JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 2, June 1989

Ersatz Chern Polynomials*

SUNGPYO HONG AND SUNGYUN LEE

ABSTRACT. Some kinematic formulas of the Ersatz Chern polynomial and the generalized volume function are derived.

1. Introduction

In [4] Gray defined the Ersatz Chern polynomial k(P,t) for all compact Riemannian manifolds P. This polynomial reflects many properties of Chern forms of a Kähler manifold. The polynomial k(P,t)arises natually from the study Weyl's tube formula. The following formulas ([4]) express the remarkable properties of the Ersatz Chern polynomial.

Let P and Q be Riemannian manifolds for which the Ersatz Chern polynomial is defined. Then

(1)
$$k(P \times Q, t) = k(P, t)k(Q, t),$$

(2) $k(\widetilde{P},t) = sk(P,t).$

Here $P \times Q$ is the Reimannian product of P and Q, and \tilde{P} is a s-fold covering $\tilde{P} \to P$.

The Ersatz Chern polynomial also has a simple relation with the generalized volume functions ([4])

(3)
$$k(P,t) = e^{-\pi r^2} \sum_{n-p = \text{even}} V_P^{\mathbf{R}^n}(r,t).$$

To explain k(P,t) and $V_P^{\mathbf{R}^n}(r,t)$ let us look at Weyl's tube formula ([8]) for the volume of the tube of radius r about a compact

Received by the editors on 10 December 1988.

¹⁹⁸⁰ Mathematics subject classifications: Primary 53C20; Secondary 53C65. *Partially supported by KOSEF.

p-dimensional submanifold P of \mathbb{R}^n with the curvature tensor \mathbb{R}^P (briefly $P \subset \mathbb{R}^n$)

(4)
$$V_P^{\mathbf{R}^n}(r) = \sum_{c=0}^{\left\lfloor \frac{p}{2} \right\rfloor} \frac{k_{2c}(R^P)(\pi r^2)^{\frac{1}{2}(n-p)+c}}{(2\pi)^c(\frac{1}{2}(n-p)+c)!}.$$

Then the Ersatz Chern polynomial $k(\mathbb{R}^{P}, t)$ (briefly k(P, t)) is defined by

(5)
$$k(R^P,t) = \sum_{c=0}^{\left[\frac{p}{2}\right]} k_{2c}(R^P)t^c$$

and the generalized volume function is defined by

(6)
$$V_P^{\mathbf{R}^n}(r,t) = \sum_{c=0}^{\left[\frac{p}{2}\right]} \frac{k_{2c}(R^P)t^c(\pi r^2)^{\frac{1}{2}(n-p)+c}}{(2\pi)^c(\frac{1}{2}(n-p)+c)!}.$$

For the definition of integral invariant $k_{2c}(\mathbb{R}^P)$ (briefly $k_{2c}(\mathbb{P})$) see (12) in § 2.

It is important to observe that if P is not given as a submanifold of \mathbf{R}^n then (4) can be regarded as a *definition*, and (3) should be read with this interpretation.

In this article we study the Ersatz Chern polynomial and the generalized volume function from the integro-geometric point of view. We shall prove the following.

THEOREM 1. Let $P \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^n$ be compact manifolds. Let dg be the standard kinematic density on the group of proper motions of \mathbb{R}^n . If $0 \leq 2c \leq p+q-n$, then

(7)
$$\int k(P \cap gQ, t) dg = \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c,i} k_{2i}(P) k_{2c-2i}(Q) t^{c}.$$

with constants $d_{c,i}$ depending on p, q, n, c and i (see the formula (7) in § 3). We also have

(8)
$$\sum_{p+q-n-m=\text{even}} \int V_{p\cap gQ}^{\mathbf{R}^{m}}(r,t) \, dg$$
$$= e^{\pi r^{2}} \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c,i} k_{2i}(P) k_{2c-2i}(Q) t^{c}$$

The second purpose of this article is to study the polynomial $k(\mathbb{R}^{P} - K, t)$ for $P \subset \mathbf{E}^{n}(K)$, where $\mathbf{E}^{n}(K)$ is *n*-dimensional non-Euclidean space of constant curvature K (with the curvature tensor $\mathbb{R}^{\mathbf{E}^{n}(K)}$, briefly K). In this case $k(\mathbb{R}^{P} - K, t)$, which is still called the *Ersatz* Chern polynomial, is defined by

(9)
$$k(R^P - K, t) = \sum_{c=0}^{\left[\frac{p}{2}\right]} k_{2c}(R^P - K)t^{2c}.$$

Then we have the following.

THEOREM 2. For $P \subset E^n(K_1)$ and $Q \subset E^n(K_2)$

(10)
$$k(R^{P \times Q} - K_1 \times K_2, t) = k(R^P - K_1, t)k(R^Q - K_2, t).$$

THEOREM 3. Let dg be the standard kinematic density on the group of proper motions of $\mathbf{E}^{n}(K)$. Let $P \subset \mathbf{E}^{n}(K)$ and $Q \subset E^{n}(K)$. If $0 \leq 2c \leq p + q - n$, then (11)

$$\int k(R^{P\cap gQ} - K, t) \, dg = \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c,i} k_{2i}(R^P - K) k_{2c-2i}(R^Q - K) t^c.$$

REMARK: The kinematic density dg in (7) is normalized so that the total measure of the group of proper motions of \mathbf{R}^n is equal to $O_n O_{n-1} \cdots O_2$, where $O_n = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$ is the volume of the unit sphere $S^{n-1}(1)$ in \mathbf{R}^n . Similarly dg in (11) is normalized so that $\int dg = O_n O_{n-1} \cdots O_2$ (see [1] for details).

2. Preliminaries

Let P be a compact p-dimensional Reimannian manifold with the Riemannian curvature tensor \mathbb{R}^P . To explain the integral invariants $k_{2c}(\mathbb{R}^P)$ (briefly $k_{2c}(P)$), $0 \leq 2c \leq p$, it will be convenient to use the notations of [2, 3].

Let R be a tensor field on P of the same type as the curvature tensor field on P and having the same symmetries. R is called a *curvaturelike* tensor field on P. It is possible to define the c-th power of R. The definition can be given inductively via $R^0 = 1$ and

$$R^{c}(x_{1} \wedge \cdots \wedge x_{2c})(y_{1} \wedge \cdots \wedge y_{2c})$$

$$= \sum_{i,j,k,l=1}^{2c} (-1)^{i+j+k+l} R_{x_{i}x_{j}x_{k}x_{l}} R^{c-1}(x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge \hat{x}_{j})$$

$$\wedge \cdots \wedge x_{2c})(y_1 \wedge \cdots \wedge \hat{y}_k \wedge \cdots \wedge \hat{y}_l \wedge \cdots \wedge y_{2c}),$$

where x_1, \ldots, y_{2c} are tangent vectors to P. Then the complete contraction of R^c is

$$C^{2c}(R^c) = \sum_{a_1,\ldots,a_{2c}=1}^p R^c(e_{a_1}\wedge\cdots\wedge e_{a_{2c}})(e_{a_1}\wedge\cdots\wedge e_{a_{2c}}),$$

where $\{e_1, \ldots, e_p\}$ is any orthonormal frame on P. We put

(12)
$$k_{2c}(R) = \frac{1}{c!(2c)!} \int_P C^{2c}(R^c) \, dP,$$

where dP is the volume element of P.

Next we recall Chern's kinematic formula in Euclidean space ([1]). Let P and Q be two compact embedded submanifolds of \mathbb{R}^n of respective dimensions p and q with $p + q - n \ge 0$. Let dg be the standard kinematic density on the group of proper motions of \mathbb{R}^n . Chern considered the integral invariants $\mu_e(\mathbb{R}^P)$ (briefly $\mu_e(P)$) which are related by

(13)
$$\mu_e(P) = \frac{2^{\frac{e}{2}}(p-e)! \left(\frac{e}{2}\right)!}{p!} k_e(P).$$

4

If $0 \le e$ even $\le p + q - n$, then

(14)
$$\int \mu_e(P \cap gQ) \, dg = \sum_{0 \leq i \text{ even } \leq e} c_i \mu_i(P) \mu_{e-i}(Q),$$

where constants c_i depending only on p, q, n and e are given by ([7])

(15)
$$c_{i} = \frac{O_{n+1} \cdots O_{2} \left(\frac{O_{p+q-n+1}O_{p+q-n+2}(\frac{e}{2})!}{O_{p+q-n-e+2}} \right)}{\left(\frac{O_{p+1}O_{p+2}(\frac{i}{2})!}{O_{p-i+2}} \right) \left(\frac{O_{q+1}O_{q+2}(\frac{e-i}{2})!}{O_{q-e+i+2}} \right)}.$$

There is also a non-Euclidean version of Chern's kinematic formula ([6]). Let P and Q be two compact embedded submanifolds of $\mathbf{E}^n(K)$ and dg the standard kinematic density on the group of proper motions of $\mathbf{E}^n(K)$. If $0 \le e$ even $\le p + q - n$, then

(16)
$$\int \mu_e(R^{P\cap gQ}-K)\,dg = \sum_{0\leq i \text{ even }\leq e} c_i\mu_i(R^P-K)\mu_{e-i}(R^Q-K),$$

where constants c_i are given by (14). Here $\mu_e(R^P - K)$ is defined by $\mu_e(R^P)$ except that R^P is replaced by $R^P - K$. Note that $R^P - K$ is a curvaturelike tensor field on $P \subset \mathbf{E}^n(K)$.

3. Proof of Theorems

Proof of Theorem 1. Let $P \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^n$. In order to derive

(7) we combine (5) and (14) using (13) and (15). Then we have

$$\int k(P \cap gQ, t) dg$$

$$= \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} t^{c} \int k_{2c}(P \cap gQ) dg$$

$$= \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \frac{t^{c}(p+q-n)!}{2^{c}(p+q-n-2c)! c!} \int \mu_{2c}(P \cap gQ) dg$$

$$= \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \frac{t^{c}(p+q-n)!}{2^{c}(p+q-n-2c)! c!} \sum_{i=0}^{c} c_{i}\mu_{2i}(P)\mu_{2c-2i}(Q)$$

$$= \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c,i}k_{2i}(P)k_{2c-2i}(Q)t^{c},$$

where

(17)

 $d_{c,i}$

$$=\frac{O_{n+1}\cdots O_2 O_{p+q-n+1} O_{p+q-n+2} O_{p-2i+2} O_{q-2c+2i+2} (p+q-n)! (p-2i)! (q-2c+2i)!}{O_{p+q-n-2c+2} O_{p+1} O_{p+2} O_{q+1} O_{q+2} (p+q-n-2c)! p! q!}.$$

Next we combine (3) and (7) to show (8). Then we have

$$\sum_{p+q-n-m=\text{even}} \int V_{P\cap gQ}^{\mathbf{R}^{m}}(r,t) \, dg$$

= $e^{\pi r^{2}} \int k(P \cap gQ, t) \, dg$
= $e^{\pi r^{2}} \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c,i} k_{2i}(P) k_{2c-2i}(Q) T^{C}$

Proof of Theorems 2 and 3. The formula (10) comes from

(18)
$$k_{2c}(R^{P\times Q} - K_1 \times K_2) = \sum_{i=0}^{c} k_{2i}(R^P - K_1)k_{2c-2i}(R^Q - K_2),$$

of which proof can be found, for example, in [5].

Finally the formula (11) can be obtained by combining (10) and (16). The derivation is similar to that of (7).

ERSATZ CHARN POLYNOMIALS

References

- S. Chern, On the kinematic formula in intergral geometry, J. Math. Mech. 16 (1966), 101-118.
- [2] A. Gray, A generalization of the theorem of F. Schur, J. Math. Soc. Japan 21 (1969), 454-457.
- [3] _____, Some relations between curvature and characteristic classes, Math. Ann. 184 (1970), 257-267.
- [4] _____, The Ersatz Chern polynomial and Weyl's tube formula, (to appear).
- [5] A. Gray and S. Lee, *Product formulas for tubes*, Proceedings of the conference on differential geometry and its applications, Nove Mesto (1983), 77-85.
- [6] S. Lee, Kinematic formula and tube formula in spaces of constant curvatures, (to appear).
- [7] A. Nijenhuis, On Chern's kinematic formula in integral geometry, J. Differential Geom. 9 (1974), 475-482.
- [8] H. Weyl, On the volumes of tubes, Amer. J. Math. 61 (1939), 471-472.

Department of Mathematics Pohang Institute of Science and Technology Pohang, 790-330, Korea and Mathematics Research Center Korea Institute of Technology Taejeon, 305-701, Korea