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I. Introduction

Vector valued martingales first appeared in the early work of N. Dunford and B.J.Pettis
(5] and R.S.Phillips [7]. In 1950, detailed studies of martingales were initiated by J.L.Doob.
The subject of convergence of martingales of functions with values in a Banach space was
treated by F.S.Scalora [8] and S.D.Chatterji [3] who independently showed that a martingale
of functions with values in a reflexive Banach space obeys the same basic convergence
theorems as martingales of real or complex valued functions. J.J.Uhl [9] studied mean
convergence martingales of measurable Pettis integrable functions.

He proved that for a martingale (f;,£,,7 € T) in P(y,X) the following conditions are
equivalent:

(a) lim, f, exists in Pettis norm.
(b) There exists f € P(c(U,XZ,), X) such that (P)— E(f|Z,) = f, forallr € T.
(¢) There exists f € P(e(U,X;), X) such that

Recently, the notion of weak* martingale was introduced by E.M.Bator [1,2]. And
E.M.Bator studied uniformly bounded X* valued martingales and various types of con-
vergence of these martingales.

J Diestel and J.J.Uhl {4] proved that a martingale (f,,X,,7 € T) in Lp(p, X) converges
in Lp(u, X)-norm if and only if there exists an f € Lp(u, X) such that for each £ € U, Z,
one has

im(P) = [ fodu=(P)- [ fau.

In this paper, we have some properties of dual space valued martingales using the results
of E.M.Bator.

II. Preliminaries

Let (Q, X, p) be a finite measure space and X a separable Banach space with the successive
duals X*, X**, X***. Let B(Z) be the closed unit ball of any Banach space Z.

A function f : Q — X™* is called simple if there exist 23, 23,...,2} in X* and Ey, E,,..., E,
in X such that f = 37", z}Xg, where xg, is the characteristic function of E;.

A function f:Q — X is called strongly g-measurable if f is the limit of a sequence of
simple functions almost everywhere, that is, there exists a sequence of simple functions (f,)
with lim, || /» — f|| = 0 almost everywhere.

A function f : @ — X* is said to be weakly py-measurable if for each z** € X** the
numerical function £** f is strongly p-measurable.
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A weakly pg-measurable function f : Q@ — X* is called uniformly bounded if there exists
M > 0 such that |z** f| < M]|z**|| almost everywhere for each z** € X**.

A strongly p-measurable function f: Q —+ X* is called Bochner integrable if there exists
a sequence of simple functions (f,;) such that

i | o = Fldu =

In this case [ fdp is defined for each E € T by [, fdu = lim,, [ fadp where [ fadp is
defined in obvious way.

The symbol L,(Q, X, 4, X*), for short L,(u, X*), will stand for all equivalence classes
of Bochner integrable functions f : @ — X* such that {[f|l; = [, [[fllds < co. Normed
by the functional || - [|; defined above Li(u, X*) becomes a Banach space. The symbol
Ly(p) will always mean L;(p, X*) for X* = scalars. In particular L; stands for tha space
Li([0,1], %, p) where T is the o-field of Lebesgue measurable subsets of [0,1] and y is the
Lebesgue measure.

If f:Q — X*is a weakly p-measurable function such that z**f € L,(u) for each z** in
X**, then f is called Dunford integrable. It can be shown by the closed graph argument
(4] that for every E € T there exists z* € X*** such that z3*(z**) = [ z** fdu. Hence

kK

z*** 1s called the Dunford integral of f over E. And we write
25" = (0)- [ fau
E

In the case that (D) — [ fdp is a member of X* for all E € I, then f is called Pettis
integrable and we write (P) — [ fdu instead of (D) — [ fdu to denote the Pettis integral
of f over E € L.

The symbol P(Q2, X, s, X*), for short P(u, X*), will denote the space of all weakly equiv-
alence classes of Pettis integrable functions f: @ — X*, endowed with the following norm
Ifllp = sup{fg |z** fldp : z** € B(X**)}. We say that the symbol || - ||, is the Pettis norm.

Let g be a sub-o-field of £ and f € Ly(u, X*). An element g of L,(u, X*) is called the
conditional expection of f relative to I if g is strongly p-measurable with respect to g and
fE gdpy = fE fdp for each E € ;. In this case g is denoted by E(f|Z,). Similarly if f,g €
P(p, X*) with g weakly y-measurable with respect to o and (P) — [, gdp = (P) = [ fdp
for all E € Zg, then g is said to be the Pettis conditional expectation of f with respect to
Yo, usually denoted g = (P) — E(f|X,).

When X = X* = R, then the above mentioned conditional expectations are the same. In
this case we denote the scalar valued conditional expectation of f with respect to a sub-o-
field Xo of X as £(f|Zo). It is easy to show that E‘(f{Eo) exists and that [|E(f|Zo)ll: < lIfllx
[4]. Hence E(-|Xg) is a linear contraction on L;(y).

Whenever we want (f.,7 € T) to be a net of uniformly bounded functions f; : @ — X*,
we simply assume that each takes its range in B(X*).

Let (£,,7 € T) be a monotone increasing net of sub-o-fields of ¥, that is, £, C £,, for
1 <7mpinT. Anet (f;,7 €T) in Li(p, X*) over the same directed set T is a (Bochner)
martingale if for all »,7y € T,

(a) f, is strongly p-measurable with respect to £,, and
(b) if 7 > 7y, then fr = E(f,|Z,,).
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Now if f. € P(u,X*) for all 7 € T, then (f;,X,, € T) is called a Pettis martingale if for
al ) €T,

(a) fr is weakly p-measurable with respect to X,, and

(b) if 7 > 7y, then fr, = (P) — E(fr|Z+,).

Usually a martingale of the above mentioned form will be denoted by (f,,=,,7 € T) to
display both the functions and sub-o-fields involved.

We refer to the following classical result [1].

Theorem 1. (a) If (fr,X;,7 € T) is a uniformly bounded scalar valued martingale, then
there exists an f € Ly(u) such that f, converges to f in L) norm.
(b) If (fn, Zp,n € N) is a uniformly bounded scalar valued sequential martingale, then there
exists an f € Li(p) such that f, converges to f almost everywhere.

We continue with the following definitions.

A Banach space X* is said to have the Radon-Nikodym property if for every measure
space (2,X, 1) and every p-continuous vector measure G : ¥ — X* of bounded variation
there exists g € Li(p, X*) such that G(E) = [, gdp for all E € =. If g € P(p, X") such
that G(E) = (P) — [ gdp for all E € £, then X™* has the weak Radon-Nikodym property.

All notions and notation used in this paper and not defined can be found in [1,4].

IT1. Convergence of dual space valued Pettis martingales

In [4], the following basic theory of Banach space valued martingales of Bochner integrable
functions was discussed.

Lemma 1. Let Ly be a sub-o -field of ©. Then E(fIEo) exists for every f € Li{u), and
HE(f|Eo)||1 < ||fll1- Consequently E'( [Zo) is a linear contraction on L;(p).

Theorem 2. Let £o be a sub-o-field of £. Then E(f|Xo) exists for every f € Li(u, X).

Theorem 3. A martingale (f,5,,7 € T) in Li(u, X) converges in Ly(u, X)-norm if
and only if there exists f € Li(p, X) such that for each E € UrerZ, one has lim, Jg frdu =
Je fap.

By using a similar argument we show that a Pettis conditional expectation exists for
weakly pg-measurable functions f: Q — X*.

Definition 4: A martingale (f.,£;,7 € T) converges to f in P(u,X*) if there exists
€ > 0 such that [|f; — fl[, < €, that is,

lim |, — fll, = 0.

Thus we say f, converges to f in P(u, X*) if ** f, converges to z**f in L;(y) for every
E X**‘

Lemma 5. Let (f-,E;,7 € T) be a Peltis martingale and let f be weakly p-measurable.
If fr converges to f in P(u, X*), then (P) — E(f|Z;) = f, for every r € T.

Proof: If f; converges to f in P(u, X*), then z** f, converges to z** f in L, (u) for every

z** € X**. Thus, by Theorem II-1, a scalar valued martingale (z**f,,Z,,7 € T) has an

Li(u) limit z** f, we have E(z** f|Z, ) = z** f; for every r € T. This says (P)— E(f|S,) =
fr.
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Theorem 6. Let Ty be a sub-o-field of £ and let f : @ — X* be bounded and weakly
p-measurable. Then (P)— E(f|Zo) ezists.

Proof: Define Il = {n : = is a partition of Q into a finite number of elements of Xo}

P d
and direct Iy by refinement. Define for every » € Il fr = ) g, (—L“Ylgrf—”xg. Then,

letting Xyo-field generated by 7, (fr,Xx,m € IIp) is a Pettis martingale, Thus there is a
weakly p-measurable function ¢ such that fr converges to g in P(p, X*)[1]. Hence fy =
(P) — E(9|Z:). Let E € o and ng = {E,Q\E}, then (P) ~ [, gdu = (P) — [g fredp =
(P) — [g fdu. Therefore g = (P) — E(f|Zo).

Lemma 7[6]. Let I be a sub-field of T such that the o-field generaied by To is ©. Then
the linear span of the set {z*xp : * € X*, E € £y} is dense in P(u, X*).

Theorem 8. A Pettis martingale (f;,Z,,7 € T) converges in P{u, X*) if and only if
there exists a Peltis integrable function f : Q@ — X* such that for each E € U,erX, one has
lim,(P) — [ frdp = (P) - g fdp.

Proof: Suppose that lim, f; = f in P(p,X"). Then, since the operation defined for
9 € P(p,X*) by g — (P) — [z gdu is a bounded linear operator for each E € UrerZy, it
follows that

lim(P) — / frdp=(P) - / fdu for all E € UrerE-.
E E

For the converse, suppose that there is f € P(p, X*) with lim(P)— [ frdu = (P)-fE fdp
for all E € UreTZ;. Since (E,,7 € T') is an increasing net of o-fields, U,er X, is a sub-field
of £. Without loss of generality, it will be assumed that the o-field generated by Ure7 X,
is .

Let € > 0 be given. By Lemma 7, there exists a function f. = Zz!yg,, 27 € X*. E; €
Urer Iy, such that ||f, — fll, < 5. Since (X;,7 € T) is an increasing net, there exists a
70 € T such that for all 7 2 7 {E; }, 1 CZy.

Hence for 7 2 7o(P) — E(f,]E ) = f. Moreover for 2 n(P) — [ f,dp =(P)— [g fridp
for each E € L,,. Hence (P) — E(f|Z;) = f;. Therefore for 7 2710

f—~ frllp SN = Fellp + (e = Follp
= 1f = Sello + /(P) — E(fe = FIZ)llp
S2f - fellp <.

The next Corollary is simply a translation of Theorem 8 into a form similar to many.

Caorollary 9. A Peltis martingale (f,,X;, 7 € T) is convergent in P(u, X™*) if and only
if there exists an f € P(p, X*) such that (P)~ E(f|S;)= f; forallT€T.

Recall that f is said to be o-measurable if f € L1(Q,Zq, p|Z¢, X*) where f € Ly(p, X*)
and X is a sub-o-field of X.

Corollary 10. Let X* have the weak Radon-Nikodym property. If (fr,Z;,7 € T) is a
uniformly integrable Pettis martingale in P(p, X*) and sup||f;|l, < oo, then lim, f. exists
m Pp, X*).

Proof: For E € UrerX,, set F(E) = lim,(P) — [ frdp. Since (f-,Z,,7 € T) is
uniformly integrable, lim,(g)_o F(E)=0on UyerX,. Furthermore if # C X, is a partition
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of Q, then there exists an index 19 such that = C X,,. Consequently, one has

EEGRHF(E)”:EEGII,(P)—Lfrodﬂ,I S (P)—/nllfrolldﬂésupllffllp‘

Hence F is of bounded variation on U,¢7X;. An appeal to [4] produces a p-continuous
vector measure G of bounded variation on Xg,the o-field generated by U,¢7X,, such that
G(E) = F(E) for each E € U;erX,. Since X* has the weak Radon-Nikodym property, there
is f € P(u|E0, X*) such that G(E) = (P) — [ fdp for each E € Ey. But if £ € UyerZs,
then lim,(P) — [ frdp = F(E) = G(E) = (P) — [ fdp.
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