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A Note on Public Key Cryptosystem

S. Hahn

This is an extended version of the talk the author gave 互t annual 
meeting of Choong-chung mathematical society, 1989. The aim of 
this paper is to explain the so called RSA public key cryptosystem 
assuming minimum background. Currently, it is considered to be one 
of the safest cryptosystem.

First we need some concepts from complexity theory. Suppose there 
is an algorithm A. That algorithm will work with some initial data 
of length N (Think of a computer program to which a user inputs 
a number using binary expression.). If the total amount of neces­
sary operations to finish the algorithm with given data is bounded 
from above by a certain polynomial of TV, we call the algorithm A 
has polynomial running time. If the total amount of necessary op­
erations is bounded from above by a polynomial of exp(N), we call 
the algorithm A has exponential running time. Of course there might 
be an algorithm which has both polynomial and exponential running 
time. Generally speaking, most algorithms which have polynomial 
running time are within the reach of the computing speed of any su­
percomputer of current decade. There are several problems which 
have algorithms with polynomial running time. Examples are linear 
programming, factorization of polynomials with integer coefficients 
over the integer ring. On the contrary, it is an open question whether 
there exists an algorithm which will factorize integers in polynomial 
time. About this very deep question, most opinions are that there is 
no such algorithm.

The RSA system-invented by Rivest, Shamir, and Adleman-is based 
on the conjecture of the non-existence of integer factorization algo­
rithm with polynomial running time. Let's see the idea behind the 
RSA system;
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Choose two large prime integers p and q. Generating two hundred 
decimal digits prime will be done within a single day by methods of 
Rumely or Atkin. Moreover for practical purposes it looks like that it 
is not necessary to prove that the chosen integers are prime if those 
numbers passe several pseudo-prime tests.

Let r = pq. The security of RSA system depends on the fact that 
r is very hard to factorize without knowing p or q. Now each user i 
does the same thing, i.e. choose their own p,, g,, and r,. User i knows 
(/>(ri) = (pg —1)(贝一1) because he constructed n, where(j> is Euler's(j> 
function, but other than user i, nobody knows It is proved that 
knowing <^(r,) is equivalent to knowing the factorization of r. User i 
selects a random integer s so that gcd(7、,s。= 1. User i computes 
ti so that Siti = 1 mod ^(r>). This can be done by Eu시id's division 
algorithm very easily. Now user i publishes r, and & only. This is 
same as publishing the encryption algorithm which we are going to 
explain.

Encryption algorithm is as follows: Suppose user j wants to send 
a message to user i in secret. User j changes his message into binary 
string. Cut his string into pieces so that each piece is smaller than 
r, as a number. Let M be one of those pieces. User j changes his 
M into E by E = MSi mod r, and send E)instead of M, to user i. 
User i recovers M by computing Efi = M3iti = M mod r, by Euler's 
theorem. Check that even if gcd(Af, r,) is not one, still user i recovers 
M from E. All this modulo calculations will be done very fast in a 
computer. For example try 22 +1 mod 19.

Now lefs look at the RSA system more closely. When there is an 
intruder, he will certainly try to factorize published 七.So we have 
to consider how large the integer r, has to be. The author think 
that National Security Agency of USA is capable of factorizing one 
hundred decimal digits integer within a day. However as the number 
of digits increase the expected running grows fast, and choosing pi 
and qi to have one hundred decimal digits each seems to keep the 
secret for considerably long time. There is another famous attack 
which does not require the factorization of r,. Suppose that the order 
of Si modulo <^(r,) is quite small. Then an intruder can recover M 
from E by successively computing E3i, E% and so on. This is because 
ti = $은 mod。(俨j) for some small integer a. So each user of the system 
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has to avoid such situation. The order of s’ modulo ^(r>) is a divisor 
of ©(©(<))- So choose pi and 虫 so that p： — 1 = 2」Pi3 and q% — 1 = 
2Q1Q2 where R, P2^ Qi, and Q2 are primes of size about 質;".Then 
Si mod ©(質j) will have order two or order not smaller that IO40 for 
our choice of hundred decimal digits pi and

Note that there axe some un-concealable messages. Trivial example 
are M = 0, M = 1, and M = n — 1. Suppose that MSi = M mod r,. 
then M8^1 = 1 mod r,. Recall that 我 is trivially odd because 
gcd(3j, ^(r,)) = 1. Since the unit group of the ring Z/(r,) is iso­
morphic to the group Z/(pj — 1)® Z/(g, — 1), we see that there are at 
least nine un-concealable messages. It is easily seen that if someone 
knows any of the remaining six un-concealable messages, then he can 
break the system of user i. So user i has to make sure that those six 
messages do not appear in plain ordinary language.

Finally there is another problem an intruder may cause. Since the 
encryption algorithm is published, anyone can send false message to 
user i to confuse him. Even if the message from user j is legitimate, 
user i may reject the message suspecting the message is a false one 
or user i may reject the message if he does not like the content of the 
message and justify his decision by saying it could be a false one. Also 
user j may claim that he did not sent a certain message even thouth 
actually he sent it. The theory of digital signatures were invented to 
prevent such situation. When sending the secret message E to user i, 
user j sends his name J (or his address or whatever identification mark 
of user j) after transforming into S = J亏 mod rj using his secret key 
tj- After receiving E and S, user i can check whether S% = J亏勺= 
J mod rj using published Sj. Note that forging digital signature S is 
same as computing root of J mod rj because S% = J mod rj. 
And it is also a hard problem believed at the same level of difficulty 
with integer factorization problem. So digital signature S will certify 
the legitimacy of the message E.

There are several variations of RSA system using, for example, ma­
trix codes, algebraic number fields, or elliptic curves. But their the­
oretical security has not been studied yet. Also from practical point 
of view, interactive proof may be more suitable in many situations 
because it is easier to generate and easier to change from time to time 
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though it takes more time in sending and receiving measages.
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