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Proper Efficiency and Zero-likeness
of Multiobjective Programming with Set Functions
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Kangweon National University, Chuncheon, Korea

ABSTRACT. Subdifferentiability of a vector-valued set function is defined first. Then
in terms of zero-like functions, a perperly efficient solution of a convex programming
problem with set functions will be characterized.

1. Preliminaries

For a subset A in R", its (strictly) positive polar A°(A*°) is defined by
AS(A°)={z* € R": (z,2") > (>)0 forany =z € A}.

Let Y be an objective space in R"®. An efficient point of ¥ with respect to the domination
structure D C R" is the point y* € Y(y € Eff(Y, D)) such that

Y-y )N(-D)={0}, or ¢ if 0¢&D.

That is, there is no y # y* € Y such that y* € y+ D.

Another restricted solution concept proper efficiency, eliminates efficient points of certain
types of abnormality. A point y* € Y is called a properly efficient point of Y (y* € P(Y, D))
with respect to a domination cone D [1] if

A(P(Y +D—y*))N(=D)={0}, or ¢ if 0¢D,

where P(S) = {ay : a > 0,y € S} is the projecting cone for a set S C R™. Let K be a cone
of R” and z,y € R". Then we denote
(i) z<gyifandonlyify—z €int K

(i) ¢ <k yif and only if y — z € K\{0}

(iii) z<gyifandonlyif y—z € K.

Let (X, ™, m) be a measure space where 2 is the o-algebra of all m-measurable subsets
of X. For Q € A, Xy denotes the characteristic function of 2. We shall write L, instead of
Ly(X,9%,m) for 0 < p < 0.

If (X, 9, m) is finite, atomless and L, is separable, then for any Q;,Qx € % anda el =
[0, 1], there exists a sequence {I',} C & such that

Xr, = aXq, + (1 — a)Xq,,

w.
where — denotes the weak” convergence of elements in Lo, [6]. Such a sequence {T,} is
called a Morris sequence associated with (o, Q;, Q).

41



42 J. Y. Lee

Definition 1.1: [2] A subfamily & of % is called convex if, given (&, Q;,93) € [0,1] x &x
S and a Morris-sequence {T',} in 2 associated with (o, Qy,2), there exists a subsequence
{Tn,} of {Tn} in 6.

Definition 1.2: [2] Let G be a convex subfamily of &. Let K be a convex cone of R". A
multi-valued set function H : & — R" is called K-convex if, given (a,9;,2;)in Ix &x &

and any Morris-sequence {I'} in @ associated with (a,;,Q2), there exists a subsequence
{Tn,} of {Ty} in & such that

limsup H(Ty,) <k aH(Q) + (1 - )H(),

k—o00

where limsup is taken over each component.

If G is convex, then CI(&), the weak*-closure of & in Ly is the w*-closed convex hull of
& [3].

Definition 1.3: [3] A vector-valued set function H = (Hy,...,H,) : & — R" is called
w*-continuous on & if for each f € ¢l(G) and for each j =1,...,n, {H;(Qm)} converges to

the same limit for all {Q,,} with Xq i f.

2. Multiobjective Programming Problem with Set Functions

Multicbjective programming problem with set functions can be described as follows:

MinD F(Q)
(P) subject to Q€ 6,
and G(2) <q0,

which has been defined as the problem of finding all feasible efficient or properly efficient
points of F(G) with respect to the domination cone D. That is, letting & = {Q € & :
G(R) <q 0}, we want to find Q* € & such that F(Q*) € Effi(F(&'),D) or F(Q*) €
P(F(S’), D) in the problem (P). We shall call such Q* € & an efficient D-solution or
properly efficient D-solution to the problem (P), respectively.

A necessary condition for a properly efficient D-solution to the problem (P) is proven
through associated scalar problem. Results obtained in this section are analogous to those
obtained by Hsia and Lee in [5].

The following assumptions are imposed on the problem (P):

(i) D and Q are pointed closed convex cones in R and R™ with nonempty interiors,
respectively,

(i) F : & — RP is D-convex, w*-continuous,

(iii) G: & — R™ is Q-convex, w*-continuous,

(iv) & is a convex subfamily of the o-algebra 2.

The next lemma relates properly efficient points with scalarized programming problems.

Lemma 2.1. LetY be a D-convez set of RP and D a closed and pointed convexr cone in
RP. Then y* € P(Y, D) if and only if there exists p* € int D® such that

(0", y") <(p"y) forall yevY.
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Proof: Note that int D° # ¢ and int D° = D*°. Then, by [8, Theorems 3.4.1, 3.4.2,
3.4.3],

P, D)= |J {s* €Y :(ny")=inf{(uy):y€Y}}
“EDIO
Thus we obtain the conclusion.

Next we give the Lagrange multiplier theorem for vector-valued programming with set
functions. It is a generalization of Theorem 3.1 [3]. For the cones D and @, the set of px m
matrices {M € RP*™ : MQ C D} is denoted by £. Such matrices are called positive in
some literature [8].

Proposition 2.2. Let Q* be a properly efficieni D-solution to the problem (P). If there
is Qp € G such that G() <@ 0, then there exists M* € £ such that

(i) F(2*) € Minp{L(Q,M*):Q € G}

(i) M*G(Q*) =0,
where L(Q, M) = F(Q)+ MG(Q) for Q € & and M € RP*™.

Proof: [5]
The multiplier M* obtained in Proposition 2.2 is called Lagrange multiplier.

3. Proper Efficiency and Zero-likeness

In this section, the preperly efficient D-solution of the multiobjective programming prob-
lem (P) introduced in the previous section is characterized in terms of zero-like func-
tions. For this purpose, let the domination cone D be the nonnegative orthant Rﬁ_ s0
that int D° = int R% . Also let @ = RT. We denote the dual space of L, with the norm
topology by (Loo)*, which can be characterized as the space of finitely additive set functions
[10]. We shall use the fun~tional notation (f,Xq) = [ f dm. First we extend the notion of
subgradient given in [9] to the case of vector-valued set functions.

Definition 3.1: A vector-valued set function F : % — RP is called subdifferentiable at
Qp € A if there exists an element

T=(T); € XPi(Loo)* = (Loo)* X --- x (Leo)* p — times,
called the subgradient of F' at Qg, such that
F(Q) 20 F(Q)+ < T, Xa—Xq,>» forallQe ¥,

where € T, Xq >= ((Tl,Xn) , (Tz,Xn), AU (Tp, Xn))t.

The set of all subgradients of F at € is called the subdifferential of F at Qg and is
denoted by 8F(Q). Let us denote B = RP U {+00}.
Now we define a zero-like function on XF_ (Loo)*.

Definition 3.2: An element T = (T;)!_, € X'_,(Lso)* is called zero-like, written as
T ~0Qor0~T,if there exists positive numbers py, ..., yp such that

[11T1+"'+ﬂpr:0
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as a function in (Loo)*.

In terms of zero-like functions, a properly effificient solution of a convex programming
can be characterized. First we consider the unconstraint programming problem:

(P 'Min F(Q)
subject to 2 € B,

where F = (F;)}_, : 6 — R is w*-continuous and & is a convex subfamily. Suppose that
dom F = (¥_,(dom F;) = & and that cl(S) contains relative interior points.

Theorem 3.3. For the problem (P'), Q* is a properly efficient solution if and only if
there is a zero-like T in OF(Q*) = 0Fg(Q*).

Proof: Suppose that there is a zero-like T in 0F(Q*). Then there exists a u € int R}
such that (4, T) = 0. Since T € 8F(Q*), F(Q) > F(*)+ < T, Xq ~ Xq- > forall Q € &.
Applying u on both sides, we have

{8, F(Q)) 2 (1, F(Q)) + (1, < T, Xa — Xa+ )
= (u, F(Q*)) + ({4, T) , X - Xa+)
= (u, f(Q)), forall Qe6.

Thus (4, F(2*)) € Eff({(u, F(Q)),R.). Then, by Lemma 2.1, Q* is a properly efficient
solution. Conversely, let Q* be a properly efficient solution. Then, by Lemma 2.1, there
exists a 4 € int RY, such that

(n, F(Q")) < (u, F(Q)), forall Q€ 6.
Clearly, 0 € ({p, F(92*)))(R2*). Writing F(Q) = (F1(R),..., F,()), we have
P a
0€o(Y i F)@) =Y OF(@),
i=1

=1

Therefore, there are T; € F;(Q*), ¢ = 1,...,p, such that

Then T = (T;) € X!_,(L)* and T ~ 0 by p. Hence, for each i = 1,...,p,
Fi(Q) > Fi(Q*) + (Ti,Xa — Xq.) forall Qe 6.

Therefore, T € 9F (). The proof is now complete.

Next we consider a sufficient and necessary condition for the existence of a properly
efficient solution of a multiobjective programming problem with constraints:

Min F(Q)
(P) subject to Q € &
and G(Q) <q0.



Proper Efficiency and Zero-likeness 45

Theorem 3.4. Let G = GNdom FNdomG and cl(G) have nonemply relative interior.
Suppose that F' and G are w*-continuous on &. Assume Slater’s constraint qualification
holds. That is, there is Qo € & such that F(Q) < 0. Then an Q* € G is a properly efficient
solution of (P) if and only if there exists a zero-like T € XF2{"(Loo)* such that

i=1

T = (S, 5,) with S, € OF(Q") and S, € HG(Q").

Moreover, if Sy € OF(Q*) is zero-like, then Q* is a properly efficient solution to the problem

(P).

Proof: If F(*)isa properly efficient point for the problem (P), then thereis a s € int Rf,
and A € Q° such that

(w, F(Q")) = Min{(g, F(Q)) + (1, G(Q)) : Q € 6},

by the Lagrange multiplier Theorem 2.2. Therefore,

0 € 9((u, F(27)) + (A, G(Q"))
= 0({p, F())) + 0((w, G(Q)).

Thus, there is an S; € F(Q*) and an S € 8G{(Q") such that

0= (s, 51) +(X,S2)

Let T = (81, 852). The converse is immediate from the definition and Lemma 2.1. The proof
is therefore complete.
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