Ersatz Chern Polynomials*

Sungpyo Hong and Sungyun lee

Abstract

Some kinematic formulas of the Ersatz Chern polynomial and the generalized volume function are derived.

1. Introduction

In [4] Gray defined the Ersatz Chern polynomial $k(P, t)$ for all compact Riemannian manifolds P. This polynomial reflects many properties of Chern forms of a Kähler manifold. The polynomial $k(P, t)$ arises natually from the study Weyl's tube formula. The following formulas ([4]) express the remarkable properties of the Ersatz Chern polynomial.

Let P and Q be Riemannian manifolds for which the Ersatz Chern polynomial is defined. Then

$$
\begin{equation*}
k(P \times Q, t)=k(P, t) k(Q, t) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
k(\widetilde{P}, t)=s k(P, t) \tag{2}
\end{equation*}
$$

Here $P \times Q$ is the Reimannian product of P and Q, and \widetilde{P} is a s-fold covering $\widetilde{P} \rightarrow P$.

The Ersatz Chern polynomial also has a simple relation with the generalized volume functions ([4])

$$
\begin{equation*}
k(P, t)=e^{-\pi r^{2}} \sum_{n-p=\text { even }} V_{P}^{\mathbf{R}^{n}}(r, t) . \tag{3}
\end{equation*}
$$

To explain $k(P, t)$ and $V_{P}^{\mathbf{R}^{n}}(r, t)$ let us look at Weyl's tube formula ([8]) for the volume of the tube of radius r about a compact

[^0]p-dimensional submanifold P of $\mathbf{R}^{\boldsymbol{n}}$ with the curvature tensor R^{P} (briefly $P \subset \mathbf{R}^{n}$)
\[

$$
\begin{equation*}
V_{P}^{\mathbf{R}^{n}}(r)=\sum_{c=0}^{\left[\frac{p}{2}\right]} \frac{k_{2 c}\left(R^{P}\right)\left(\pi r^{2}\right)^{\frac{1}{2}(n-p)+c}}{(2 \pi)^{c}\left(\frac{1}{2}(n-p)+c\right)!} \tag{4}
\end{equation*}
$$

\]

Then the Ersatz Chern polynomial $k\left(R^{P}, t\right)$ (briefly $k(P, t)$) is defined by

$$
\begin{equation*}
k\left(R^{P}, t\right)=\sum_{c=0}^{\left[\frac{p}{2}\right]} k_{2 c}\left(R^{P}\right) t^{c} \tag{5}
\end{equation*}
$$

and the generalized volume function is defined by

$$
\begin{equation*}
V_{P}^{\mathbf{R}^{n}}(r, t)=\sum_{c=0}^{\left[\frac{p}{2}\right]} \frac{k_{2 c}\left(R^{P}\right) t^{c}\left(\pi r^{2}\right)^{\frac{1}{2}(n-p)+c}}{(2 \pi)^{c}\left(\frac{1}{2}(n-p)+c\right)!} \tag{6}
\end{equation*}
$$

For the definition of integral invariant $k_{2 c}\left(R^{P}\right)$ (briefly $k_{2 c}(P)$) see (12) in § 2.

It is important to observe that if P is not given as a submanifold of \mathbf{R}^{n} then (4) can be regarded as a definition, and (3) should be read with this interpretation.

In this article we study the Ersatz Chern polynomial and the generalized volume function from the integro-geometric point of view. We shall prove the following.

Theorem 1. Let $P \subset \mathbf{R}^{n}$ and $Q \subset \mathbf{R}^{n}$ be compact manifolds. Let $d g$ be the standard kinematic density on the group of proper motions of \mathbf{R}^{n}. If $0 \leq 2 c \leq p+q-n$, then

$$
\begin{equation*}
\int k(P \cap g Q, t) d g=\sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c, i} k_{2 i}(P) k_{2 c-2 i}(Q) t^{c} \tag{7}
\end{equation*}
$$

with constants $d_{c, i}$ depending on p, q, n, c and i (see the formula (7) in § 3). We also have

$$
\begin{align*}
& \sum_{p+q-n-m=\text { even }} \int V_{p \cap g Q}^{\mathbf{R}^{m}}(r, t) d g \tag{8}\\
= & e^{\pi r^{2}} \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c, i} k_{2 i}(P) k_{2 c-2 i}(Q) t^{c} .
\end{align*}
$$

The second purpose of this article is to study the polynomial $k\left(R^{P}{ }_{-}\right.$ $K, t)$ for $P \subset \mathbf{E}^{n}(K)$, where $\mathbf{E}^{n}(K)$ is n-dimensional non-Euclidean space of constant curvature K (with the curvature tensor $R^{\mathbf{E}^{n}(K)}$, briefly K). In this case $k\left(R^{P}-K, t\right)$, which is still called the Ersatz Chern polynomial, is defined by

$$
\begin{equation*}
k\left(R^{P}-K, t\right)=\sum_{c=0}^{\left[\frac{p}{2}\right]} k_{2 c}\left(R^{P}-K\right) t^{2 c} . \tag{9}
\end{equation*}
$$

Then we have the following.
Theorem 2. For $P \subset E^{n}\left(K_{1}\right)$ and $Q \subset E^{n}\left(K_{2}\right)$

$$
\begin{equation*}
k\left(R^{P \times Q}-K_{1} \times K_{2}, t\right)=k\left(R^{P}-K_{1}, t\right) k\left(R^{Q}-K_{2}, t\right) . \tag{10}
\end{equation*}
$$

Theorem 3. Let $d g$ be the standard kinematic density on the group of proper motions of $\mathbf{E}^{n}(K)$. Let $P \subset \mathbf{E}^{n}(K)$ and $Q \subset E^{n}(K)$. If $0 \leq 2 c \leq p+q-n$, then

$$
\begin{equation*}
\int k\left(R^{P \cap g Q}-K, t\right) d g=\sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c, i} k_{2 i}\left(R^{P}-K\right) k_{2 c-2 i}\left(R^{Q}-K\right) t^{c} . \tag{11}
\end{equation*}
$$

Remark: The kinematic density $d g$ in (7) is normalized so that the total measure of the group of proper motions of \mathbf{R}^{n} is equal to $O_{n} O_{n-1} \cdots O_{2}$, where $O_{n}=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}$ is the volume of the unit sphere $S^{n-1}(1)$ in \mathbf{R}^{n}. Similarly $d g$ in (11) is normalized so that $\int d g=$ $O_{n} O_{n-1} \cdots O_{2}$ (see [1] for details).

2. Preliminaries

Let P be a compact p-dimensional Reimannian manifold with the Riemannian curvature tensor R^{P}. To explain the integral invariants $k_{2 c}\left(R^{P}\right)$ (briefly $\left.k_{2 c}(P)\right), 0 \leq 2 c \leq p$, it will be convenient to use the notations of [2, 3].

Let R be a tensor field on P of the same type as the curvature tensor field on P and having the same symmetries. R is called a curvaturelike tensor field on P. It is possible to define the c-th power of R. The definition can be given inductively via $R^{0}=1$ and

$$
\begin{aligned}
& R^{c}\left(x_{1} \wedge \cdots \wedge x_{2 c}\right)\left(y_{1} \wedge \cdots \wedge y_{2 c}\right) \\
= & \sum_{i, j, k, l=1}^{2 c}(-1)^{i+j+k+l} R_{x_{i} x_{j} x_{k} x_{l}} R^{c-1}\left(x_{1} \wedge \cdots \wedge \hat{x}_{i} \wedge \cdots \wedge \hat{x}_{j}\right.
\end{aligned}
$$

$$
\left.\wedge \cdots \wedge x_{2 c}\right)\left(y_{1} \wedge \cdots \wedge \hat{y}_{k} \wedge \cdots \wedge \hat{y}_{l} \wedge \cdots \wedge y_{2 c}\right)
$$

where $x_{1}, \ldots, y_{2 c}$ are tangent vectors to P. Then the complete contraction of R^{c} is

$$
C^{2 c}\left(R^{c}\right)=\sum_{a_{1}, \ldots, a_{2 c}=1}^{p} R^{c}\left(e_{a_{1}} \wedge \cdots \wedge e_{a_{2 c}}\right)\left(e_{a_{1}} \wedge \cdots \wedge e_{a_{2 c}}\right)
$$

where $\left\{e_{1}, \ldots, e_{p}\right\}$ is any orthonormal frame on P.
We put

$$
\begin{equation*}
k_{2 c}(R)=\frac{1}{c!(2 c)!} \int_{P} C^{2 c}\left(R^{c}\right) d P \tag{12}
\end{equation*}
$$

where $d P$ is the volume element of P.
Next we recall Chern's kinematic formula in Euclidean space ([1]). Let P and Q be two compact embedded submanifolds of \mathbf{R}^{n} of respective dimensions p and q with $p+q-n \geq 0$. Let $d g$ be the standard kinematic density on the group of proper motions of \mathbf{R}^{n}. Chern considered the integral invariants $\mu_{e}\left(R^{P}\right)$ (briefly $\mu_{e}(P)$) which are related by

$$
\begin{equation*}
\mu_{e}(P)=\frac{2^{\frac{e}{2}}(p-e)!\left(\frac{e}{2}\right)!}{p!} k_{e}(P) \tag{13}
\end{equation*}
$$

If $0 \leq e$ even $\leq p+q-n$, then

$$
\begin{equation*}
\int \mu_{e}(P \cap g Q) d g=\sum_{0 \leq i \text { even } \leq e} c_{i} \mu_{i}(P) \mu_{e-i}(Q) \tag{14}
\end{equation*}
$$

where constants c_{i} depending only on p, q, n and e are given by ([7])

$$
\begin{equation*}
c_{i}=\frac{O_{n+1} \cdots O_{2}\left(\frac{O_{p+q-n+1} O_{p+q-n+2}\left(\frac{e}{2}\right)!}{O_{p+q-n-e+2}}\right)}{\left(\frac{O_{p+1} O_{p+2}\left(\frac{i}{2}\right)!}{O_{p-i+2}}\right)\left(\frac{O_{q+1} O_{q+2}\left(\frac{e-i}{2}\right)!}{O_{q-e+i+2}}\right)} \tag{15}
\end{equation*}
$$

There is also a non-Euclidean version of Chern's kinematic formula ([6]). Let P and Q be two compact embedded submanifolds of $\mathbf{E}^{n}(K)$ and $d g$ the standard kinematic density on the group of proper motions of $\mathbf{E}^{n}(K)$. If $0 \leq e$ even $\leq p+q-n$, then
(16) $\int \mu_{e}\left(R^{P \cap g Q}-K\right) d g=\sum_{0 \leq i \text { even } \leq e} c_{i} \mu_{i}\left(R^{P}-K\right) \mu_{e-i}\left(R^{Q}-K\right)$,
where constants c_{i} are given by (14). Here $\mu_{e}\left(R^{P}-K\right)$ is defined by $\mu_{e}\left(R^{P}\right)$ except that R^{P} is replaced by $R^{P}-K$. Note that $R^{P}-K$ is a curvaturelike tensor field on $P \subset \mathbf{E}^{n}(K)$.

3. Proof of Theorems

Proof of Theorem 1. Let $P \subset \mathbf{R}^{n}$ and $Q \subset \mathbf{R}^{n}$. In order to derive
(7) we combine (5) and (14) using (13) and (15). Then we have

$$
\begin{align*}
& \int k(P \cap g Q, t) d g \\
= & \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} t^{c} \int k_{2 c}(P \cap g Q) d g \\
= & \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \frac{t^{c}(p+q-n)!}{2^{c}(p+q-n-2 c)!c!} \int \mu_{2 c}(P \cap g Q) d g \\
= & \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \frac{t^{c}(p+q-n)!}{2^{c}(p+q-n-2 c)!c!} \sum_{i=0}^{c} c_{i} \mu_{2 i}(P) \mu_{2 c-2 i}(Q) \\
= & \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c, i} k_{2 i}(P) k_{2 c-2 i}(Q) t^{c}, \tag{17}
\end{align*}
$$

where
$d_{c, i}$
$=\frac{O_{n+1} \cdots O_{2} O_{p+q-n+1} O_{p+q-n+2} O_{p-2 i+2} O_{q-2 c+2 i+2}(p+q-n)!(p-2 i)!(q-2 c+2 i)!}{O_{p+q-n-2 c+2} O_{p+1} O_{p+2} O_{q+1} O_{q+2}(p+q-n-2 c)!p!q!}$.
Next we combine (3) and (7) to show (8). Then we have

$$
\begin{aligned}
& \sum_{p+q-n-m=\mathrm{even}} \int V_{P \cap g Q}^{\mathbf{R}^{m}}(r, t) d g \\
= & e^{\pi r^{2}} \int k(P \cap g Q, t) d g \\
= & e^{\pi r^{2}} \sum_{c=0}^{\left[\frac{p+q-n}{2}\right]} \sum_{i=0}^{c} d_{c, i} k_{2 i}(P) k_{2 c-2 i}(Q) T^{C} .
\end{aligned}
$$

Proof of Theorems 2 and 3. The formula (10) comes from

$$
\begin{equation*}
k_{2 c}\left(R^{P \times Q}-K_{1} \times K_{2}\right)=\sum_{i=0}^{c} k_{2 i}\left(R^{P}-K_{1}\right) k_{2 c-2 i}\left(R^{Q}-K_{2}\right) \tag{18}
\end{equation*}
$$

of which proof can be found, for example, in [5].
Finally the formula (11) can be obtained by combining (10) and (16). The derivation is similar to that of (7).

References

[1] S. Chern, On the kinematic formula in intergral geometry, J. Math. Mech. 16 (1966), 101-118.
[2] A. Gray, A generalization of the theorem of F. Schur, J. Math. Soc. Japan 21 (1969), 454-457.
[3] , Some relations between curvature and characteristic classes, Math. Ann. 184 (1970), 257-267.
[4] -, The Ersatz Chern polynomial and Weyl's tube formula, (to appear).
[5] A. Gray and S. Lee, Product formulas for tubes, Proceedings of the conference on differential geometry and its applications, Nove Mesto (1983), 77-85.
[6] S. Lee, Kinematic formula and tube formula in spaces of constant curvatures, (to appear).
[7] A. Nijenhuis, On Chern's kinematic formula in integral geometry, J. Differential Geom. 9 (1974), 475-482.
[8] H. Weyl, On the volumes of tubes, Amer. J. Math. 61 (1939), 471-472.

Department of Mathematics
Pohang Institute of Science and Technology
Pohang, 790-330, Korea
and
Mathematics Research Center
Korea Institute of Technology
Taejeon, 305-701, Korea

[^0]: Received by the editors on 10 December 1988.
 1980 Mathematics subject classifications: Primary 53C20; Secondary 53C65.
 *Partially supported by KOSEEF.

