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Abstract

A new algorithm is presented which efficiently reports minimum width/space violation in a
geometric mask pattern. The proposed algorithm solves a sequence of range search problems by
employing a plane sweep method. The algorithm runs in 0 (2 log n) time, where n is the number of
edges in a mask pattern. Since a lower bound in time complexity for reporting all minimum width/
space violations is £ (n log n), this algorithm is theoretically optimal within a constant
multiplicaive factor. It requires 0 (n '5) space which is very efficient in practice. Moreover, this
algorithm, we believe, is easy to implement and practically fast (116.7 seconds for a rectilinear
region with 250000 vertices at VAX 8650.)

I. Introduction

‘E®A, BREEFAEmER

i h
(Electronics and Telecommunications Research The design rule check for a mask pattern has

become an important issue from the early era of

“Insmme) o ‘ using computer for IC design. It is still import-
E&R, REHBLENAR B rEREN ant nowaday when automatic layout design
(Korea Institute of Technology) methods have been established, since manual aids
EBXHT 19895 27 10R for these methods are needed to increase chip
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density and circuit performance [2-11].

In the last decade, VLSI process technology
has matured to the extent that 10*—10% tran-
sistors can be integrated in a single chip. This
implies that there are 10%-10% vertices in a
geometric mask pattern [1}. However, the
advancement of computer technology is far
behind the growing rate of data volume. There-
fore, the demands for fast algorithms with modest
memory have ever been increasing. In other
words, the time complexity strould—grow linearly
or near linearly in input size, and only a small
fraction of the layout data should be held in main
memory (sublinear space complexity.) In order
to achjeve the above requirements, the following
conditions are required: (1) whole data is accom-
modated in a sequential file, (2) only those
patterns within a thin slit of the plane are loaded
in the main memory, These conditions can be
satisfied if a plane sweep method is employed.

The design rule checking procedure at mask
level can be done by combining Boolean oper-
ations (AND, OR, NOT, SUB etc.) and minimum
width/space checking, which is illustrated in
Figure 1(a). Optimal algorithms for performing
Boolean operations have been developed and used
for layout verification [2-7], These algorithms
are also based on the plane sweep method.
However, for minimum width/space verification
problem, there are several O(n?) algorithms in the
worst case [2, 3, 4, 5, 8], which is not practical
any more, The enclosure rule can be checked in
two steps, first, region A abutted with layer B is
removed using the SUB operation, and then the
minimum width checking is performed as shown
in Figure 1 (b).

In this paper, we present a minimum width/
space verification algorithm which solves a
sequence of range search problems by employing
a plane sweep method. This algorithm runs in
0 (n log n) time and requires 0 (n0'5) space for
the main memory which is theoretically optimal
and practically fast. The minimum width of
polygonal regions is equal to the minimum space
of their complementary regions with respect to
the plane. Therefore, we will concentrate only
on the minimum space verification prbolem.

II. Minimum Space Verification Algorithms

Several techniques have been developed to solve
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Fig.1. Design rule check procedure,

geometric problems in the plane (i.e., 2-dimension-
al geometric problems) efficiently, Among them,
there is the plane sweep method, which reduces
a 2-dimentional geometric problem to a sequence
of 1-dimensional ones. This method is similar to
the work-list [3] method in layout verification, In
the work-list method, the plane sweep is exploited
in such a way that only geometric objects inter-
secting the current scan line are fetched from a
sequential file which accomodates the whole
data. And it is well-known that the data volume
corresponding to the intersecting geometric objects
is proportional to the square root of whole data
volume., Therefore, O(n) space algorithm in
theoretical computational geometry becomes
O(n°'5) space in layout verification. If the line
segments in the work list are managed by a
balanced tree, e.g. an AVL tree [12], according
to their X-coordinates, the unit operation of
inserting or deleting a line segment, or searching
for the adjacent vertical line segments can be done
in O (log m) time, where m is the number of line
segments intersecting the scan line. Therefore,
everything desired can be reported in O (n log m)
time once the whole plane has been swept from
top to bottom.

The minimum space checking algorithms, as
far as we known, can be classified as shown in
Table 1 according to their computational
complexity.
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Table 1. Minimum space algorithms.

Algorithm Time Complexity | Space Complexity
{Tsukizoe 83) 0 (n*) 0 (n*)

{Sato 85) O (n logn) O (n)

Proposed O(n log n) O (n**)

[Tsukizoe 83) is one of several O (n?) time
algorithms in the worst case {2, 3, 4, 5, 8] by
employing work-list method. O(n?) time
algorithm is not very useful any more, O (n log
n) time and O (n) space {Sato 85] algorithm [10],
which needs the whole data in main memory, is
not adequate for a recent VLSI layout verification.
The sequential range query model proposed in
this paper gives O (n log n) time and O (n0'5)
space complexity, which is considered as the-
oretically optimal in layout verification,

Before we present our ideas, we show that how
O (n log n) time algorithm can be obtained for the
minimum space checking problem. One general
method for solving this problem is using Resizing
operation such as EXPAND or SHRINK. The
minimum space error of a rectilinear region can
be checked as follows:

{Sept 1] Given the minimum space d, expand the
regions by d/2 outward from their
boundaries.

If such an expansion results in overlap-
ping of regions, they are reported as
a violation of the given minimum space
rule (Figure 2).

[ Step 2}

o

design rule
violation place

Fig.2.

Minimum space check by means of the
polygon resizing,
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However, this method requires two plane
sweeps (horizontally and vertically)., This is not
desirable when a large amount of data is accom-
modated in a sequential file. In addition, the
expansion may create circular arcs which do not
exist in the original mask pattern. This method
gives an O (n log n) algorithm, which is theoretic-
ally optimal, but not very efficient practically,

An other way to achieve O (n long n) time
complexity is to use Voronoi diagram. Consider
the Voronoi diagram with respect to the set of
convex vertices of the input pattern. Two points
p and q are said to be adjacent if their Voronoi
polygons V (p) and V(a) have a common boun-
dary. The point g closest to p can be found by
checking only those convex vertices whose
Voronoi polygon shares common boundary with
V(p). General algorithm for constructing Voronoi
diagrams [14] are based on the assumption that
the whole data is accommodated in main memory.
These algorithms can construct a Voronoi diagram
of n points in O (n long n) time which is optimal
in the worst case. An improved algorithm with
0O(n%5) space complexity has been proposed by
using the plane sweep method [11]. However,
this algorithm uses complicated data structures
consisting of five balanced trees in addition to
a Voronoi diagram. Therefore, it is not practical
even though it is theoretically optimal.

HI. Sequential Range Query Algorithm

The methods measuring the minimum space
as mentioned above use ttwo different algorithms,
i.e., plane sweep for finding the minimum space
for parallel edges and constructing partial Voronoi
diagram for finding convex vertices, It is too
expensive to find only the nearest neighbor points
using Voronoi diagram, In order to get around
these drawbacks, we propose the sequential range
query model where only one process is enough for
two purposes. This method is based on the range
search technique in computational geometry.

Now, we propose a practial algorithm applic-
able to the minimum space violation checking,
The minimum space of a rectilinear region is
defined as follows. Let p and q be points on the
boundary B(R) of rectilinear regions R. We call
the distance between p and g as minimal distance,
if the straight line drawn between p and q does
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not intersect with R, and for any neighbor p’=

B(R) of p and any neighbor q’=B(R) of g, the

following inequality holds: d(p, q) less than

d(p’, q.), where d(p, q) is the Euclidean distance

between p and q. (Figure 3.) Then, the minimum

space of R is defined as the minimum value among

all minimum distance of R. A pair of two objects

(points or edges) which constitute the minimum

space are called the closest pair of R.

It is clear that the minimum space of rectilinear

regions is composed of either

(1) a pair of parallel edges facing each other
(Figure 4(a)), or

(2) a pair of convex vertices facing each other
(Figure 4(b)).

It is obvious how to check the minimum space

error once the minimum space is found. The

T
V.

o4
R
B(R) q B(R’)
p
K
Fig.3. Definition of minimum space.

_

(a) Parallel edge facing to each other

2

7

7

(b) Convex vertices facing to each other

Fig4. Configuration of the minimum space.

minimum space in case (1) can be obtained syste-
matically by employing a plane sweep technique.
However, the minimum distance in case (2)
requires more complicated operations, since
Euclidean distance between two convex vertices
need to be computed.

The sequential range query search is based on
the range search technique in computational
geometry, The range search problem is that,
given a set S of n points in a plane and a rectangle

with each side parallel with a i is;
find all points in S lying in R as shown in Figure
5. Let d be minimum allowable space. For each
horizontal edge of width w, we construct its
query region R consisting of the followings: (1)
two quad-circles centered at the end points of the
edge with a radius d, and (2) a rectangle of height
d and width w between the quad-circles (Figure 6).
The best algorithm for solving the range search
problem with a rectangular query requires O(log
n + k) search time and O (n logn) space [15],
where k is the number of points reported. For a
circular query, the algorithm requires O(log
n + k) search time and O(n) space [16].

(a) Rectangular query (b) Circular query

Fig.5. Range search problem.

Applying this method directly to design rule
check, the total time requirement becomes O(n
log n), since a query is needed for each of n
horizontal edges in the worst case, However, the
space requirement, O(n log n), is larger than other
algorithms, it needs to be improved. The height
of the query region in this model is always d which
is minimum allowable space. Furthermore, the
query region is extremely small compared with
the entire region. If we sequentially perform
queries from top to bottom, employing the plane
sweep technique, it can efficiently reduce space

(776)
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Fig.6. Sequential range query model.

rectangular query

requirement down to O °3).

In order to perform queries efficiently, consider
two kinds of sweep line, the LSL(Leading Sweep
Line) and the CB (Candidate Boundary), as shown
in Figure 7. The former extracts only horizontal
edges sequentially from the given mask pattern,
The horizontal edges are sorted by y-coordinates
and stored in E-file, The latter consists of a
sequence of edges of polygons, which lie within
distance d, and are vertically visible, from the LSL.
CB is part of a work-list which stores all edges
whithin d from LSL. The work-list is stored in a
Queue according to» y-coordinates of the edges.
The CB is stored in a balanced tree, say 2-3 tree,
according to the x-coordinates of twoendpoints of
the edges in the work-list.

%/////
// -

/// _

Fig.7. Sequential range query algorithm by the
two sweep lines .
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The update operations, INSERT and DELETE,
for work-list and CB occur in two cases. The first
case is when the LSL hits any horizontal edge
Lr of a polygon, where Lr indicates the left
(right) endpoint of the edge. Then the edge Ir
will be inserted into the work-list and CB. If the
y-coordinate difference between the LSI and
the first element (the edge with the largest y-
coordinate) of the Queue is greater than d during
the movement of the LSL, the element is deleted
from the work-list and CB.

Figure 8 shows an example of how the above
algorithm works. When the LSL hits edge cd, the
CB and Q will store edge ab and cd. And accord-
ing to the advancement of the LSL, if the edge Ir
is hit, the first element, edge ab, of the balanced
tree and the edge Ir are compared according to
their y-coordinate base. Because the y-coordinate
difference is greater than d, the corresponding
element, edge ab, is deleted from the work-list.
But for edge cd is divided into two parts, cc’ and
c'd, for forming CB. The portion of cc’ is covered
by the edge lr vertically visbile from it, therefore
only the edge c’d is included in CB, Notice that
the pseudo vertex ¢’ is generated by this operation.
The priority-queue is arranged by (cd, Ir). The
sequential range search algorithm is described in
Figure 9.

For the minimum space violation checking, the
range search operation (we call MEMBER) is
performed, When the LSL hits the upper side
horizontal edge Ir of a polygon, the expanded

//

k

o /
——-f_— / /
ry
= {ab,cd}]  Queue = {ab, cd}
CB' = {c'djr} Queue' = {cd, Ir}
Fig.8. Explanation of the sequential range

query algorithm,
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Min_Space_Violation_Check(R, d)

Input: a rectilinear region R stored in secondary memory, represented by a seguen-
tiat list of n horizontal edges.
minimum design rule o,
Output all pairs that violate the minimum design rule
Method: scquential range search algorithm.
bhegin

Efile = w2 horizontal cdges of given rectilinear regions;

/* T'hc edges are sorted by y-coordinates. If there exist edges having endpoints with
the same y-coordinates. then they are sorted by x-coordinates of the left endpoint
of cdges. */

B =@ * Candidate boundary stored in a balanced trec. */
Queue = @, /* FIFO structure /
while (E_jile # eof } {
nedge = EXT(E file): /* nedge becomes LSL. */
/* EXT extracts linc-segment from E_file. */

1989 S5H BTLBARNEE H 206% H 5 9

procedure MEMBE R(nedge)

Inpul: ncdge is a horizontal edge.
Output:minimum space violation portion from nedge.

begin
v the left endpoint of nedge;
the right endpoint of nedge;

o
/* SEGMENT(a. b) gencrates ncw line segment whose endpoints are 4 and b. */
if (v, is convex) { e, = SEGMENT(v,x-d. v, x}; }

else { e, = B3 }

if (nedge is upper side of a polygon) { e, = SEGMENT(»,.x. v, x); }

else { ¢, =5 }

i vy is convex) { ey = SEGMENT{v,.x. vz.x+d); }

else { e, = ;)

i* CB_LINE(a, b) finds all line segments whosc left endpoint’s x-coordinate is greater

repeat { than or equal to @ and right endpoint’s is less than or equal to b in CB ¥/
___if the difference(dif ) of y-coordinates bctween nedpe and the first clement of s, = CBLINE(e.);
- Queuc is greater than d. then delete the edge from Queue and CB: s, = CBLINE(e,);
! sy = CBLINE(e,);

until (dif is fess than d)
delete all edges from CB and Queue which have greater x-coordinates than nedge.!
has and smaller than nedge.r has;
insert nedge at the proper places in CB and Queue;
report = MEMBER(nedge);
}

cnd

Fig.9. Implementation of sequential range query

algorithm.

interval by the distance d, [I-d, r + d], is
generated, and searches all elements above the
edge Ir. If it founds any elements by the above
step, more complex operations are needed for the
regions of two quad-circular queries as shown in
Figure 10. The dotted portion in Figure 10, [v,r +

d? — c?] will be minimum space violation
portion in this example, Figure 11 shows an
algorithmic description of MEMBER operation.

The above algorithm can check all minimum
space violations by sweeping the plane only once
and using two lists. One is the balanced tree [1]
for the candidate boundary which can perform
INSERT and DELETE in O(logm) time and
MEMBER in O(log m + k) time, where m is th
number of elements intersected with one sweep
line, The other is a 2-3 tree which can also per-
form INSERT and DELETE in O(log m) time.

7 7/
. 7|
d fl v r/Z1\ d
I-
d r+d LSL ¢
2 2
d-c

Fig.10. MEMBER operation.
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while (s, # @) {

e = EXT(s,); /* any one edge in the set s, */

if (e violates the circular range query) { report_violation(e ): }
}
if (s, # @) { report_violation{s,); }
while (s, # @) {

e = EXT(s;): /* any one edge in the set 55 */

if (¢ violates the circular range query) { report_violation(e); }
|

end

Fig.11. Implementation of MEMBER operation.

It is clear that the overall time complexity is
O(n log ng. It is well known that m is propor-
tional to n 5 in the layout verification problem.
Therefore, the space complexity for main meory
is 0(n®-).

IV. Computational Experiences

Our design rule check system consists of the
following routines.

The first one is input transaltion routine.
Polygons represented in a layout description
language, CIF for instance, are converted into a
sequence of horizontal edge. An edge is a
quadruple (point, id, sense, slant), where point is
the edge’s two endpoints. The id is a identific-
ation number of membership in a particular
geometric region. The sense is an encoded
representation of the edge’s directionality, i.e.
whether it bounds the top of a region ( the region
is below), the bottom (the region is above), or
represents a pair of edges (a rectangle, for
example). The slant indicates the edge’s angle for
non-rectilinear polygons (0 for rectilinear regions),
Note that vertical edges are not required since they
can easily be inferred. Then these edges are sorted
according to y-coordinate in increasing order by
file sort method.

Next routine compiles the design rule set
provided by the process technology. Boolean
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operations are performed gccording to the com-
plied rule sets. Then, the minimum width/space
check operation is performed, and report any
violations if it is found.

The sequential range query algorithm were
implemented in C programming language on VAX
8650 computer. The graph shown in Figure 12(a)
is a longlog plot of the CPU time versus the
number of edges. The data does not represent
real chip. It is generated by random method. This
plot is rather linear with a slope of 1.056, which
is slightly less magnitude than O(n log n).
This confirms our theoretical result, i.e., O(n log
n) time complexity.

The graph shown in Figure 12(b) is a log-log
plot of the main memory demand, in bytes, versus
the number of input edges. The slope of this plot
is about 0.356 which is less than 0.5. Therefore,
it also confirms our average case space analysis.
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Fig.12. Experimental results,
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V. Conclusions

In this paper, we present an efficient algorithm
for minimum width/space verfication. This
algorithm is especially efficient when we deal with
a large number of designed pattern within a whole
chip, since it keeps the theoretically optimal time
and space complexity, and runs fast practically.
An experimental results show that the average
case performance of the sequential range search
algorithm runs almost linearly. Although we
only dealt with rectilinear regions as input data,
it is easy to extend our algorithm to handle regions
with tilted edges.
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