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A Simple Human Visual Weighted Hadamard

Transform Image Coding
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Abstract

Various models incorporating Human Visual System (HVS) with the Hadamard transform (HT)
represented by Walsh functions are considered. Using the exact frequency components of HT basis
functions, the optimum modulation transfer function (MTF) which has a higher peak frequency
than DCT schemes is obtained analytically and visually. The main criterion, for error measurement,
is errors at the block boundaries which is an important factor in transform coding. The scheme
which has no inverse HVS is proposed. It causes some degradation of image data but it is
insignificant. Crossing area of 4 blocks is equalized by the HVS weighting coefficients. The HVS

weighted coding results in perceptually higher quality images compared with the unweighted
scheme.
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I. Introduction

In recent years, the Human Visual System
(HVS) has been employed in reducing the amount
Univ. ) of image data. There are many features of visual
B HT 019889 118 22H network according to variations in spatial detail;
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Mach band, lateral inhibition, frequency response
etc. Frequency response is that the eye is more
sensitive to certain spatial frequencies than to
others and the eye’s spatial response falls to
negligible values at a high enough spatial frequency
and is substantial over some intermediate range.
[1] This is particularly interesting from the point
of view of transform coding, since it operates in a
similar way, converting the spatial detail in an
image into frequency (or sequency) components,
In transform coding, we select some coefficients
having higher energy or variance using zonal or
variance bit allocation methods, but such non
adaptive methods are not sufficient to fit with
more complicated texture. The optimum quantiz-
ation is performed so that reconstructed inform-
ation may be expressed most visually, If we
consider the HVS, representing sensitive or insens-
itive properties of the eye, it is evident that those
spectral components to which the eye is more
sensitive should be coded more accurately than the
others. Subject to the weighting coefficients,
coefficients below the threshold are discarded as
irrelevant data in a block. Only the relevant and
indispensable coefficients therefore are sent to the
receiver [2], [11].

The Handamard transform (HT) is attractive in
implementation and computational aspects, as it
does not involve multiplications, but it is not as
efficient as other transforms in data compacting
ability [3]. The shapes of the HT basis vectors are
rectangular rather than cosinusoidal. But in order
to understand how they perform in such applica-
tions, we study the frequency spectrum of the
Hadamard basis function. In the concept of
sequency, Walsh functions can be represented by
Cal (even) and Sal (odd) with respect to the mid-
point of the unit interval [4]. They are named to
emphasize the analogy to sinusoidal functions.
The HT takes advantage of them as a transform
vector. But the Fourier transform will show the
exact features. Using this, we can obtain the most
appropriate weighting values with the HT and thus
the coding efficiency is increased.

II. Modelling the HVS in Transform Coding

The HVS has been incorporated in transform
coding of images by several researchers. Mannos
and Sakrison’s work [5] may be the first major
breakthrough in image coding incorporating the
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HVS. They carried out extensive experiments to
determine the parameters for the HVS model.
Using the assumption that the HVS is isotropic,
they simulated the optimum encoding for the
Gaussian source and modelled the HVS as a
nonlinear point transformation followed by the
modulation transfer function (MTF) of the form

H(f) =a(+cf)exp(—cf)® (1)

where f is the radial frequency in cycles/degree of
visual angle and a, b, ¢, and d are constants. By
varying these constants, the shape and the peak
frequency of the MTF are altered. The 512 x
512 full frame images were viewed at a distance at
which 65 pels subtended 1° of vision and then
transformed to frequency domain via the Discrete
Fourier Transform (DFT). Fourier coefficients are
weighted by the MTF at the corresponding frequ-
encies and the coefficients which are greater than
the predetermined threshold are selected and
transmitted. The reverse process is carried out at
the receiver. The simulation results are judged
subjectively. The final MTF is of the form

H (f) =2. 6 (0. 0192+0. 114f) exp (— (0. 114f)*")
(2)

This MTF has a peak at f=7.9 cycles/degree.

Recently new MTFs have been proposed for
using with the DCT. Nill[6] proposed a multiplic-
ative function A(f) which is multiplied by the
following MTF

H(f) = (0. 2+0. 45f) exp (—0. 18f) (3)

This function has a peak value at spatial frequ-
ency around 5.1 cycles/degree. In order to incor-
porate the HVS model into cosine transform
coding, an even extension of the original scene has
to be created but this causes the loss of physical
significance since the human observer is not view-
ing this altered scene. To overcome this problem,
Nill proposed the introduction of a function
|A(f) | which takes the form of

Tt
+1]]

+ %][loge[
(4)

where o = 11.636 degree™!.
The modified HVS function thus becomes
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H (f) = |A () [H (f) (5)

which has a peak frequency at around 6.9 cyc./
deg.

Ngan et al.[7] used Nill’s multiplicative func-
tion with their MTF. It has been found in this
work that the peak frequency of the transfer
function of 3 cycles/degree gives the best results.
The transfer function takes the form of

H (f) = (0. 31+ 0. 69f) exp (—0. 29f) (6)
After multiplying H(f) by |A(f) |, the resulting
function has the peak frequency around 4.1
cycles/degree. Using zig-zag scanning sequence for
the DCT coefficients, they achieved and acce-
ptable reconstructed image at the low bit rates.

The MTFs of Mannos and Sakrison [5],
Nill{6], and Ngan{7] are shown in Fig.l. Note
that the latter two functions are obtained after
multiplying (3) and (6) by (4). In general, in-
coporating the HVS models improves the coding
scheme. So does the proposed Hadamard trans-
form scheme presented in the next section,

Mannos

and Sakrison (5]
Ngan[7}
Nill[6])

relative amplitude

proposed

—_—
10 20 30 40
spatial frequency (cyc./deg.)

Fig.l. Comparison of various MTFs.

. Spectrum of the Hadamard Function

Let the Fourier transform of a Walsh function,
wal(m,x), be defined by

W () — £ wal (m, x) exp (—i2 2fx) dx (7)
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This can also be written as

W (f) =P (f) Hu (f) (8)

where Pm(f) is the Fourier transform of the
elementary pulse for generating the Hadamard
function of index m, and Hm(f) is the transfer
function of the system which generates the m-th
function by a suitable arrangefnent of its eleme-
ntary puise function.

No Pa Pn(f)

/= fysin(z fexp(-inf)

|

(/xf)ysin(wf/2exp(-inf/2)
1/2

2,3 I/ x)sin(af/exp(-ixf/4)

(I/nf)ysin(nf/Bexp(-inf/8)

> - o =
|

/8

Fig.2. Elementary functions and their Fourier
transforms.

Fig.2 shows the Fourier transforms of the
elementary puises, Pm(f), and the number Nm of
required elementary pulses to form a sequency
ordered Hadamard function of index m from its
elementary pulse by using the symmetry method.
The transfer function Hm(f) is derived from the
pulse transfer function of the system which
generates a discrete Walsh function. Therefore the
Fourier transform may be obtained simply from
inspection of the bits of the Gray code represent-
ation as follows [ 8]

Wn (f) =Pu (f) (=)™ -

IT (2cos (nfq/Nm) exp] —i(afq/Ng) ]
q
or

2sin (nfq/Nm) expl ~i(afa/Nu— 7/2) ]
q=1,2,4,..Nu/2 (9)

where the trigonometric function cos or sin are
defined from the Gray code representation.
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It should be observed, as shown in Fig.3, that
the peak frequencies are increasing according to
the index m and they are irregular form, When we
introduce the concept of frequency to the HVS
modelling, this spectrum should be considered as
the exact frequency response after normalization
to the given order on behalf of incorporation with
the spatial frequency.

TS\“’ = e

1]
(=1

1 2 3 4

normalized frequency

Fig.3. Spectra of Hadamard basis functions,

IV. Derivation of the HT Weighting

Various HVS models have been proposed as
above. The generalized model can be represented
by

H () =a{b+cf)exp(—cf) (10)
Constants a,b and c are defined by following three
criteria. Firstly, calculation of maximum frequen-
cy of this equation is done as

1-b

(&

(11)

fmux=

Next, for a normalized curve, we define the peak
response of H(f) as 1, which results in
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a=exp(l—b) (12)

Last, in the low frequency portion of the model,
there are two conflicting phenomena. First as the
intercept value is raised, more emphasis is placed
on the low frequencies and the image becomes
more blurred or blocked. However, the lower
intercept below a certain point causes to lose the
mean value of the image. Mannos and Sakrison
observed, if the peak height is normalized to 1,
then the best compromise occurred for an in-
tercept value of 0.05. (5], that is
H (0) =0. 05 (13)
Thus, by using the above relations, we can
derive the values of a, b and ¢ according to fmax
analytically, We simulate various images by means
of mean square error and BMSE, which is a change
of errors at the block boundaries and defined as

BMSE=[E {4e{m, jN)}2+E[ Ae (kN, n) }*]*"*
Ae(m, iN) =e (m, iN) —e (m, iN+1)
Ae (kN, n) =e (kN, n) —e (kN+1, n)
(14)

where (m,n) is an address of pixels, G k) is of
blocks and N is the block size. It is found that the
best HVS function should peak at around 7 cycles/
degree. This leads to

H () =2. 667 (. 0187+. 140f)e**** (15)

and the proposed weighting matrix is shown in
Table 1.

Table 1. Proposed weighting matrix for the HT.

.050 .766 .929 .999 .985 .883 .804 .656
.766 .900 .974 .992 .973 .865 .787 .642
.929  .974 .998 .976 .952 .840 .764 .623
.999 992 .976 .914 .885 .773 .702 .574
.985 .973 .952 .885 .855 .746 .678 .555
.883 .865 .840 .773 .746 .650 .592 .487
.804 .787 .764 .702 .678 .592 .539 .446
656 .642 .623 .574 .555 .487 .446 .372

The frequency variable f of the model needs to
be changed to the normalized spatial frequency fn
and requires a conversion factor fs as follows
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flcycles/deg. 1= f,[ cycles/pel]

fs[ pels/deg. ] (16)
where fn, frequency in the HT domain is defined
from the Fourer transform of the basis function
in Ch. IIl, respectively, which are not the same as
the DCT domain. The fS depends on the viewing
distance, horizontally, fx’ and vertically, f_.
According to Mannos and Sakrison [5], simulated
512 x 512 images were viewed at a distance at
which 65 pels subtended 1 degree of vision. For
256 x 256 images, corresponding number of pels is
one half of it. The HT basis images are outer
products between two one dimensional HT func-
tions. Hence, the weight coefficients, W(u,v), are
developed at the corresponding radial frequency
from the obtained HVS model. The weighting
matrix has the property of symmetric and isotro-
pic model, since we select the same vertical
sampling frequency as horizontal one. So the
maximum radial spatial frequency, fr=(f)2( +£2)%
is 23 cycles/deg. for the 8 x 8 subblock. Similar
weighting matrix for the DCT has been developed
in [9]

V. Coding Scheme

Fig.4 describes block diagram of the proposed
Hadamard transform coder. At first, thresholding
is performed relating to the HVS and activities.
There are three activities in a block, direction and
surrounding region.

(a) Block activity is an absolute sum of all AC

coefficients
Al =5 B(HE@VI-HLD (7

where (j k) is address of blocks and H(u,v)
is the HT coefficient.

(b) Directional activity (Adir) is defined from
the coefficients of horizontal (Ahor)’
vertical (Aver) and diagonal activity (Adia)
as shown in Fig.5.

(c) Regional activity (Are ) is an absolute sum

of the surrounding four blocks.

Measured activities are used for reducing the
irrelevant information in that block by threshold-
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Fig4. Blockdiagram of the HVS weighted HT
image coding,
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Fig.5. Directional activities.

ing. Thresholding is defined as follows
0 , [Hu, ) I<T

Hu,v)= (18)
H,v) , [H@uv)|=T

Following three thresholds are defined.
(a) Block threshold is the HVS weighted block

activity
Tl=Ablk(j’k) *W(U,V) (19)

where W(uy) is the weighting coefficient as
shown in Table 1.

(b) Directional threshold uses directional activ-
ity. The coefficients having lower activity
are reduced relatively as follows

}\dlr
T,=T,% (1+ (20)

the largest Ay )
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(¢) Regional threshold is based on contrast
sensitivity. Regions of high contrast are
coarsely coded whereas regions of low con-

trast are finely coded

T, =T, * (1+Log(1+————————' (A“X_A““) '
reg

)

@D

Uniform 256 level quantizer is designed and
used as truncated 32 level version. Variable
length coding is performed at coder and decoder

by means of Huffman and Run-length coding [10].

To adjust the bit rate despite of more or less
active image, rate buffer status affects the thre-
shold and quantizer.

HVS weighting means that only the relevant
components should be transmitted and could be
visible. So we can rempve the inverse weighting of
the AC components. This causes increase of mean
square error as shown in Table 2,

Table 2. Performance comparison of HT coding
with and without HVS.

with HVS without HVS
‘GIRL’ mse (%) 0.092 0.107
SNR({dB} 30.32 29, 65
‘COUPLE’ | mse(%) 0. 076 0. 089
SNR (dB) 31. 16 30.44

In transform coding, errors in edge area are
more significant. It is shown that the larger errors
exist in the outer area and the largest one is in
corner in Fig.6 a) unequalized distribution. There-
fore errors in crossing area of 4 blocks in Fig. 7,
must be equalized at receiver. With a view to
overcome these errors 4+4 HT is performed to
the crossing areas and multiplied by the weighting
coefficients. After equalization, errors are reduced
in the edge area as in Fig. 6 b).

V1. Results and Discussions

Various models incorporating HVS have been
published in the literature. The peak frequency is
an important factor and it varies according to
coding scheme used and characteristics of the
unitary transform. In the proposed HT scheme we
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b) equalized errors

Fig.6. Error distributions in 8x8 subblocks
"(GIRL. DAT).
BLOCK 1 BLOCK 2
BLOCK 3 BLOCK 4

Fig.7. Crossing area of 4 blocks.
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find that the HVS weighting is suitable with the
HT and maximum sensitive frequency becomes
higher than with the other DCT schemes [6] [7]
(91, owing to the less energy compaction ability
of the HT,

Incorporating HVS with HT, we computed the
Fourier spectrum of HT function instead of
regular Cal, Sal notation. @ We obtained the
optimum MTF by means of error change at block
boundary and conventional MSE.

Since HVS weighting reduces quantization
range and bit rate, variable length coding is simplif-
ied. HVS weighting implies that only the relevant
component can be visible. Non inverse weighting
reduces dynamic range and increases mean square
error by 0.01% which is insignificant. In Fig.8,
reconstructed image by non inverse weighting has
more blurred edge area than the HVS weighted
image, but the weighting in crossing area of 4
blocks reduced edge errors as shown in Fig.6 and
improves the picture quality as shown in Fig.8 d).
Consequently, the HVS weighted method results
in perceptually more pleasing images and leads to
acceptable images at low bit rates.
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