A Study on Tests for Parallelism of k Regression Lines Against Ordered Alternatives*

Euen-Sook Jee

Kwangwoon University, Seoul, Korea

Consider the linear regression model

(1)
$$Y_{ij} = \alpha_i + \beta_i x_{ij} + \varepsilon_{ij}, \qquad j = 1, \ldots, n_i; \quad i = 1, \ldots, k,$$

where the $x'_{ij}s$ are known constants, the α'_is are nuisance parameters, and the β'_is are the slope parameters of interest. The $Y'_{ij}s$ are observable while the ε_{ij} are mutually independent and identically distributed unobservable random variables with continuous cumulative distribution function (cdf)F.

We are interested in testing the parallelism of k regression lines against ordered alternatives. That is, we want to test

(2)
$$H_0: \beta_1 = \cdots = \beta_k = \beta \pmod{n}$$

against the ordered alternatives

$$(3) H_1: \beta_1 < \cdots < \beta_k,$$

where at least one inequality is strict.

In this paper we construct a nonparametric test statistic for testing parallelism of several regression lines against ordered alternatives. We want to construct an asymptotically distribution-free rank test statistic based on residuals.

In the linear regession model (1) we assume that the intercepts α_i are equal, i.e.,

(4)
$$\alpha_1 = \alpha_2 = \cdots = \alpha_k = \alpha \quad (unknown).$$

Then the regression model (1) can be written as

(5)
$$Y_{ij} = \alpha + \beta_i x_{ij} + \varepsilon_{ij}, \qquad j = 1, \ldots, n_i; \quad i = 1, \ldots, k.$$

Jonckheere (1954) has proposed a distribution-free rank test for testing homogeneity of location parameters against ordered alternatives. The test statistic is a sum of pairwise Mann-Whitney statistics. We now want to construct a Jonckheere type statistic, for testing H_0 in (2) against H_1 in (3), applied on the residuals.

Let $\hat{\beta}$ be a consistent estimator of the common slope β under H_0 such as the Hodges-Lehmann type estimators. For example, we may use the median or the weighed median of the set of slope estimators

(6)
$$\{(Y_{it} - Y_{is})/(x_{it} - x_{is}) \mid 1 \le s \le t \le n_i; \quad i = 1, \ldots, k\}$$

48 E. S. Jee

Let $Z_{ij}(\hat{\beta})$ denote the residuals defined by

(7)
$$Z_{ij}(\hat{\beta}) = (Y_{ij} - \hat{\beta}x_{ij})\operatorname{sign}(x_{ij}), \quad j = 1, \dots, n_i; \quad i = 1, \dots, k,$$

where sign(x) = 1 or -1 according as $x \ge 0$ or < 0. For u < v, we define the Mann-Whitney type statistic U_{uv} based on the residuals from the uth and vth lines as follows:

(8)
$$U_{uv}(\hat{\beta}) = \sum_{i=1}^{n_u} \sum_{t=1}^{n_v} \psi(Z_{vt}(\hat{\beta}) - Z_{us}(\hat{\beta})),$$

where ψ is the indicator function defined by

$$\psi(t) = \left\{ \begin{array}{ll} 1, & t \ge 0 \\ 0, & t < 0 \end{array} \right.$$

The proposed test statistic is then defined by

(9)
$$J(\hat{\beta}) = \sum_{u < v}^{k} U_{uv}(\hat{\beta})$$

Under the ordered alternatives H_1 in (3) the values of $J(\hat{\beta})$ is expected to be large. We thus reject H_0 in favor of H_1 for large values of $J(\hat{\beta})$.

If $\hat{\beta}$ is replaced by the true common slope β , in (8) and (9), then the distribution of $U_{uv}(\beta)$ is the same as that of the Mann-Whitney statistic and the distribution of $J(\beta)$ is the same as that of Jonckheere statistic, which has a distribution-free property. But, because of the dependence among the residuals, the test statistic $J(\hat{\beta})$ is not distribution-free.

Assuming the regression model (5), the proposed statistic $J(\hat{\beta})$ in (9) is the sum of

(10)
$$U_{uv}(\hat{\beta}) = \sum_{s=1}^{n_v} \sum_{t=1}^{n_v} \psi(Z_{vt}(\hat{\beta}) - Z_{us}(\hat{\beta})),$$

which is the Mann-Whitney statistic applied to the residuals from the uth and vth regression lines. While, if $\hat{\beta}$ is replaced by β in (10), the statistic becomes

(11)
$$U_{uv}(\beta) = \sum_{s=1}^{n_v} \sum_{t=1}^{n_v} \psi(Z_{vt}(\beta) - Z_{us}(\beta)),$$

which is the Mann-Whitney statistic applied to independent observations.

We now want to prove the asymptotic equivalence of $U_{uv}(\hat{\beta})$ and $U_{uv}(\beta)$ for each (u, v) to show that $J(\hat{\beta})$ and $J(\beta)$ have the same limiting distributions. We assume that

(12)
$$\lim_{N\to\infty} \frac{n_i}{N} = \lambda_i, \qquad 0 < \lambda_i < 1, \quad i = 1, \dots, k,$$

with

$$N = \sum_{i=1}^{k} n_i$$

The U statistics corresponding to $U_{uv}(\hat{\beta})$ and $U_{uv}(\beta)$ are respectively given by

(13)
$$U_{uv}^{\star}(\hat{\beta}) = \frac{1}{n_u n_v} U_{uv}(\hat{\beta})$$

and

(14)
$$U_{uv}^*(\beta) = \frac{1}{n_u n_v} U_{uv}(\beta),$$

which are two-sample U statistics. The following theorem gives some conditions under which the two-sample U statistics $U^*_{uv}(\hat{\beta})$ and $U^*_{uv}(\beta)$ are asymptotically equivalent.

Theorem 1. Assume that the density f of the error terms and the disign points x_{ij} satisfy the following conditions:

D1: f is bounded by M_2 and symmetric about zero.

D2: There exists an $M_3 > 0$ such that for each (u, v)

$$\max_{t,t} ||x_{vt}| - |x_{ux}|| \le M_3.$$

D3: Let $|\overline{X}|_{i} = \frac{1}{n_i} \sum_{j=1}^{n_i} |x_{ij}|$, $i = 1, \ldots, k$. The, for each (u, v), $|\overline{X}|_{v} - |\overline{X}|_{u} \to 0$ as $N \to \infty$.

Then, under H_0 ,

$$\sqrt{n}\left[U_{uv}^*(\hat{\beta}) - U_{uv}^*(\beta)\right] \xrightarrow{P} 0.$$

Proof: Let

$$h_{s,t}(X_{us}; X_{vt}; \gamma) = \psi(z_{vt}(\gamma) - Z_{us}(\gamma)).$$

For convenience we omit the subscripts u and v, if necessary. Then $h_{s,t}(\cdot)$ is the corresponding kernel of degree (1,1), and we have

(15)
$$\mu_{s,t}(\gamma) = E_{\beta}[h_{s,t}(X_{us}; X_{vt}; \gamma)]$$

$$= E_{\beta}[\psi\{(\varepsilon_{vt} + \beta X_{vt} - \gamma X_{vt}) \operatorname{sign}(X_{vt}) - (X_{us} + \beta X_{us} - \gamma X_{us}) \operatorname{sign}(X_{us})\}]$$

$$= E_{\beta}[\psi\{W_{vtus} - (\gamma - \beta)(|X_{vt}| - |X_{us}|)\}]$$

where W_{vtus} is defined by

$$W_{vtus} = \varepsilon_{vt} \operatorname{sign}(X_{vt}) - \varepsilon_{us} \operatorname{sign}(X_{us}).$$

Note that, since $\varepsilon'_{ij}s$ are symmetric about zero, W_{vtus} is identically distributed for every (s,t). Let G and g be the cdf and density of W_{vtus} , respectively. The, $\mu_{s,t}(\gamma)$ in (15) becomes

$$\mu_{s,t}(\gamma) = P_{\beta} \{ W \ge (\gamma - \beta)(|X_{vt}| - |X_{us}|) \}$$

= 1 - G((\gamma - \beta)(|X_{vt}| - |X_{us}|))

50 E. S. Jee

Thus, according to D1 and D3,

(16)
$$\frac{\partial}{\partial \gamma} \mu_{s,t}(\gamma) \bigg|_{\gamma=\beta} = -g(0)(|X_{vt}| - |X_{us}|)$$

exists for all (s,t), and is achieved uniformly in (s,t). Then, from (16) we have

$$\frac{\partial \mu(\gamma)}{\partial \gamma} \bigg|_{\gamma=\beta} = \frac{1}{n_u n_v} \sum_{s=1}^{n_u} \sum_{t=1}^{n_v} \frac{\partial}{\partial \gamma} \mu_{s,t}(\gamma) \bigg|_{\gamma=\beta}$$

$$= \frac{1}{n_u n_v} \sum_{s=1}^{n_u} \sum_{t=1}^{n_v} [-g(0)(|X_{vt}| - |X_{us}|)]$$

$$= -g(0)(\overline{|X|}_{v.} - \overline{|X|}_{u.})$$

$$\longrightarrow 0$$

as $N \to \infty$ by the condition D3. Thus, we have

$$\sqrt{N}(U_{uv}^*(\hat{\beta}) - U_{uv}^*(\beta)] \xrightarrow{P} 0,$$

which completes the proof.

From Theorem 1 we have the following theorem which indicates the asymptotic equivalence of $J(\hat{\beta})$ and $J(\beta)$.

Theorem 2. Assume that the conditions D1 \sim D3 are satisfied for every (u, v). Assume also that the sample sizes satisfy the condition (12). Then, under H_0 ,

$$N^{-3/2}[J(\hat{\beta}) - J(\beta)] \xrightarrow{P} 0,$$

where $\hat{\beta}$ is a \sqrt{N} -consistent estimator of β .

Since the null distribution of $J(\beta)$ is the same as that of the Jonckheere statistic, we have the following corollary.

Corollary 3. Under the conditions in Theorem 2, the limiting distribution of

$$[J(\hat{\beta}) - E_0(J(\beta))]/[var_0(J(\beta))]^{1/2}$$

is standard normal when H_0 is true, where

$$E_0(J(\beta)) = \frac{1}{4} \left[N^2 - \sum_{i=1}^k n_i^2 \right]$$

and

$$Var_0(J(\beta)) = \frac{1}{72} \left[N^2(2N+3) - \sum_{i=1}^k n_i^2(2n_i+3) \right].$$

To compare the proposed test with the other tests a small sample Monte Carlo study is performed. We compare the efficiencies of our proposed test statistic J with Adichie's parametric statistics $\overline{\chi}_k^2$, \overline{E}_k^2 , S_t , nonparametric statistics $\overline{\chi}_i^2(\phi)$, $S(\phi)$, and Rao-Gore nonparametric statistic G. The proposed rank test based on J has higher empirical powers than any other statistics.

The simulation results show that nonparametric test statistics \overline{X}_k^2 , $S(\phi)$ and G have lower empirical powers for light-tailed and moderately heavy-tailed distributions.

The Rao-Gore test based on G, which is a type of Jonckheere statistic, is much worse than the proposed test based on J in its power for all distributions. There might be some information loss to make the Rao-Gore test distribution-free.

The procedure for testing the parallelism of k regression lines without the assumption of equal intercepts is an interesting subject for a further study.

References

- 1. Adichie, J. N., Rank Score Comparison of Several Regression Parameters, Ann. Statist. 2 (1974), 396-402.
- 2. _____, Testing Parallelism of Regression Lines against Ordered Alternatives, Comm. Statist. Theory Methods A5(11) (1976), 985-997.
- Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D., "Statistical Inference Under Order Restrictions. The Theorem and Application of Isotonic regression," John Wiley and Sons, New York, 1972.
- Chacko, V.J., Testing Homogeneity against Ordered Alternatives, Ann. Math. Statist. 34 (1963), 945-956.
- 5. Hodges, J.L, Jr. and Lehmann, E.L., Ann. Math. Statist 34 (1963), 598-611.
- 6. Hollander, M., A Distribution-Free Test for Parallellsm, J. Amer. Statist. Assoc. 65 (1954), 387-394.
- 7. Jonckheere, A.R., Biometricka 41 (1954), 349-354.
- 8. Randles, R.H., On tests Applied to Residuals, J. Amer. Statist. Assoc. 79 (1984), 349-354.
- 9. Rao, K.S.M. and Gore A.P., Testing Concurrence and Parallelism of Several Sample Regressions Against Ordered Alternatives. Math. Operationsforsch, U. Stat. Ser. Statist. 15 (1984), 43-50.
- 10. Song, M.S., Huh, M.Y., Kang, H.J., J. KSQC 15 (1987), 50-54.