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0. Introduction

In [5, Theorem 11.33] the consistency theorem says that every function which is Riemann
integrable on an interval is also Lebesgue integrable and their integrals are consistent.

The purpose of this paper is to give an elementary proof of the consistency theorem for the
integrals of Riemann-Stieltjes and Lebesgue types using the standard proof of Theorem 11.33
(a) in [5]. For this we use Ross’ definition [2] of the Riemann-Stieltjes integrals.

Our main references for the basic notions about Lebesgue measure theory are [1] and [4].
1. Usual Definition of the Riemann-Sticltjes Integral

Let a : [a, 8] — R be a monotonically increasing function. For any partition
P={a=z¢<21< - -<znp=0b}

of [a, b], we write

Aai:a(zi)—a(:c,'_l), i=1,2,...,n.
Suppose f : [a,b] — R is a bounded functior and define the numbers
M; = sup{f(z) : zi1 < = < zi}
m; = inf{f(z) : 2;_; < z < z;}, i=12,...,n

(1)
The upper and lower Riemann-Stieltjes sums associated with P are defined as
(2) U(P,f,a)=Y MAa; and L(P,fa) =Y mAa;.

i=1 i=1

Now the upper and lower Riemann-Stieltjes integrals of f with respect to a, over [a,}] are
defined as

-3 b
(3) fda=infU{P, f,a) and fda =sup L(P, f,a),
a P -a P

where the inf and sup being taken over all partitions. We denote the common value by

(4) /a b fda

if -the. upper and lower Riemann-Stieltjes integrals (3) are equal. This is the Riemann-
Stieltjes integral (or simply the Stieltjes integral) of f with respect to a, over [a,b]. If (4)
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exists, we say that f is Riemann-Stielljes integrable with respect to a and write f € R(a)
on [a,b]. Also we write f € R on {a,d] when [ is Riemann integrable on {a, b].

By taking a(z) = z, the Riemann integral is seen to be a special case of the Riemann-
Stieltjes integral.

Example 1: If we consider the functions defined by

0 ifz=0
f(z)=q¢ 1/z ifO0<z<]
1 ifl<z<?

and

1 ifo<z<1
zr ifl<z<?,

o=

then f: f(z) dz does not exist. However f02 fda=1.
Moreover, the Riemann-Stieltjes integral of f may exist when o need not even consinuous :
Let f(z) =1 on [0,1] and
0 f0<z<1/2
a(z) = .
1 if1/2<z<1.

Clearly a is:not continuous at z = 1/2. Note that fol fda=1

2. Ross’ Definition of the Riemann-Stieltjes Integral

Ross [2] proposed a new definition which is a generalization of the standard Darboux
definition explained in the previous section.

First we need some notations. For the “:cnotonically increasing function o defined on
[a, b}, we write

a(zt) = lim a(t) = sup aft)
t—zt a<t<z

()

)= h t) = i .
®(z7) = lim o(t) = inf o))
For the endpoints we decree
a(a”)=cafa) and o(b%) = a(b).

Note that
a(z”) <afzt), a<t<h

If @ is continuous at z, then we have
a(27)=a(z) = a(:c+).

Otherwise
a(z7) < afz?t).
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Now, in the equation (1), the closed intervals [z;-1, z;] are replaced by the open intervals
(24—, ;) and thus

M; =sup{f(z):zi1 <z < 2i}
and

(6) m; = inf{f(z):zi-y < T < z;}.

(2) is defined as

U(P, f,0) = f(z)la(eh) — ez + ) Mila(z]) = a(zfy)]
(7) i:o z:l
L(P.f,a) =Y f(an)la(a?) — aai )|+ 3 mila(er) - alaty))
i=0 i=1
The upper and lower Riemann-Stieltjes integrals of f with respect to a, over [a, b] are defined

as

~b b

(8) fda= il}l}fU(P, f,a) and fda = sup L(P, f.a),

where the inf and sup being taken over all partitions. We denote their common value by

(9) waa

if (8) are equal. This is the Ross’ definition of the Riemann-Stieltjes integral of f with
respect to a, over [a,b].

Theorem 2. [2, Theorem 35, 20] If f is Riemann-Stielijes integrable on [a,b] with respect
to o in the usual sense, then f is Riemann-Stielljes integrable on [a,b] with respect to « in
the Ross’ type sence.

Remark. Also, Ross (3] proposed another definition which is e generalized limat of sums
definition, and showed that his two definitions are equivalent.

3. The Lebesgue Integral

First we recall some definitions. If A C R is the union of a finite number of intervals,
then A is said to be an elementary sel. Let £ denote the family of all elementary subsets of
R. Note that £ is a ring. For the monotonically increasing function « on R, we define the
function ¢ on bounded intervals by

u(la,b)) = a(b™) - ala”)
w(fa, b)) = a(b%) - afa)
u((a,b)) = a(b*) - afa*)
u((a,b)) = a(b™) - ala*).

(10)
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For the elementary set A = I, U--- U I, we also define
(11) wA) = p(l) + -+ p(ln)

if these intervals are pairwise disjoint. By [5, 11.6(b)] the nonnegative finitely additive set
function u defined by (10) and (11) is regular, in the sense that to very A € £ and to every
€ > 0 there exists sets F € £, G € € such that F is closed, G is open, F C A C G and

#(G) —e < p(A) < p(F) +e.

By [5, Theorem 11.10] u can be extended to a measure on a o-algebra. This measure will
also be denoted by p.

The nonnegative function s defined on R is a simple function if the range of s is finite.
Suppose s(R) = {c1,...,¢n}. Let E; = {z € [0,1] : s(z) = ¢;} for i = 1,2,.,.,n. Then
every simple function is a finite linear combination of characteristic function. More explicitly,
we have

n
(12) s(z) = )_ciKe(z), z€[0,1], «>0,
i=1
where
1 ifzeE;
Kg. =
\E.(z) {0 ifz ¢ E;, t=1,2,...,n.

Assume that s(z) is measurable, i.e. {z € R : s{z) > a} is measurable for every nonnegative
real number a.
Now we define

n

(13) I(s) = Zc;p(Ei).

i=]

If the nonnegative function f defined on R is measurable, then we define

b
(19) / f du = sup I(s),

where the sup is taken over all measurable simple function s such that 0 < s < f. The left
member of (14) is called the Lebesgue integral of f with respect to the measure p, over [a, ).
If (14) exists, we say that f is Lebesgue integrable with respect to y and we write f € £(p)
on [a,b].

Example 3: Let F be the set of all rational numbers in [a, b]. If we consider the charac-
teristic function Kg then, whatever the mode of partition of [a, 8], every M; is 1 and every

m; is 0. Thus there is no Riemann integral. But we have f: Kgdp = 0 since p(E) = 0.
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4. The Consistency Theorem

Lemma 4 (Lebesgue’s monotone convergence theorem). Let {fn} be a sequence of mea-
surable functions defined on a measurable set E with the property

0< filz) < falz)<..., zE€E.

Let f be defined by
fn(l")'—_*f(l'), zeFE

/fndu——»/fdu
FE E
asmn— oo

Theorem 5. If f € R on [a,b], then f € £(u) on [a,b] and

/abfdu=/abfda

Proof: See [5, Theorem 11.33] or {1, p.28].

Now our main consistency theorem follows. Its proof is based upon the standard proof in
[5, Theorem 11.33(a)).

Theorem 6. If f € R(a) on [a,b], then f € £(p) on [a,b] and

/abfdy::/abfda.

Proof: Suppose that f is bounded on [a,d]. By [5, Theorem 6.4] there is a sequence of
partition

as n — oo. Then

Po={a=zo<z1< - <zp=0b}

of [a, b}, such that Py, is a refinement of Py, such that z;—z;_; < 1/kforalli = 1,2,...,n,
and such that

lim L(Py, f,a) = fda and
k—o0 —a
(15) o
lim U(P, f,a) = fda.
k—oo

We define two functions Uy and L on [a, d] :
(16) Ui(a) = Li(a) = f(a)
Uk(x) = M;, Lk(ic) =m; for z;_1<z<x
and
N\ = . 0(i) = ofzi—) o a(zit) —o(=i)
() ) = My = o) M o) — aterm)

2=, 2E) —a(i=) | alzit) — a(zi)
e = me e = ateis) T ™ alert) — aters)
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for a(z;—) < a(zi) < a(z;+). Then we have

b n
/ depZZA{;AC\'i=U(Pk1faa)
a i=1

(18) » n
/ Lk dp:Zm;Aa; =L(Pk,f,oz).
a =1
Moreover
(19) m < Li(z) < Le41(z) € f(2) SUkpa(z) S Ur(z) £ M

forall k= 1,2,... and all z € [a,}], where
=inf{f(z):a <z <b} and
M =sup{f(z) :a < z < b}.
By (19), there exist
(20) _ U(z) = kli’ng0 Ui(z) and L(z) = klirgo Ly(z)
with the property
(21) m<L@) < @)U M, z€lob.

Since Uy, Li, U and L are bounded measurable with respect to the measure u, they are
Lebesgue integrable on [a, b]. Therefore

(22) /abUdp— lim / dp and / Ldp:kllrr;o :Lkdp
by Lebesgue’s dominated convergence theorem. From (15), (18) and (22), if follows that
(23) /bUdpzf_b and /dep= "t da.
Thus ) : ) B
(24) f€R(a) on [a,b] & /b(U -~ L)dp =0.
a

& U(z)=L(z) ae.on [a,b]

But by (21} and (24) we have L(z) = f(z) a.e. on [a,b]. Therefore f € £(u) on [a, ] because
L € £(u) on [a,b] and the measure u is complete, i.e., every subset of a set of y-measure zero

has y-measure zero. Consequently we have f: fdu= f: f da. This completes the proof.
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