n}\right| / b-a\right)} & \leq \frac{\frac{1}{2} \sum \phi_{2 n}\left(\frac{\left|f\left(I_{n}\right)\right|}{1+\varepsilon}\right)}{\sum \kappa_{1}\left(\left|I_{n}\right| / b-a\right)}+\frac{\frac{1}{2} \sum \phi_{1 n}\left(\frac{\left|g\left(I_{n}\right)\right|}{1+\varepsilon}\right)}{\sum \kappa_{2}\left(\left|I_{n}\right| / b-a\right)} \\
& \leq \frac{1}{2}\left(| || || |_{\kappa_{1} \phi_{2}}+\left|\left||g| \|_{\kappa_{2} \phi_{1}}\right)=1 .\right.\right.
\end{aligned}
$$

Thus $\kappa_{3} V \phi_{3}\left(f g / 4(1+\varepsilon)^{2}\right) \leq 1$. $\|\mid f g\|_{\kappa_{3} \phi_{3}} \leq 4(1+\varepsilon)^{2}$ and the corollary follows by $\varepsilon \rightarrow 0$.

Corollary 11. Suppose that $\phi_{1}=\left\{\phi_{1 n}\right\}, \phi_{2}=\left\{\phi_{2 n}\right\}$ and $\phi_{3}=$ $\left\{\phi_{3 n}\right\}$ satisfy, for all $n, \phi_{1 n}^{-1}(x) \phi_{2 n}^{-1}(x) \leq k \phi_{3 n}^{-1}(x)$, and there exist κ function κ_{1}, κ_{2} and κ_{3} such that $\kappa_{1}^{-1}(x) \kappa_{2}^{1}(x) \geq \kappa_{3}^{-1}(x)$. Then for all $f \in \kappa_{1} \phi_{1} B V_{0}$ and $g \in \kappa_{2} \phi_{2} B V_{0}$, the product $f g / 2 k$ is in $\kappa_{3} \phi_{3} B V_{0}$ and

$$
\left|\left|\left|f g\left\|\left\|_{\kappa_{3} \phi_{3}} \leq 4 k| ||f|\right\|_{\kappa_{1} \phi_{1}}\right\| g\right| \|\right|_{\kappa_{2} \phi_{2}} .\right.
$$

Remark 2: If κ_{1} and κ_{2} are κ-function, then the composite function $\kappa_{1} \circ \kappa_{2}$ is a κ-function, which is proved by the definition of κ function. For example; $\kappa_{i} \circ \kappa_{j}$ is κ-function for $i \neq j, i=1,2,3$. Here

$$
\begin{aligned}
& \kappa_{1}(x)= \begin{cases}x(1-\log x) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \\
& \kappa_{2}(x)=x^{\alpha} \quad \text { for } 0<\alpha<1,
\end{aligned}
$$

and

$$
\kappa_{3}(x)=\left(1-\frac{1}{2} \ln x\right)^{-1}
$$

We now return to the space $\kappa B V_{0}$ and $B V_{0}$ on the closed interval $[a, b]$. If $f \in B V_{0}[a, b]$, then f can be decomposed as $f=f_{1}-f_{2}$, where f_{1} and f_{2} are increasing and $f_{1}(a)=f_{2}(a)=0$. A particular example of such a decomposition is that f_{1} and f_{2} are the positive and negative variation of f, respectively, which is called the elementary decomposition of f. For any such decomposition of $f, f_{1}(b)+f_{2}(b) \geq$ $V_{a}^{b}(f)$. If it is the elementary decomposition of f, we have the equality in the above inequality. By these properties, we have an simple proof of elementary theorem as the followings;

Theorem 12. Under the concepts of the elementary decomposition, we may have that $V_{a}^{b}(f g) \leq V_{a}^{b}(f) \cdot V_{a}^{b}(g)$ for any f and g such that $f(a)=g(a)=0$.

Proof: Let $f=f_{1}-f_{2}$ and $g=g_{1}-g_{2}$ be the elementary decompositions of f and g, respectively. Then

$$
\begin{aligned}
f g & =\left(f_{1}-f_{2}\right) \cdot\left(g_{1}-g_{2}\right) \\
& =\left(f_{1} g_{1}+f_{2} g_{2}\right)-\left(f_{1} g_{2}+f_{2} g_{1}\right) .
\end{aligned}
$$

By the inequality $V_{a}^{b}(f) \leq f_{1}\left(b_{+} f_{2}(b)\right.$, we have the followings;

$$
\begin{aligned}
V_{a}^{b}(f g) & \leq\left(f_{1} g_{1}+f_{2} g_{2}\right)(b)+\left(f_{1} g_{2}+f_{2} g_{1}\right)(b) \\
& =\left(f_{1}(b)+f_{2}(b)\right)\left(g_{1}(b)+g_{2}(b)\right) \\
& =V_{a}^{b}\left(f_{1}+f_{2}\right) V_{a}^{b}\left(g_{1}+g_{2}\right) \\
& =V_{a}^{b}(f) V_{a}^{b}(g) .
\end{aligned}
$$

Corollary 13. Under the same condition as the above theorem, we have that $\kappa V_{a}^{b}(f g) \leq \kappa V_{a}^{b}(f) \cdot \kappa V_{a}^{b}(g)$ for any f and g in κV_{a}^{b} with $f(a)=g(a)=0$.

Remark 3: $B V \subsetneq \phi B V$.
Remark 4: $\kappa B V \subsetneq \kappa \phi B V$.
Remark 5: $B V \subsetneq \kappa B V$ in [].
Remark 6: $\phi B V \subsetneq \kappa \phi B V$ (By Remark 3).
Remark 7: $\kappa D \subsetneq \kappa B V$.
Remark 8: $\kappa D \subsetneq \kappa \phi D$ (By Remarks 4 and 7).

References

1. D.S. Cyphert, Generalized functions of bounded variation and their application to the theory of harmonic function, Disser. in Math Vanderbilt Univ., Tennessee (1982).
2. D.S. Cyphert and J.A. Kelingos, The decomposition of functions of bounded κ-variation into difference of κ-decreasing functions, Studia Math. LXXXI (1985), 185-195.
3. Sung Ki Kim, Functions of generalized bounded variation, Proc. 6-th workshop on pure and applied Math. Ewha Univ. (1986).
4. M.J. Schramm, Functions of ϕ-bounded variation and Riemann-Stiltjes integration, Trans. Amer. Math. Soc. 287 (1985), 49-63.
5. \qquad Topics in generalized bounded variation, Dissertation in Mat. Syracuse Univ. (1982).

Department of Mathematics
Faculty Board, Air Force Academy
Ssangsu, Namil, Cheongwon
Chungbuk, 363-840, Korea

[^0]: Received by the editors on 30 June 1989.
 1980 Mathematics subject classifications: Primary 46F.
 Supported by a grant from the Korea Science and Engineering Foundation, 1988-89.

