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Ersétz Chern Polynomials*

SuNGPYO HONG AND SUNGYUN LEE

ABSTRACT. Some kinematic formulas of the Ersatz Chern poly-
nomial and the generalized volume function are derived.

1. Introduction

In [4] Gray defined the Ersatz Chern polynomial k(P,t) for all com-
pact Riemannian manifolds P. This polynomial reflects many prop-
erties of Chern forms of a Kahler manifold. The polynomial k(P,t)
arises natually from the study Weyl’s tube formula. The following
formulas ([4]) express the remarkable properties of the Ersatz Chern

polynomial.
Let P and @ be Riemannian manifolds for which the Ersatz Chern
polynomial is defined. Then

(1) k(P x Q,t) = k(P,1)k(Q,1),

- @) | k(P,t) = sk(P,1).

Here P X @ is the Reimannian product of P and @, and Pis a s-fold

covering P — P.
The Ersatz Chern polynomial also has a simple relation with the
generalized volume functions ([4])

(3) KPt) =" S VE ().

n—p=even

To explain k(P,t) and VR (r,t) let us look at Weyl’s tube for-
‘mula ([8]) for the volume of the tube of radius r about a compact
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p-dimensional submanifold P of R™ with the curvature tensor RY
(briefly P C R™)

n [;] P\(7r2 $(n—p)+c
@ VE ()= Y BetfL )

o @reGn-p)+ol

Then the Ersatz Chern polynomial k(RF,t) (briefly k(P,t)) is defined
by

[5]
(5) K(RP,t) =) kye(RP)t°

c=0

and the generalized volume function is defined by

n [%] Pyte(np2 $(n—p)+c
©) VE (rt) = Y M)

S (@m)e(z(n—p)+o)

For the definition of integral invariant kzc(RP ) (briefly kac(P)) see
(12) in § 2.

It is important to observe that if P is not given as a submanifold of
R" then (4) can be regarded as a definition, and (3) should be read
with this interpretation. '

In this article we study the Ersatz Chern polynomial and the gener-
alized volume function from the integro-geometric point of view. We
shall prove the following.

THEOREM 1. Let P C R™ and Q C R"™ be compact manifolds. Let
dg be the standard kinematic density on the group of proper motions
of R". f0<2c<p+q—n, then

[=5==] .

M [MPneQdg= 3 Y desku(Phrc-n(@F

c=0 =0
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with constants d. ; depending on p, ¢, n, c and ¢ (see the formula (7)
in § 3). We also have

® > [Vt

p+q_n m=even
] .
=e™ Z ch,ikzi(P)k2°—2‘(Q)tc°

c=0 =0

The second purpose of this article is to study the polynomial k(RP —
K,t) for P C E*(K), where E*(K) is n-dimensional non-Euclidean
space of constant curvature K (with the curvature tensor RE"(K)
briefly K). In this case k(RF — K, t), which is still called the Ersatz
Chern polynomaal, is defined by

(4]
(9) K(RP — K,t) =Y kao(RP — K)t.

c=0
Then we have the following.
THEOREM 2. For P C E™(K,) and Q C E™"(K3)

(10) k(RP*? — K, x K,,t) = k(RP — K;,t)k(R® — K>, ).

THEOREM 3. Let dg be the standard kinematic density on the
group of proper motions of E*(K). Let P C E*(K) and Q C E"(K).
If0<2c<p+q—n, then
(11)

[e£4=2]
/ KRFMO—K,t)ydg= Y Y deiksi( RP = K)kze_2i(R? - K)t°.
c=0 =0

REMARK: The kinematic density dg in (7) is normalized so that
the total measure of the group of proper motions of R" is equal to

0n,Opn—1 - - O2, where O, I‘ ( ) is the volume of the unit sphere
S™~1(1) in R™. Similarly dg in (11) is normalized so that [ dg =
0nOp—1 -+ O3 (see [1] for details).
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2. Preliminaries

Let P be a compact p-dimensional Reimannian manifold with the
Riemannian curvature tensor RP. To explain the integral invariants
kz2.(RP) (briefly k2c(P)), 0 < 2¢ < p, it will be convenient to use the
notations of [2, 3].

Let R be a tensor field on P of the same type as the curvature
tensor field on P and having the same symmetries. R is called a
curvaturelike tensor field on P. It is possible to define the c-th power
of R. The definition can be given inductively via R® = 1 and

Ré(zy A+ Azac)(ya A+ - Ayae)
2c
- Z (_1)t+1+k+1Rz"3’zkz‘Rc—l(xl A ¢ A :i' /\ ¢ A i]
i,5,k,1=1

Ao Azo) i Ao AGe A= AL A=+ A yae),

where z,,...,ys. are tangent vectors to P. Then the complete con-
traction of R¢ is

P
C2C(Rc) = Z Rc(eal A A eazc)(eal ARRRRA eazc)7

al ,...,02¢=1

where {e;,...,€e,} is any orthonormal frame on P.
We put
| 1
12 c — 2¢c/ pc
(12 kae(B) = g [ O (R 4P

where dP is the volume element of P.

Next we recall Chern’s kinematic formula in Euclidean space ([1]).
Let P and @ be two compact embedded submanifolds of R™ of re-
spective dimensions p and ¢ with p+ ¢ — n > 0. Let dg be the stan-
dard kinematic density on the group of proper motions of R". Chern
considered the integral invariants u.(RF) (briefly p.(P)) which are
related by

$
(13) pe(P) = 222

_pi)! (%)' ke(P).



ERSATZ CHARN POLYNOMIALS 5

If0<eeven <p+q—n,then

19 [rPro@ds= Y cm(Phe-i(@),

0<i even <e

where constants ¢; depending only on p, ¢, n and e are given by ([7])

Ons1--0s (0p+q-n+10p+q—n+2(%)!)

(15) o ¢ = . Op+q—n—e+2 ' .
- Op+10p+2(3)! ) [ Oa10442 (579)')
Op—it+2 Og—c+i+2

There is also a non-Euclidean version of Chern’s kinematic formula
([6]). Let P and Q be two compact embedded submanifolds of E*(K)
and dg the standard kinematic density on the group of proper motions
of E"(K). f0<eeven <p+q—n,then

(1) [(RM-Kydg= 3 em(R" - K)pe-i(RO-K),

0<t even <e

where constants c; are given by (14). Here u.(RF — K) is defined by
pe(RF) except that RP is replaced by RP — K. Note that RP — K is
a curvaturelike tensor field on P C E*(K).

3. Proof of Theorems

Proof of Theorem 1. Let P C R" and @ C R™. In order to derive
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(7) we combine (5) and (14) using (13) and (15). Then we have

/ k(P NgQ,t)dg
[2tg==]
= % ¢ [h(PnoQ)ds
gy t(p+q—n)!
= - '2c(p _*(_pq _qn_z)c)!c!/lﬂc(PngQ)dg
B L
= Z 2c(; -*(-pq-l;qn _2);! o Zciﬂzi(P)mc-z.‘(Q)
=] i=0
i) o
= 3 Y deikai(PYkac2i(Q)E5,
c=0 =0
where
(17)

c,8
=On+1 R 020,,+,,-,.+1O,,.,.q_,..,.zo,,_2;+2Oq_2c+2;+2(p + q—n)!(p — 2¢)! (g — 2¢c + 2i)!
Op4q-n-2c420p410p4204110¢42(p + ¢ — n — 2¢)! plg!
Next we combine (3) and (7) to show (8). Then we have

) / VE? o(r,t)dg

p+g—n—m=even ¥
e / k(P N gQ,t)dg

[22]
=" Y Y deikai(P)kze—2i(Q)TC.

c=0 =0

Proof of Theorems 2 and 3. The formula (10) comes from

(18) k2o(RP*Q — Ky x K3) = ¥ kai(RP — Ky )hpe—2i( R — Ka),
=0
of which proof can be found, for example, in [5].
Finally the formula (11) can be obtained by combining (10) and
(16). The derivation is similar to that of (7).
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