Proper Efficiency and Zero-likeness of Multiobjective Programming with Set Functions

Jun-Yull Lee

Kangweon National University, Chuncheon, Korea

ABSTRACT. Subdifferentiability of a vector-valued set function is defined first. Then in terms of zero-like functions, a perperly efficient solution of a convex programming problem with set functions will be characterized.

1. Preliminaries

For a subset A in \mathbb{R}^n , its (strictly) positive polar $A^0(A^{so})$ is defined by

$$A^{c}(A^{s_0}) = \{x^* \in \mathbb{R}^n : (x, x^*) \ge (>)0 \text{ for any } x \in A\}.$$

Let Y be an objective space in \mathbb{R}^n . An efficient point of Y with respect to the domination structure $D \subset \mathbb{R}^n$ is the point $y^* \in Y(y \in \text{Eff}(Y, D))$ such that

$$(Y - y^*) \cap (-D) = \{0\}, \text{ or } \phi \text{ if } 0 \notin D.$$

That is, there is no $y \neq y^* \in Y$ such that $y^* \in y + D$.

Another restricted solution concept, proper efficiency, eliminates efficient points of certain types of abnormality. A point $y^* \in Y$ is called a properly efficient point of $Y(y^* \in P(Y, D))$ with respect to a domination cone D [1] if

$$cl(P(Y+D-y^*))\cap (-D)=\{0\}, \text{ or } \phi \text{ if } 0 \notin D,$$

where $P(S) = \{\alpha y : \alpha > 0, y \in S\}$ is the projecting cone for a set $S \subset \mathbb{R}^n$. Let K be a cone of \mathbb{R}^n and $x, y \in \mathbb{R}^n$. Then we denote

- (i) $x <_K y$ if and only if $y x \in \text{int } K$
- (ii) $x \leq_K y$ if and only if $y x \in K \setminus \{0\}$
- (iii) $x <_K y$ if and only if $y x \in K$.

Let (X, \mathfrak{A}, m) be a measure space where \mathfrak{A} is the σ -algebra of all m-measurable subsets of X. For $\Omega \in \mathfrak{A}$, χ_{Ω} denotes the characteristic function of Ω . We shall write L_p instead of $L_p(X, \mathfrak{A}, m)$ for 0 .

If (X, \mathfrak{A}, m) is finite, atomless and L_1 is separable, then for any $\Omega_1, \Omega_2 \in \mathfrak{A}$ and $\alpha \in I = [0, 1]$, there exists a sequence $\{\Gamma_n\} \subset \mathfrak{A}$ such that

$$\chi_{\Gamma_n} \xrightarrow{w^*} \alpha \chi_{\Omega_1} + (1-\alpha)\chi_{\Omega_2}$$

where $\xrightarrow{w^*}$ denotes the weak* convergence of elements in L_{∞} [6]. Such a sequence $\{\Gamma_n\}$ is called a Morris sequence associated with $(\alpha, \Omega_1, \Omega_2)$.

42 J. Y. Lee

Definition 1.1: [2] A subfamily \mathfrak{S} of \mathfrak{A} is called convex if, given $(\alpha, \Omega_1, \Omega_2) \in [0, 1] \times \mathfrak{S} \times \mathfrak{S}$ and a Morris-sequence $\{\Gamma_n\}$ in \mathfrak{A} associated with $(\alpha, \Omega_1, \Omega_2)$, there exists a subsequence $\{\Gamma_{n_k}\}$ of $\{\Gamma_n\}$ in \mathfrak{S} .

Definition 1.2: [2] Let \mathfrak{S} be a convex subfamily of \mathfrak{A} . Let K be a convex cone of R^n . A multi-valued set function $H:\mathfrak{S}\to R^n$ is called K-convex if, given $(\alpha,\Omega_1,\Omega_2)$ in $I\times\mathfrak{S}\times\mathfrak{S}$ and any Morris-sequence $\{\Gamma_n\}$ in \mathfrak{A} associated with $(\alpha,\Omega_1,\Omega_2)$, there exists a subsequence $\{\Gamma_{nk}\}$ of $\{\Gamma_n\}$ in \mathfrak{S} such that

$$\limsup_{k\to\infty} H(\Gamma_{n_k}) \leq_K \alpha H(\Omega_1) + (1-\alpha)H(\Omega_2),$$

where lim sup is taken over each component.

If \mathfrak{S} is convex, then $Cl(\mathfrak{S})$, the weak*-closure of \mathfrak{S} in L_{∞} is the w^* -closed convex hull of \mathfrak{S} [3].

Definition 1.3: [3] A vector-valued set function $H = (H_1, \ldots, H_n) : \mathfrak{S} \to \mathbb{R}^n$ is called w^* -continuous on \mathfrak{S} if for each $f \in cl(\mathfrak{S})$ and for each $j = 1, \ldots, n$, $\{H_j(\Omega_m)\}$ converges to the same limit for all $\{\Omega_m\}$ with $\chi_{\Omega_m} \xrightarrow{w^*} f$.

2. Multiobjective Programming Problem with Set Functions

Multicbjective programming problem with set functions can be described as follows:

$$\begin{aligned} \operatorname{Min}_D F(\Omega) \\ \text{subject to} \quad \Omega \in \mathfrak{S}, \\ \text{and} \quad G(\Omega) \leq_Q 0, \end{aligned}$$

which has been defined as the problem of finding all feasible efficient or properly efficient points of $F(\mathfrak{S})$ with respect to the domination cone D. That is, letting $\mathfrak{S} = \{\Omega \in \mathfrak{S} : G(\Omega) \leq_Q 0\}$, we want to find $\Omega^* \in \mathfrak{S}$ such that $F(\Omega^*) \in \text{Eff}(F(\mathfrak{S}'), D)$ or $F(\Omega^*) \in \mathfrak{P}(F(\mathfrak{S}'), D)$ in the problem (P). We shall call such $\Omega^* \in \mathfrak{S}$ an efficient D-solution or properly efficient D-solution to the problem (P), respectively.

A necessary condition for a properly efficient D-solution to the problem (P) is proven through associated scalar problem. Results obtained in this section are analogous to those obtained by Hsia and Lee in [5].

The following assumptions are imposed on the problem (P):

- (i) D and Q are pointed closed convex cones in R^p and R^m with nonempty interiors, respectively,
- (ii) $F:\mathfrak{S}\to R^p$ is D-convex, w^* -continuous,
- (iii) $G: \mathfrak{S} \to \mathbb{R}^m$ is Q-convex, w^* -continuous,
- (iv) \mathfrak{S} is a convex subfamily of the σ -algebra \mathfrak{A} .

The next lemma relates properly efficient points with scalarized programming problems.

Lemma 2.1. Let Y be a D-convex set of \mathbb{R}^p and D a closed and pointed convex cone in \mathbb{R}^p . Then $y^* \in \mathfrak{P}(Y,D)$ if and only if there exists $\mu^* \in \text{int } D^0$ such that

$$\langle \mu^*, y^* \rangle \le \langle \mu^*, y \rangle$$
 for all $y \in Y$.

Proof: Note that int $D^0 \neq \phi$ and int $D^0 = D^{s0}$. Then, by [8, Theorems 3.4.1, 3.4.2, 3.4.3],

$$P(Y,D) = \bigcup_{\mu \in D^{*0}} \{y^* \in Y : \langle \mu, y^* \rangle = \inf\{\langle \mu, y \rangle : y \in Y\}\}.$$

Thus we obtain the conclusion.

Next we give the Lagrange multiplier theorem for vector-valued programming with set functions. It is a generalization of Theorem 3.1 [3]. For the cones D and Q, the set of $p \times m$ matrices $\{M \in \mathbb{R}^{p \times m} : MQ \subset D\}$ is denoted by \mathfrak{L} . Such matrices are called positive in some literature [8].

Proposition 2.2. Let Ω^* be a properly efficient D-solution to the problem (P). If there is $\Omega_0 \in \mathfrak{S}$ such that $G(\Omega_0) <_Q 0$, then there exists $M^* \in \mathfrak{L}$ such that

- (i) $F(\Omega^*) \in \operatorname{Min}_D\{L(\Omega, M^*) : \Omega \in \mathfrak{S}\}\$
- (ii) $M^*G(\Omega^*) = 0$,

where $L(\Omega, M) = F(\Omega) + MG(\Omega)$ for $\Omega \in \mathfrak{S}$ and $M \in \mathbb{R}^{p \times m}$.

Proof: [5]

The multiplier M^* obtained in Proposition 2.2 is called Lagrange multiplier.

3. Proper Efficiency and Zero-likeness

In this section, the preperly efficient D-solution of the multiobjective programming problem (P) introduced in the previous section is characterized in terms of zero-like functions. For this purpose, let the domination cone D be the nonnegative orthant R_+^p so that int $D^0 = \operatorname{int} R_+^p$. Also let $Q = R_+^m$. We denote the dual space of L_∞ with the norm topology by $(L_\infty)^*$, which can be characterized as the space of finitely additive set functions [10]. We shall use the functional notation $(f, \chi_\Omega) = \int_\Omega f \, dm$. First we extend the notion of subgradient given in [9] to the case of vector-valued set functions.

Definition 3.1: A vector-valued set function $F: \mathfrak{A} \to \mathbb{R}^p$ is called subdifferentiable at $\Omega_0 \in \mathfrak{A}$ if there exists an element

$$T = (T_i)_{i=1}^p \in X_{i=1}^p (L_{\infty})^* = (L_{\infty})^* \times \cdots \times (L_{\infty})^* \quad p - \text{times},$$

called the *subgradient* of F at Ω_0 , such that

$$F(\Omega) >_0 F(\Omega_0) + \ll T, \chi_{\Omega} - \chi_{\Omega_0} \gg \text{ for all } \Omega \in \mathfrak{A},$$

where $\ll T, \chi_{\Omega} \gg = (\langle T_1, \chi_{\Omega} \rangle, \langle T_2, \chi_{\Omega} \rangle, \dots, \langle T_p, \chi_{\Omega} \rangle)^t$.

The set of all subgradients of F at Ω_0 is called the *subdifferential* of F at Ω_0 and is denoted by $\partial F(\Omega_0)$. Let us denote $\overline{R}^p = R^p \cup \{\pm \infty\}$.

Now we define a zero-like function on $X_{i=1}^{p}(L_{\infty})^{*}$.

Definition 3.2: An element $T = (T_i)_{i=1}^p \in X_{i=1}^p(L_\infty)^*$ is called *zero-like*, written as $T \sim 0$ or $0 \sim T$, if there exists positive numbers μ_1, \ldots, μ_p such that

$$\mu_1 T_1 + \dots + \mu_p T_p = 0$$

as a function in $(L_{\infty})^*$.

In terms of zero-like functions, a properly effificient solution of a convex programming can be characterized. First we consider the unconstraint programming problem:

where $F = (F_i)_{i=1}^p : \mathfrak{S} \to \overline{R}^p$ is w^* -continuous and \mathfrak{S} is a convex subfamily. Suppose that $\operatorname{dom} F = \bigcap_{i=1}^p (\operatorname{dom} F_i) = \mathfrak{S}$ and that $\operatorname{cl}(\mathfrak{S})$ contains relative interior points.

Theorem 3.3. For the problem (P'), Ω^* is a properly efficient solution if and only if there is a zero-like T in $\partial F(\Omega^*) = \partial F_{\mathfrak{S}}(\Omega^*)$.

Proof: Suppose that there is a zero-like T in $\partial F(\Omega^*)$. Then there exists a $\mu \in \operatorname{int} R_+^p$ such that $\langle \mu, T \rangle = 0$. Since $T \in \partial F(\Omega^*)$, $F(\Omega) \geq F(\Omega^*) + \ll T$, $\chi_{\Omega} - \chi_{\Omega^*} \gg \text{ for all } \Omega \in \mathfrak{S}$. Applying μ on both sides, we have

$$\langle \mu, F(\Omega) \rangle \ge \langle \mu, F(\Omega^*) \rangle + \langle \mu, \ll T, \chi_{\Omega} - \chi_{\Omega^*} \gg \rangle$$

$$= \langle \mu, F(\Omega^*) \rangle + \langle \langle \mu, T \rangle, \chi_{\Omega} - \chi_{\Omega^*} \rangle$$

$$= \langle \mu, f(\Omega^*) \rangle, \quad \text{for all} \quad \Omega \in \mathfrak{S}.$$

Thus $\langle \mu, F(\Omega^*) \rangle \in \text{Eff}(\langle \mu, F(\Omega) \rangle, R_+^p)$. Then, by Lemma 2.1, Ω^* is a properly efficient solution. Conversely, let Ω^* be a properly efficient solution. Then, by Lemma 2.1, there exists a $\mu \in \text{int } R_+^p$ such that

$$\langle \mu, F(\Omega^*) \rangle \le \langle \mu, F(\Omega) \rangle$$
, for all $\Omega \in \mathfrak{S}$.

Clearly, $0 \in \partial(\langle \mu, F(\Omega^*) \rangle)(\Omega^*)$. Writing $F(\Omega) = (F_1(\Omega), \dots, F_p(\Omega))$, we have

$$0 \in \partial \left(\sum_{i=1}^{p} \mu_i \cdot F_i\right)(\Omega^*) = \sum_{i=1}^{p} \mu_i \cdot \partial F(\Omega^*).$$

Therefore, there are $T_i \in \partial F_i(\Omega^*)$, i = 1, ..., p, such that

$$0 = \sum_{i=1}^{p} \mu_i \cdot T_i.$$

Then $T = (T_i) \in X_{i=1}^p(L_\infty)^*$ and $T \sim 0$ by μ . Hence, for each $i = 1, \ldots, p$,

$$F_i(\Omega) \ge F_i(\Omega^*) + \langle T_i, \chi_{\Omega} - \chi_{\Omega^*} \rangle$$
 for all $\Omega \in \mathfrak{S}$.

Therefore, $T \in \partial F(\Omega^*)$. The proof is now complete.

Next we consider a sufficient and necessary condition for the existence of a properly efficient solution of a multiobjective programming problem with constraints:

Theorem 3.4. Let $\mathfrak{S} = \mathfrak{S} \cap \operatorname{dom} F \cap \operatorname{dom} G$ and $\operatorname{cl}(\mathfrak{S})$ have nonempty relative interior. Suppose that F and G are w^* -continuous on \mathfrak{S} . Assume Slater's constraint qualification holds. That is, there is $\Omega_0 \in \mathfrak{S}$ such that $F(\Omega_0) < 0$. Then an $\Omega^* \in \mathfrak{S}$ is a properly efficient solution of (P) if and only if there exists a zero-like $T \in X_{i=1}^{p \times m}(L_{\infty})^*$ such that

$$T = (S_1, S_2)$$
 with $S_1 \in \partial F(\Omega^*)$ and $S_2 \in \partial G(\Omega^*)$.

Moreover, if $S_1 \in \partial F(\Omega^*)$ is zero-like, then Ω^* is a properly efficient solution to the problem (P).

Proof: If $F(\Omega^*)$ is a properly efficient point for the problem (P), then there is a $\mu \in \text{int } R^p_+$ and $\lambda \in Q^0$ such that

$$\langle \mu, F(\Omega^*) \rangle = \min\{\langle \mu, F(\Omega) \rangle + \langle \lambda, G(\Omega) \rangle : \Omega \in \mathfrak{S}\},\$$

by the Lagrange multiplier Theorem 2.2. Therefore,

$$0 \in \partial(\langle \mu, F(\Omega^*) \rangle + \langle \lambda, G(\Omega^*) \rangle)$$

= $\partial(\langle \mu, F(\Omega) \rangle) + \partial(\langle \mu, G(\Omega^*) \rangle).$

Thus, there is an $S_1 \in \partial F(\Omega^*)$ and an $S_2 \in \partial G(\Omega^*)$ such that

$$0 = \langle \mu, S_1 \rangle + \langle \lambda, S_2 \rangle$$

Let $T = (S_1, S_2)$. The converse is immediate from the definition and Lemma 2.1. The proof is therefore complete.

References

- 1. Benson, H.P., Efficiency and Proper Efficiency in the Vector Optimization with respect to cones, J. Math. Anal. Appl. 93 (1983), 273-289.
- Chou, J.H., W.S. Hsia and T.Y. Lee, On Multiple Objective Programming Problems with Set Functions, J. Math. Anal. and Appl. 105 (1985), 383-394.
- 3. Hsia, W.S. and T.Y. Lee, Lagrangian Function and Duality Theory in Multiobjective Programming with Set Functions, J. Optim. Theory Appl. 57 (1988).
- 4. ______, Proper D-solutions of Multiobjective Programming with Set Functions, preprint.
- Lee, Jun-yull, Lagange Multipliers and Duality Theorems of Multiobjective Optimization with Set Functions, U. Alabama, Ph. D. Dessertation (1988).
- Morris, R.J.T, Optimal Constrained Selection of a Measurable Subset, J. Math. Anal. Appl. 70 (1979), 546-562.
- 7. Rockafellar, R.T, "Convex Analysis," Princeton Univ. Press, Princeton, New Jersey, 1970.
- Sawaragi, Y., H. Nakayama and T. Tanino, "Theory of Multiobjective Optimization," Vol. 176, Academic Press, 1985.
- 9. Tanino, T. and Y. Sawaragi, Duality Theory in Multiobjective Programming, J. Optim. Theory Appl. 27 (1979), 509-529.
- 10. Yoshida, K. and E. Hewitt, Finitely Additive Measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.