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A Study on the Functions of kx¢-Bounded Variations

YounGg-U Sok AND JAR-KEUN Park®

ABSTRACT. In this paper, we study some properties of gener-
alized function spaces of -, #-and x¢- bounded variations and
general bounded variations.

In defining a function of bounded variation on the closed interval
[a,b] we considered the supremum of ) |f(I.)| for every collection
{I.} of nonoverlapping subintervals of [a,b] such that [a,b] = |JI.
where f(I.) = f(yn)—f(zn), In = [Tn,Yn]. A function f is of bounded
variation on [a, 8] if V2(f) = sup Y |f(I.)| is finite. Equivalently we
could say a function is of bounded variation on the closed interval
[a, b] if there exists a positive constant C such that for every collection
{I.} of subintervals of [a,b], 3 |f(I.)] < C. A function f is said to
be k-bounded variation of [a,}] if there exists a positive constant C
such that for every collection {I,} of nonoverlapping subintervals of
(a8, $1f(In)| < 3 w(|Inl/(b — a)) where || = yn — T, In =
[Zn,yn]- On the other hand, Michael Schramm [4, 5] generalized the
above idea by considering a sequence of increasing convex function
® = {¢n} defined on [0,00); f is of ¢-bounded variation on [a,d] if
Vs(f;a,b) = sup Y, (|f(I)|) is finite. We are going to combine the
above concepts.

The introduction of the function x can be viewed as a rescaling
of lengths of subintervals in [a, b] such that the length of [a,b] is 1 if
k(1) = 1. We are now requiring through the following that « has the
following properties on [0,1];

(1) « is continuous with £(0) =0 and «(1) =1,
(2) « is concave and strictly increasing, and
(3) zﬁrg+ k(z)/z = oo.
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Let ¢ = {¢n} be a sequence of increasing convex functions defined
on nonnegative numbers and such that ¢,(0) =0, ¢é,(z) > 0.

Let areal valued function f be defined on the closed interval [a, b]. A
function f is said to be of k¢-bounded variation on [a, b] if there exists
a positive constant C' such that for any collection {I,} of nonoverlap-
ping subintervals of [a, b]

Y ¢a(lfUIa)) S C Y w([Inl/(b— a))

where [a, b] = | In and |I,,| is the length of I,. The total variation of
f over [a, b] is defined by

kVo(f) = £Vi(fra,8) = sup ) $u(|F(T))/ D £ (1Tl /(b ~ ),

where the supremum is taken over all nonoverlapping subintervals
{I»} in [a,b]. We denote by k¢ BV the collection of all k¢-bounded
variation function on [a, b]. We note that if f is of ¢-bounded variation
on a closed interval [a, b], then f is of K¢-bounded variation on [a, b]
and ¢BYV is included in k¢ BV . Let k¢BVy = {f € k¢BV; f(a) = 0}.
For f in k¢ BV}, let us define the norm as in the Orlicz spaces;

AT = 11FNllxp = inf{k > 0; £Vy(f/k) < 1}.

Then (k¢BVj, ||| - |||) is a Banach space and k¢ BV may be a Banach

space with the norm |f(a)| + |||f — f(a)|||-

Let a function f be defined on the interval [a,b]. f is said to be
k¢-decreasing on [a, b] if there exists a positive constant C such that
for any interval I in [a, b]

$a(IF(DN S C w(I1)/(b— a)).

If a function f is K¢-decreasing on [a,d], then we have the following
properties;

(1) f is of k¢-bounded variation,

(2) f(zy) and f(y, ) exist for any a < z9 < band a < yg < b,

(3) f is continuous on [a, b]
(But, k-decreasing functions need not be continuous). Also, suppose
that ¢1 = {$1n}, b2 = {$2n} and ¢3 = {¢sa} satisly ¢, (2)¢3a(2) <
¢3.(x) for all n. Then for all'f € k¢ BVy, g € kd2 BV, fg € kp3 BV,
and ||| fglllkgs < 2|||f|llxs:1119]]|xes, Which is proved by the following.
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LEMMA 1. Suppose that ¢; = {$1n}, ¢2 = {#2r} and é3 = {¢3.}
satisfy, for all n, ¢1,(2)$3,(z) < 63, (2). Then $sn(zy) < $1a(2) +
$2a(y) for 2,y 2 0.

PROOF: From the definition of ¢7,., we have:
$1n(61a (2)) < 2 < 67, (10(2))-
Given any z,y > 0, either ¢1,(z) < ¢2a(y) or 1n(z) > d20(y). K
¢1n(3) < ¢2n(y) then _
2y < $1n ($1n(2)) bz (D20 (v))
< $1n ($20(y))$7n ($20(y)) < b3n (Y20(y))-

$3n(2y) < b3n(32 (620(¥))) < b20(y)-

I ¢1n(x) > é2n(y), a similar argument shows that ¢3,(z) < d1.(2).
Therefore,

#3n(ry) < max(1n(), 2a(x))
g ¢ln($) + ¢2n(y) for T,y Z 0.

By the similar way as Lemma 1, we can prove the following.

LEMMA 2. Suppose that ¢ = {$1n}, 62 = {#2n} and s = {¢sn}
satisfy ¢ (z)dzi(z) < k3. (x) for all n. Then there exists a con-
stant k' such that ¢3n(zy/k') < ¢1n(z) + d2n(y) for any z, y > 0.

LEMMA 3. For ¢,, ¢2, and ¢3 as the above Lemma 2, the following
are equivalent;

(1) lim sup ¢1,(2)$2, (2)/b3a (2) < 00
(2) There exists a positive k such that, for all z,y > z¢ > 0,

¢3n(wy/k) < ¢ln(z) + ¢2ﬂ(y)'

LEMMA 4. For ¢1, ¢2 and ¢3 as the above Lemma 2, the followings
are equivalent ;
(1) lim sup g7} (2)d5(2)/ g () < o0,
(2) There exist numbers k > 0 and zo > 0 such that for all z,y <
Zo, P3n(zy/k) < d1a(z) + b2a(y). -
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'THEOREM 5. For ¢1 = {¢1n}, 62 = {d2n} «“and>¢a =’{¢3n'}, the

- followings are equivalent;

(1) There exists k > 0 such that ¢7, 1(:z:)q& < kés, 1(a:) for all
.z 20,
(2) There exists k' > 0 such that for all z,y > 0,

 $an(@y/k) < ¢1a(®) + d2av). |

PROOF: Combine Lemma 3 and 4, we obtain this result.

THEOREM 6.. Suppose that ¢; = {$1,}, ¢’2 {¢2} and ¢3 = {3n}
satisfy ¢1-nl(m)¢2n (z) < k¢35l (x) for all n. Then for all f € k¢ BVy

and g € k$2BVa, fg/k € np3BVo and |||fglllxgs < 2Kl||flllxg: |llglllxss-

PROOF: Given any I, C [a b], either 1,(|F(1n)]) < ¢2n(|y(In)|)
or $1a(|f(Ln)l) > $2n(l9(Ln)]). ¥ d1a(|f(In)]) < b2n(lg(In )I), then

we have the following inequality;

|F(In)g(La)/ k| = ¢1 ‘(¢1n(|f(I )))é3 1(¢2n(|g(1n)|))
_—¢IJ(¢2n(|9(In)l))¢ H2n(l9(Za))))
< 7 k32 ($an(l9(Tn)])) |
= ¢3m ($2n(l9(Tn)]))-
Thus ¢3a(|f(In)9(In)|/k) < $2n(9(In)))- B $1a(lf(Zn)]) > b2n(lg(Zn)]),

then a similar argument shows that

$an(|£(L)gIn) /) < b1a(1F ()

Therefore we have

3 dan(1F Lo /)] Y K(1Tal (5~ @)
<32 1n(F N/ 3 R(1al/ (b - a))]
+ [ 3 @2allo(Ta)D/ Y w1l (b~ 0))]
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Thus fg/k € kp3BV}.
Let € > 0. Without loss of generality assume |||f|||x¢, = |||9]||x¢, =
1. By the convexity of ¢3,, we have

3 ban(IFTn)a ()| /2K (1 + €)2)/ 3 K(ILa1/ (b — @)
<3 3 on(lF g En)/H1 + €70 3 w1l /(5 — )
<3 3 bn(F /1 +e)/ 3 (Ll /(b - @)

+3 Y danllo(l/1+ &)/ 3 s(ILal/ (b — )
1 1 ’ |

2+-2"'1

Thus KV gs(f9/2k(1 + €)) < 1, lIfolllegs < 2k(1 + )? and the
theorem follows by letting ¢ — 0.

COROLLARY 7. Suppose that ¢; = {$1,}, ¢2 = {#2n} and ¢35 =
{P3n} satisfy, for alln, pan(z) > ban(x/k), where ¢pyn(z) = sup |¢3n(zy)

— é12(y)| for 1 z, y > 0 and k constant. Then, for all f E fc¢lBVo
and g € mﬁgBVb, their product fg/k € fc¢3BVo and |||fg|llkps <
2E[[1 w1 lllglllxg.-

PROOF: For all z, y > 0, d3n(zy) < dan(z) + ¢1n(y) implies that
¢3n(zy) < ¢1n(y) + ¢2n(kx), which implies ¢3n(my/k) < ¢ln(y) +
$2n(z). By Theorem 5, there exists k£ > 0 such that ¢7, l(:7:)(15;"1(:&) <

ksl (z) for all z > 0. By the same way as Theorem 6, we obtains
this corollary.

COROLLARY 8. For ¢; = {¢1} and ¢3 = {¢3n}, letting d2n(y) =
Sup(¢3n($y) $1a(2)), dan(z) = SuP(¢3n(-’Ey) $2n(y)) and ¢s5a(y) =

sup(¢3,,(:cy) Pan(z)) for all n, z, y > 0, then for all f € n¢1BVb

a.nd g € k$2BVy we have k¢ BVy C k¢4 BVyy, ks BVy = k3 BV, and
fg € kp3BV, for fixed k. Also

I £9lllxgs < 2K[1|f1llxg1 lllglllxg,-

PROOF: Note that ¢sn(z) < 1n(z) and dsn < dan(y) for 7, y > 0.
Thus ¢3n(zy) < ¢4n(m) + ¢5n(y) < ¢ln($) + ?Zn(y)° ByﬂTheorem 9,
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sup(¢sn(zy) — Pan(x)) for all n, x, y > 0, then for all f € kp1 BV
z20

and g € k¢ BV, we have k$1BVy C k¢4 BVy, kés BVy = k¢3 BV, and
fg € kg3 BV, for fixed k. Also

£ glllxgs < 2E1IIf[1lng: 1lg1llxg,-

PROOF: Note that ¢4,(z) < ¢1,(z) and ¢5, < ¢d3a(y) for z,y > 0.
Thus ¢3n(zy) < dan(z) + d5n(y) < d1a(T) + d24(y). By Theorem 5,
we have ¢7,)(z)dza(2z) < d3a(z) for all z > 0, which implies the
proof.

REMARK 1: The inequality ¢4n(z) < ¢1n(z) may not be replaced
by equality.

THEOREM 9. Suppose that ¢1 = {@1n}, ¢2 = {d2n} and ¢3 =
{#3n} satisfy ¢7,}(z)d7.(z) < ¢3n(z) for.all n, and there exist k-
function k1, k3, and k3 such that k7'(z)k3'(z) > k3" (z). Then, for
all f € k1¢1BVy and g € ka2 BV}, the product fg/2 is in kK3¢3 BV

and
1fglllxsgs < 41| f1lIx161 ll9lllxz62-
PROOF: If k,(|I.|/b — a) < k2(|15)/b — a), then we have that

\In|/b—a 2 (|In]/b = a)(|In| /b — a)
2 K7 (21([Ial/b = @)y (22(|1nl /b~ @)
> &7 (z2(|Ial/b — @) sz (z2(|Ial /b a))
> k3" (z2(|Ia|/b — a)),

which implies that
ws(1Lal/b = a) 2 m(|Tal/b— a).
Also, if k1(|I,|/b— a) > K3(|In|/b — a), then we have
(al/b— a2 657 (k2(IInl/b ~ a)),
which implies that

* #3(|Lal/b— @) > k1 (1] /b~ a).
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Therefore
2 $an(If(In)9(In)/2]) o X $1n(If(In)]) + 3 d2n(l9(1n)])
2 3({Inl/b—a) 23" k3(|In]/b - a)

o _ Tl + X danllan))
= 2 r(|(Tn)l/b = a) + 3o k2(|Ia| /b - a)
< 2 $1a(fZn)]) + > $2n(l9(In)])
, E'ﬁl(‘f |/b—a) = 3 &2(|In|/b—a)
Thus fg/2 € k3¢3BVy. Let € > 0. Without loss of generality, we may

< 00

;.ssume I lki¢s = 1 = |||glllx;4,- By the convexity of ¢zn(z), we
(M) 1, ()l leda)
Z¢3n( 4(1+€)2 ) <‘EZ¢3n( Tte . 1+€)
Sa(lb—a) > Srs(Ll/b=a)
1 |f(Zn)l lg(Zx)|
<§E¢ln(1+e)+ Z¢n( +€)
T 23 x3(|In]/b — a)

1 | f(In)] lg(In)|
d72¢‘"( 1+e )+ Z¢"(1+6)

> k1(|Ia])/b = a) + 3° k2 (|1a] /b — @)
|f(In)| 1 |f(1n)]

Z¢ ( 1+e¢ ) N §Z¢2"( 1+e )

> k1(|In]b - a) > k2(|Ialb — a)

1
< (A 1llkags + 1llglllsags) = 1.

Thus k3Vé3(fg/4(1+€)%) < 1, |||9llxs4s < 4(14€)? and the theorem
follows by letting € — 0.

- COROLLARY 10. Under the same assumption, if f € k1¢2BV,y and
g € k2¢1BV,, then the product fg/2 is in k3¢3 BV, and

|”fg|||'€s¢a < 4!”f“|'¢1¢2|”9|“~2¢1'

PROOF:
Y 63n(1f (In)g(In )/2|) 2 S1a(l9(In)]) + 3 d2n(|f(In)])
> #3(|In I/b—a) Em(lI /6 —a)+ T k2(|Ia]/b - a)
< 2 S1n(lg(In)]) + 2 $en(If(Tn)])
Enz(lf I/b—a Y ri(|Ia|/b— a)

< o0



62 YONG-U SOK AND JAE-KEUN PARK

Thus fg/2 € k3¢3BV,. Let € > 0. Without loss of generality, we may

assume |||f]||x;¢; =1 = |||gl||x;4,- By the similar way as the above,
[fn)9(Ta)\ 1 |f(Zn)] l9(Zn)|
z¢3"( 4(1 + €)? )<22¢2"(1+e) 5 2 b1 (1+e)

(AT R o A7 R S G ATy
< 51 llesgs + Mlglllasgs) = 1.

Thus x3Véa(fg/4(1 +€)?) < 1. |||f9]llxsps < 4(1 + €)? and the
corollary follows by ¢ — 0.

COROLLARY 11. Suppose that ¢; = {¢1n}, #2 = {d2n} and ¢3 =
{$sn) satisty, for all n, $13(2)633(2) < Féi(2), and there exist r-
function ki, k2 and k3 such that ki ((1!)'62(:11) > Ky (m) Then for
all f € k1¢.BV, and g € k3¢, BV}, the product fg/Zk is in k3¢3 BV}
and

1 £9lIxsgs < 4Kl f1l1x18: 1119111202

REMARK 2: If k; and k, are k-function, then the composite func-
tion k; o kg is a x-function, which is proved by the definition of «-
function. For example; «; o k; is k-function for 7 # j, 1 = 1,2,3.
Here

:v(l—logw) ifz#0
m(@) = if o =0
K,g(:c)=:c for0<a<l,

and

o= (1-1ms)”

We now return to the space kBVy and BVj on the closed interval
[a,b]. If f € BVy|a, b], then f can be decomposed as f = fi — fa,
where f; and f, are increasing and f;(a) = fa(a) = 0. A particular
example of such a decomposition is that f; and f, are the positive and
negative variation of f, respectively, which is called the elementary
decomposition of f. For any such decomposition of f, fi1(d)+ f2(d) >
Vi(f ). If it is the elementary decomposition of f, we have the equality
in the above inequality. By these properties, we have an simple proof
of elementary theorem as the followings;
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THEOREM 12. Under the concepts of the elementary decomposi-
tion, we may have that V2(fg) < V}(f)- V2(g) for any f and g such
that f(a) = g(a) = 0.

PROOF: Let f = fi — forand g = g1 — g2 be the elementary decom-
positions of f and g, respectively. Then

fa=(fi = f2) (91— g2)
= (fi91 + f292) — (f192 + fagn).

By the inequality V2(f) < fi(b+ f2(b), we have the followings;

V2(f9) € (fi91 + F292)(b) + (fig2 + f291)(D)
= (f1(b) + f2(b))(91(d) + 92(?))
=V2(fi + f2)Vi(91 + g2)
= V2(F)Vi(g).

COROLLARY 13. Under the same condition as the above theorem,
we have that kV?(fg) < kV2(f)-kV2(g) for any f and g in kV}? with
f(a) =g(a) =0.

REMARK 3: BV C ¢BV.

REMARK 4: kBV C k¢BV.

REMARK 5: BV € kBV in [].

REMARK 6: ¢BV C k¢BV (By Remark 3).

REMARK 7: kD C kBV.

REMARK 8: «D C k¢D (By Remarks 4 and 7).
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