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Structural Convergence Improvement Schemes on Adaptive

Control Redesigning a Lyapunov’s Function
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Abstract

The convergence analysis of adaptive control schemes has been studied over the past decades,
but the importance of structure to fast convergence of adaptive control systems is still a con-

troversial issue.
convergence in adaptive error models,

This paper deals with the relative improvement of the exponential rate of
The Lyapunov’s direct method is applied to adaptive

control systems in order to improve the convergence rate by modifying the feedback structure of

the error systems.
robustness of these schemes.

1. Introduction

In the 1970, global asymptotic stability was
the primary research issue in adaptive control.
Monopoli [1] improved the model reference
adaptive control (MRAC) scheme by introducing
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Some simulation examples are illustrated to show fast convergence and

the augmented error technique. Landau [2]
surveyed the model reference adaptive system
(MRAS) techniques. Narendra et al. {3,4] Morse
[5], Egardt [6], Goodwin et al. [7], and
Landau et al. [8,9] contributed several impor-
tant papers which address the global asymptotic
stability of the MRAC systems using either the
Lyapunov’s direct method or the Popov’s
hyperstability approach.

In the early 1980’s robustness and convergence
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studies on adaptive control became prevalent
because a practical adaptive controller in the
presence of uncertainties includes unmodeled
high-frequency dynamics, observation noise, high-
frequency reference or control inputs, etc. [10].
Despite global stability, the mechanism and the
convergent properties of existing adaptive algo-
rithms may be easily affected when exposed to
the uncertainties from a practical point of view.
An adaptive control algorithm should be tolerant
in the context of parameter convergence and
robustness both in the steady-state résponse and
in the transient characteristics before it can be
implemented to practical applications such as
robotic control, aircraft flight control, product
flow-control, etc. Various adaptive schemes
[3,6,11,12] face instability mechanisms inherent
in the adaptive error systems such as linear in-
stability, fast adaptation instability, high freque-
ncy instability, and parameter drift [13,14,15].
In the MRAC scheme, high frequency modes are
anticipated if the dynamics of the reference model
are too fast or if the adaptation gain is large.

The objective of this paper is to study the con-
vergent behavior of adaptive control systems with
the synthesis of a feedback structure. A refine-
ment of the error model, or a modification of the
feedback block can improve the rate of conver-
gence considering a tradeoff between robustness
and fast convergence. In Section 2, a typical error
model of adaptive control systems by Narendra
et al. [3,4] is shown. New results on designing the
feedback structure by the Lyapunov’s method
appear in Section 3 where we introduce a
generalized design tool for adaptive control
algorithms which improves the rate of conver-
gence. Finally, Section 4 deals with simulation
examples, and conclusions.

II. The Error Model of Adaptive Control Systems

A generalized form of adaptive control
algorithms can be represented by the following
bilinear differential equations [10]:

x=Ax+f,(r; § ¢ (1)
e=Ace+1: (& ¢ e) (2)
$=1.(¢ ¢, e (3)

(2)
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where A, A, are stable matrices and f, (.,..,-),
f, (,-0), £5(.,.,.) are bilinear functions. Equation
(1) shows the state representation of the con-
trolled process while (2) and (3) can be thought
of as the dynamics of the state errors and the
parameter errors, respectively.

The adjustable controller establishes 2n para-
meters from the relation of the controlied plant
and the model equations in the linear time-
invariant (LTI) single-input single-output (SISO)

case [3,4], and the error equation can be ex-
pressed as
é(t) =Ace(t) +hev (1) (4)
e:(t) =cie (1) (5)

Here Ac S Rnlxnl, e(t), b Q e R W)=

oT1(t) g(t) € R™ where g(t) g(t ¢, ¢) and the
trackmg error is defined by e(t)=x c(t) — xC(t)
where xmc(t) and xc(t) represent the n, x1 state
vector of the reference model and that of the
controlled system, respectively. ¢(t) and &(t) are
the m, x1 vectors of the parameter errors and the
observation variables, respectively.

If the Lyapunov function candidate is defined as
Ve, ¢ t)=e"()Pe(t) +¢ () 'g(t) (6)
then the condition for global asymptotic stability
of the overall system is derived by the MKY

lemma and the following lemma,

Lemma 2.1 {3, Narendra et al.] Given a stable
n, xn, matrix A, a symmetric -m,xm, matrix
', vectors ¢, b, € R™ and &(t) € R™! whose
elements Ei(t)’s are bounded and piecewise con-
tinuous, the equilibrium state of (n, + m,) differ-
ential equations, (4) and

¢:AFelg(§) (7)

are stable and lim, » e, (t)=0 if the transfer
function ¢, (sI — Ac)'lb is striclty positive real
(SPR). Moreover, if g(£(t)) is sufficiently rich, then

Jim I $(0) I =0 (8)

For example, c,=[10 ... 0] € R™, n,=3n-2, and
m, =2n when the relative degree is one.

The condition of sufficient richness is necessary
and sufficient for uniformly asymptotic stability
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(USA). The following theorem shows a richness
condition for b cgt &W).

Theorem 2.1 [16, Morgan] Let A, be a stable
n, X n, matrix of bounded piecewise continuous
functions. Let P(t) be a symmetric positive
definite matrix of bounded continuous functions
such that P + AL P + PA_ is negative definite.
Let b8 (¢T(t)) be an n, x m, matrix of bounded
piecewise continuous functions. Assume that
there exist positive numbers To, 60,80 such that,
given t, 2 0 and a unit’vector w € rml, there is
at, € [t,,t, +T4] such that

I AR beg" (6(7))wdr | 2e, (9)
Then the system
. Ac g
Z(‘)z[—rgw)bzp bgo(e)]“‘) (10)

is USA where 2(t) 2[eT(t); 1 (t)] T.

Note that, if the P matrix is constant, the transfer
function of this error model is SPR satisfying the
following positive real conditions,

AtP+PA~—-Q (1)

b‘épzcl (12)

where P = PL >0 and Q = QT >0. The block
diagram of the error system is shown in Fig.1.
The system consists of two parts —a SPR LTI
feedforward block and a nonlinear time-varying
(NLTV) feedback block —and therefore, Popov’s
hyperstability theory can also be applied to the
above error model. Note that Popov’s hyperst-
ability approach is more flexible than Lyapunov’s
direct method since the conditions for the closed-
loop error system are general and simple at the
cost of convergence. Different configurations of
the error models can be achieved by using various
controller structures for adaptive systems.

II. Structural Modification to Improve The
Rate of Convergence

1. Rate of Convergence

It is known that the overall error dynamics are
uniformly asymptotically stable if and only if
the observation vector &(t) is sufficiently rich and
if this is true then an upper bound on the rate of

(3)
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SPR LTI /f Block

(Al; b, ¢,)

n 9
S

9

Vr‘l(f)

14
Q-

g(&)r NLTV /b Block

Fig.1. A typical error model.

convergence is available [17]. Usually, the rate of
convergence means the minimum amount of time
t. so that solutions with unit initial condition at
time to will have length less than or equal to 1/2
(or other fractional numbers) for all times greater
than ty tt Therefore, the global speed of con-
vergence of the solution to (10) is completely
characterized by the rate of convergence tr.
Little is known about the rate of convergence in
connection with system properties such as
transient response, tracking performance,
robustness, etc. Relative improvement on the
transient characteristics such as the rate of con-
vergence can be obtained by modifying the NLTV
feedback structure of the error system with the
SPR LTI feedforward system. We propose two
main theorems which generalize a refinement of
the feedback structure of the error system to
obtain improved exponential convergence. A
condition of the richness of the input is import-
ant in the context of our results.

2. Main Results; Synthesis of Feedback
Structures That Improve The Rate of
Convergence

The transient performance may be improved by
forcing the resultant time-derivative of the
Lyapunov function candidate into a more negative
value given the same form of the chosen Lyapunov
function. Here, we use this fact to modify the
control structure and thus improve the rate of
convergence.

Let the Lyapunov function candidate be
defined as

Vie, g, )=lelld+ll glli1=2()" Tz (1)

(13)
where X =[ F(; I’f)‘}
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Using the generalized adaptive algorithm in the
bilinear form of (2) and (3), and differentiating
V (e, ¢, t)* we obtain

V= lelli+2("PL(& ¢ )+ T ¢ <0
(14)

or

Vo —leli+2le (vt +6 I ¢) <0 (15)

where AT P+ PAc -Q, b;l;P=c1 , ¢, e=e, and
f, (5, 9,¢) by with P=P , Q=QT > 0. v(t)
was defined in (4).

Consider the error equation of the adaptive
system for both the tracking error and the
parameter error in (10) and the Lyapunov
function defined as in (13). The derivative of the
Lyapunov function plays an important role in
improving the rate of convergence because a more
negative value of V(t) results in a better perfor-
mance. Let ¢=—I'g(¥)e, and v(t)= o 1 (g(%)- ge, ET
AE)in (15), then,

V) =—2z1)T Q2 (1) <0 (16)
Q

where Q :[
0 e £TAE

}and Q = (ALP+PA.)

Subtracting V(t) from V(t + T), we obtain

VE+T) =V (t) = AT V() dr=— 4T
2" (1) Qz (7)dT

=—2" W) (AT O (7, 1) QP (7, )d7iz (1) (17)

where & (7, t) is the transition matrix defined by
® (7, t)z(t)=z(r). If we assume that the persis-
tency of excitation holds

Bl= 47T @ (1,1) QP (7,t)d7=el (18)
where § >« >0, then we can conclude that
V@E+T)—V() £ — —E =V (1) (19

Amax(Z)

Rearranging the above equation, the exponential
gonvergence of the Lyapunov function is obtained
as

V(t+7) =(1—¢c) V(1) (20)

18 BTIBRERGE

(4)

W2wE F 1K
V(t+71) <e *V(t) (21
V(tN) <e "V (0) (22)

a

where 1>c¢ = Amar () 0. Thus, z(t) con-
verges to zero exponentially fast from the defin-
ition of V(). Proof of the exponential con-
vergence of the discrete-time version is shown in
(18] and [19] . Here, it is worth mentioning
that the exponential rate will be increased for
large values of o and for small hmax (Z). The
former implies sufficient excitation of input
signals or a larger positive definite 2 matrix-
structural modification of the NLTV block of
the error system in Fig.2-while the latter implies
large adaptation gains. This leads to limitations on
the adaptation gain, I', considering robustness.
In the next theorem, we examine the convergence
properties for two choices of v(t) in the control
law, e.g. in (15).

SPR LTI f/f Block e
(As, b, ¢1)
e z &
g(&)’ ~Tu(§)
P ETAL ‘
NLTV {/b Block

Fig.2. An example of improved schemes.

Theorem 3.1 (Fast Convergence) Let the
Lyapunov function be defined as in (13). Con-
sider two choices for v(t) in (4), or in (15). First
v(t) =v, (1) £ ¢T g%, ¢, €), and second v(t)=v,
()2 oT (g, ¢, ©) + h(k, ¢, €)] where g(§, ¢, ¢)
and h(¢, ¢, €) are any NLTV functions in R™!
guaranteeing that V(t) < 0 using v, (t), that is,

F (€ ¢ e)th(E, 8 e+ ¢)<0
(23)

and limt_'oo»l\"(t)l=0. For example, g(§,¢,¢)
= aaFe 1, ¢, = e, £T A§ with positive
definite A and A,, A, >0. Let the adaptive
algorithm be
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¢=—Tg(& ge) e, I'>0 (24)

Then, the exponential rate of convergence is
relatively improved using v,(t) compared with
that using v, (t) at time t, =to + €, € >> 0 where t,
is the initial reference time.

Proof: The time derivatives of V (e, ¢, t) for
v,(t)" and v,(t) are V,(t)=8, and V,(t)=3
6,, respectively, where 8, =[] e II 2 0 and 5
2el¢T¢§T Ag =0. Therefore, there exists € >0
such that |V, (t,)] <V, (t,)lholds for all t,,
t;=to + €. Since V; (to) = V, (to) is a fixed initial
deviation and V(t) is monotonically decreasing,

Vi(t) = Ve (1) (25)

for all t,=to + €, € > 0. From the exponential
convergence, the rate of convergence increases
with v, (t) since Q, <€, in (18) and thus,

Supe [01] = supe [az] (26)

in (19) where the subscripts 1,2 cortespond to
the feedback structures for v, (t), v,(t), respec-
tively. Therefore, from (22), the exponential rate
of convergence using v,(t) is relatively fast
compared with that using v, (t). Moreover, the
condition ﬁmt_,oo | V(t) | = O assures parameter

convergence in the steady-state &e

Note that v, (t)= Tﬁﬁ and v, {)=35- x,&F¢

-¢ de, ET A§. vi(t) and v,(t) are the associated
inputs to the feedforward SPR block of the error
model with different feedback structures. The
above theorem shows how some structural modfic-
ation inproves the transient response of adaptive
control systems. Fig.2 shows the modification of
the feedback block in the error model for increas-
ing the rate of convergence. This theorem
provides a very general result and some adaptation
laws in [20] can be shown to be special cases
of it. The next theorem shows how proportional
adaptation, as defined in [12], can also be
modifed to improve the rate of convergence.

Theorem 3.2 (Proportional Adaptation) For the
Lyapunov function in (13), Consider two choices
for v(t) in (4), or in (15). First v(t) = v,(H) 2
oT g%, ¢, e), and second wW(t)=v,(1) 2 (¢ + ¢P)
[g(¢, ¢, €) + h(§, ¢, e)] where g(§, ¢, €) and h
(¢, ¢, e) are any NLTV functions in R™! guar-
anteeing V(t) <0 using v, (t), that is,

(5)
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(p+90)7 (g (& 8, e)+h(E, o) le+d T ¢<0
@7

and lim,_, g [V(t)| = 0. For example, g(§, ¢, €)=
xToEe md h (5 ¢, O=-(o+eP) ek At
with positive definite A and A,, A, >0. Let the
integral and proportional adaptation be

¢=—Tg(¢, b e)e, >0 (28)

gp=—TIpg(& @ e)es, I'p> 0 (29)

Then, the exponential rate of convergence is
relatively improved by using v, (t) compared with
that using v, (t) at time t, =ty + €, € >0 where to
is the initial reference time.

Proof: The proof is similar to the prewous
theotemarbut 8, =1le ]]2 =0 and 5,=2e2g
¢,0,09)°T (E, ¢, €) + 2e1 (¢ + ¢P) (¢ +¢p)
£ AEZ0m thlS case.

Note that v,(t)= TT/\,_F—E and v,[(t)= ﬁfgfg
18’ (£ 9, ) Dpp (6, 6, > e (& + 9P (4 +
oP) E At A standard proportional adaptive
algorithm results if we select h (£, ¢, e)=0.

Note that the control input u(t) can be
selected from a wide variety of choices of w(t).
The proportional adaptation scheme in [9] is a
special case of the theorem. The robust adaptive
control scheme may be combined with propor-
tional adaptation to obtain fast convergence.
But, as mentioned in the previous section, there is
some trade-off between fast convergence and
robustness because the adaptation gain has an
upper bound.

TV. Simulation Results and Conclusions
1. Simulation Results

An example similar to Rohrs’ was tested to
prove the relative improvement of an adaptive
control algorithm by structural refinement.
Fig.3 and Fig.5 show simulation results of the
signal independent adaptation schemes and the
structural refinement by proportional adaptation,
respectively. The reference model Hm(s) and the
plant Hp(s) are described as follows:

Hu(s) = (30)

3
+3
30

He(S) = 532) ¥ 15)

(3D
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The reference input was a staircase, 10 to 20 at
7 seconds. In Fig.3, the plant output shows some
oscillatory transient response both in the tracking
error and in the parameter error. In Fig.5, the rate
of convergence in the transient response is
improved evidently by using the proportional
adaptation scheme under the same conditions.
Fig.4 and Fig.6 represent the parameter error vs.

ADAPTIVE CONTROL SIMULATION RESULTS
10.9 Ervor el(t)

2 4 [ 8 w 12 sec
20.8 Plant Output yp(t) and Model Output yu?}cd%_
A VA
T
N
/
H 4 ] 8 19 12 sec

Fig.3. Convergence with robustness (fast adapt-
ation; all gains =20),

ADAPTIVE CONTROL SIMULATION RESHLTS
5.00 Paraneter Kn(t)

Error el(t) 10.98

Fig.4. Parameter Kr(t) vs. error el (t) in Fig.4.

1A ETI#GHRGE
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the tracking error of Fig.3 and Fig.5, respectively,
in the phase space. The adaptation gain was
chosen to be 20, and the proportional adaptation
gain was also set equal to 20 in Fig.5. In Fig,7 and
Fig.8, the adaptation gains were 70 and 5, respec
tively, representing the cases for high and low
gains. As the adaptation gains are increased, the
poles of the error system moves into the ocill-

ADAPTIVE CONTROL SIMILATION RESULTS
2.9 Error ef(t)

| X

2,9 Paraneter Kr(t)

w A

20.9 Plant Output yp(t) and Model Output ym(t).——

/

Fig.5. Convergence with robustness and pro-
portional adaptation (all gains=20).

AMAPTIVE CONTROL SIMULATION RESULTS
3.00 Parameter Kr(t)

/

Vs

Error eldt) 1.59

Fig.6. Parameter Kr(t) vs. error el(t) in Fig.5.
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AMPTINE CONTROL SIMMLATION METHLIS
10.9 Errer oi(t)

qﬁ\f\/\v? ~

10.8 h?pm Re(t)
(\ \V/’\/\——-‘——n————-—-—\/../—ﬂ—'—*——_—'—

i 12 sec

[20.0 Mlant Output yp(t) and Model Output “(JW'-—___
- r\ '

Fig.7 Robust convergence with high gains
(all gains=70).

AMPTIVE CONTROL SIMUILATION RESILTS
18.0 Error el(t)

A~

F N

y o~

N LN e /
—F

Vo2 [ 1

sec
3
4

"

{ 2.5 Parameter Kr(t)

i

i , "ﬁ\\_/

2 4 6 8

[20.0 Plant Output yp(t) and Nodel Output gn‘(f’g—b*
o . /

18 12 sec

10 sec

Fig.8. Robust convergence with low gains (all
gains=5).

atory regions and even into the unstable regions
for higher gains. If the plain adaptive algorithm is
used in the above case, highly oscillatory response
is obtained with this reference input due to fast
asaptation instability. Therefore, the adaptation
gains are selected according to the operating range
and the reference signals by considering the final
approach analysis and infinite gain operators.

(7)

Structural Convergence Improvement Schemes on Adaptive Control Redesigning a Lyapunov's Function 7

2. Conclusions and Discussion

These approaches suggest that the rate of con-
vergence increases exponentially by modifying
feedback structures of the error systems. The
proposed theorems also generalize the strategy
in choosing nonlinear control inputs in adaptive
control.

An important point of view in parameter
error convergence versus tracking error conver-
gence is that the tracking error or the identific-
ation error converges to zero even though the
parameter error does not go to zero. The reasons
for this are due to (i) lack of excitation [21],
(ii) unmodeled dynamics and disturbances [15].
The order of excitation of the observation
vector or the reference input should be greater
than or equal to the number of parameters in the
adjustable system or controller for the parameter
convergence [22].

It is emphasized that adaptive control systems
should be robust under unstructured uncertainties.
Thus, the algorithms need modification to
guarantee robustness. Astrom [21] analyzed
these instability mechanisms to show that the
persistency of excitation plays a major role in the
adaptation problem in the presence of unmodeled
dynamics and disturbances. With bounded noise,
parameter convergence can be achieved with the
deadzone concept [23]). If the noise is modeled
as a stochastic process, parameter convergence is
related to boundedness of system variables. A
positive real condition arises for certain transfer
functions and the martingale convergence theorem
may be substituted for the Lyapunov type anal-
ysis of global convergence [24]). The Popov’s
hyperstability approach is similar to the Ly-
apunov’s direct method, but the convergence rate
is relatively slow due to the coupling terms in the
performance indexing function.

It may be difficult to analyze how unmodeled
uncertainties affect the convergence rate of the
modified schemes. Best performance might be
obtained by forcing the modes of the error
system to be very fast considering robustness
and by updating the parameters with persistently
exciting signals.
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