Convergence of Dual Space Valued Pettis Martingales

Jeung-Hark Lau, Byung-Sik Kang

Chinju National Teachers College, Kosin College

I. Introduction

Vector valued martingales first appeared in the early work of N. Dunford and B.J. Pettis [5] and R.S. Phillips [7]. In 1950, detailed studies of martingales were initiated by J.L. Doob. The subject of convergence of martingales of functions with values in a Banach space was treated by F.S.Scalora [8] and S.D.Chatterji [3] who independently showed that a martingale of functions with values in a reflexive Banach space obeys the same basic convergence theorems as martingales of real or complex valued functions. J.J.Uhl [9] studied mean convergence martingales of measurable Pettis integrable functions.

He proved that for a martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ in $P(\mu, X)$ the following conditions are equivalent:

- (a) $\lim_{\tau} f_{\tau}$ exists in Pettis norm.
- (b) There exists $f \in P(\sigma(\cup_{\tau} \Sigma_{\tau}), X)$ such that $(P) E(f|\Sigma_{\tau}) = f_{\tau}$ for all $\tau \in T$.
- (c) There exists $f \in P(\sigma(\cup_{\tau} \Sigma_{\tau}), X)$ such that

$$\lim_{\tau}(P) - \int_{E} f_{\tau} d\mu = (P) - \int_{E} f d\mu, \quad E \in \cup_{\tau} \Sigma_{\tau}.$$

Recently, the notion of weak* martingale was introduced by E.M.Bator [1,2]. And E.M.Bator studied uniformly bounded X* valued martingales and various types of convergence of these martingales.

J.Diestel and J.J.Uhl [4] proved that a martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ in $L_{P}(\mu, X)$ converges in $L_P(\mu, X)$ -norm if and only if there exists an $f \in L_P(\mu, X)$ such that for each $E \in \cup_\tau \Sigma_\tau$ one has

$$\lim_{\tau}(P) - \int_{E} f_{\tau} d\mu = (P) - \int_{E} f d\mu.$$

In this paper, we have some properties of dual space valued martingales using the results of E.M.Bator.

II. Preliminaries

Let (Ω, Σ, μ) be a finite measure space and X a separable Banach space with the successive duals X^*, X^{**}, X^{***} . Let B(Z) be the closed unit ball of any Banach space Z.

A function $f:\Omega\to X^*$ is called simple if there exist x_1^*,x_2^*,\ldots,x_n^* in X^* and E_1,E_2,\ldots,E_n in Σ such that $f = \sum_{i=1}^{n} x_i^* \chi_{E_i}$ where χ_{E_i} is the characteristic function of E_i .

A function $f: \Omega \longrightarrow X^*$ is called strongly μ -measurable if f is the limit of a sequence of simple functions almost everywhere, that is, there exists a sequence of simple functions (f_n) with $\lim_n ||f_n - f|| = 0$ almost everywhere.

A function $f:\Omega\to X^*$ is said to be weakly μ -measurable if for each $x^{**}\in X^{**}$ the numerical function $x^{**}f$ is strongly μ -measurable.

A weakly μ -measurable function $f: \Omega \to X^*$ is called uniformly bounded if there exists M > 0 such that $|x^{**}f| < M||x^{**}||$ almost everywhere for each $x^{**} \in X^{**}$.

A strongly μ -measurable function $f: \Omega \to X^*$ is called Bochner integrable if there exists a sequence of simple functions (f_n) such that

$$\lim_{n}\int_{\Omega}||f_{n}-f||d\mu=0.$$

In this case $\int_E f d\mu$ is defined for each $E \in \Sigma$ by $\int_E f d\mu = \lim_n \int_E f_n d\mu$ where $\int_E f_n d\mu$ is defined in obvious way.

The symbol $L_1(\Omega, \Sigma, \mu, X^*)$, for short $L_1(\mu, X^*)$, will stand for all equivalence classes of Bochner integrable functions $f: \Omega \to X^*$ such that $||f||_1 = \int_{\Omega} ||f|| d\mu < \infty$. Normed by the functional $||\cdot||_1$ defined above $L_1(\mu, X^*)$ becomes a Banach space. The symbol $L_1(\mu)$ will always mean $L_1(\mu, X^*)$ for X^* = scalars. In particular L_1 stands for the space $L_1([0,1], \Sigma, \mu)$ where Σ is the σ -field of Lebesgue measurable subsets of [0,1] and μ is the Lebesgue measure.

If $f: \Omega \to X^*$ is a weakly μ -measurable function such that $x^{**}f \in L_1(\mu)$ for each x^{**} in X^{**} , then f is called Dunford integrable. It can be shown by the closed graph argument [4] that for every $E \in \Sigma$ there exists $x_E^{***} \in X^{****}$ such that $x_E^{***}(x^{**}) = \int_E x^{***}f d\mu$. Hence x^{***} is called the Dunford integral of f over E. And we write

$$x_E^{***} = (D) - \int_E f d\mu.$$

In the case that $(D) - \int_E f d\mu$ is a member of X^* for all $E \in \Sigma$, then f is called Pettis integrable and we write $(P) - \int_E f d\mu$ instead of $(D) - \int_E f d\mu$ to denote the Pettis integral of f over $E \in \Sigma$.

The symbol $P(\Omega, \Sigma, \mu, X^*)$, for short $P(\mu, X^*)$, will denote the space of all weakly equivalence classes of Pettis integrable functions $f: \Omega \to X^*$, endowed with the following norm $||f||_p = \sup\{\int_{\Omega} |x^{**}f| d\mu: x^{**} \in B(X^{**})\}$. We say that the symbol $||\cdot||_p$ is the Pettis norm.

Let Σ_0 be a sub- σ -field of Σ and $f \in L_1(\mu, X^*)$. An element g of $L_1(\mu, X^*)$ is called the conditional expection of f relative to Σ_0 if g is strongly μ -measurable with respect to Σ_0 and $\int_E g d\mu = \int_E f d\mu$ for each $E \in \Sigma_0$. In this case g is denoted by $E(f|\Sigma_0)$. Similarly if $f, g \in P(\mu, X^*)$ with g weakly μ -measurable with respect to Σ_0 and $(P) - \int_E g d\mu = (P) - \int_E f d\mu$ for all $E \in \Sigma_0$, then g is said to be the Pettis conditional expectation of f with respect to Σ_0 , usually denoted $g = (P) - E(f|\Sigma_0)$.

When $X = X^* = R$, then the above mentioned conditional expectations are the same. In this case we denote the scalar valued conditional expectation of f with respect to a sub- σ -field Σ_0 of Σ as $\widehat{E}(f|\Sigma_0)$. It is easy to show that $\widehat{E}(f|\Sigma_0)$ exists and that $\|\widehat{E}(f|\Sigma_0)\|_1 \leq \|f\|_1$ [4]. Hence $\widehat{E}(\cdot|\Sigma_0)$ is a linear contraction on $L_1(\mu)$.

Whenever we want $(f_{\tau}, \tau \in T)$ to be a net of uniformly bounded functions $f_{\tau}: \Omega \to X^*$, we simply assume that each takes its range in $B(X^*)$.

Let $(\Sigma_{\tau}, \tau \in T)$ be a monotone increasing net of sub- σ -fields of Σ , that is, $\Sigma_{\tau_1} \subset \Sigma_{\tau_2}$ for $\tau_1 \leq \tau_2$ in T. A net $(f_{\tau}, \tau \in T)$ in $L_1(\mu, X^*)$ over the same directed set T is a (Bochner) martingale if for all $\tau, \tau_1 \in T$,

- (a) f_{τ} is strongly μ -measurable with respect to Σ_{τ} , and
- (b) if $\tau \geq \tau_1$, then $f_{\tau_1} = E(f_{\tau}|\Sigma_{\tau_1})$.

Now if $f_{\tau} \in P(\mu, X^*)$ for all $\tau \in T$, then $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ is called a Pettis martingale if for all $\tau, \tau_1 \in T$,

- (a) f_{τ} is weakly μ -measurable with respect to Σ_{τ} , and
- (b) if $\tau \geq \tau_1$, then $f_{\tau_1} = (P) E(f_{\tau}|\Sigma_{\tau_1})$.

Usually a martingale of the above mentioned form will be denoted by $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ to display both the functions and sub- σ -fields involved.

We refer to the following classical result [1].

Theorem 1. (a) If $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ is a uniformly bounded scalar valued martingale, then there exists an $f \in L_1(\mu)$ such that f_{τ} converges to f in L_1 norm.

(b) If $(f_n, \Sigma_n, n \in N)$ is a uniformly bounded scalar valued sequential martingale, then there exists an $f \in L_1(\mu)$ such that f_n converges to f almost everywhere.

We continue with the following definitions.

A Banach space X^* is said to have the Radon-Nikodym property if for every measure space (Ω, Σ, μ) and every μ -continuous vector measure $G: \Sigma \to X^*$ of bounded variation there exists $g \in L_1(\mu, X^*)$ such that $G(E) = \int_E g d\mu$ for all $E \in \Sigma$. If $g \in P(\mu, X^*)$ such that $G(E) = (P) - \int_E g d\mu$ for all $E \in \Sigma$, then X^* has the weak Radon-Nikodym property. All notions and notation used in this paper and not defined can be found in [1,4].

III. Convergence of dual space valued Pettis martingales

In [4], the following basic theory of Banach space valued martingales of Bochner integrable functions was discussed.

Lemma 1. Let Σ_0 be a sub- σ -field of Σ . Then $\widehat{E}(f|\Sigma_0)$ exists for every $f \in L_1(\mu)$, and $\|\widehat{E}(f|\Sigma_0)\|_1 \leq \|f\|_1$. Consequently $\widehat{E}(\cdot|\Sigma_0)$ is a linear contraction on $L_1(\mu)$.

Theorem 2. Let Σ_0 be a sub- σ -field of Σ . Then $E(f|\Sigma_0)$ exists for every $f \in L_1(\mu, X)$.

Theorem 3. A martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ in $L_1(\mu, X)$ converges in $L_1(\mu, X)$ -norm if and only if there exists $f \in L_1(\mu, X)$ such that for each $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$ one has $\lim_{\tau} \int_E f_{\tau} d\mu = \int_E f d\mu$.

By using a similar argument we show that a Pettis conditional expectation exists for weakly μ -measurable functions $f: \Omega \to X^*$.

Definition 4: A martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ converges to f in $P(\mu, X^*)$ if there exists $\varepsilon > 0$ such that $||f_{\tau} - f||_{p} < \varepsilon$, that is,

$$\lim_{\tau}||f_{\tau}-f||_{p}=0.$$

Thus we say f_{τ} converges to f in $P(\mu, X^*)$ if $x^{**}f_{\tau}$ converges to $x^{**}f$ in $L_1(\mu)$ for every $x^{**} \in X^{**}$.

Lemma 5. Let $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ be a Pettis martingale and let f be weakly μ -measurable. If f_{τ} converges to f in $P(\mu, X^*)$, then $(P) - E(f|\Sigma_{\tau}) = f_{\tau}$ for every $\tau \in T$.

Proof: If f_{τ} converges to f in $P(\mu, X^*)$, then $x^{**}f_{\tau}$ converges to $x^{**}f$ in $L_1(\mu)$ for every $x^{**} \in X^{**}$. Thus, by Theorem II-1, a scalar valued martingale $(x^{**}f_{\tau}, \Sigma_{\tau}, \tau \in T)$ has an $L_1(\mu)$ limit $x^{**}f$, we have $\widehat{E}(x^{**}f|\Sigma_{\tau}) = x^{**}f_{\tau}$ for every $\tau \in T$. This says $(P) - E(f|\Sigma_{\tau}) = f_{\tau}$.

Theorem 6. Let Σ_0 be a sub- σ -field of Σ and let $f: \Omega \to X^*$ be bounded and weakly μ -measurable. Then $(P) - E(f|\Sigma_0)$ exists.

Proof: Define $\Pi_0 = \{\pi : \pi \text{ is a partition of } \Omega \text{ into a finite number of elements of } \Sigma_0 \}$ and direct Π_0 by refinement. Define for every $\pi \in \Pi_0$ $f_\pi = \sum_{E \in \pi} \frac{(P) - \int_E f d\mu}{\mu(E)} \chi_E$. Then, letting $\Sigma_\pi \sigma$ -field generated by π , $(f_\pi, \Sigma_\pi, \pi \in \Pi_0)$ is a Pettis martingale, Thus there is a weakly μ -measurable function g such that f_π converges to g in $P(\mu, X^*)[1]$. Hence $f_\pi = (P) - E(g|\Sigma_\pi)$. Let $E \in \Sigma_0$ and $\pi_E = \{E, \Omega \setminus E\}$, then $(P) - \int_E g d\mu = (P) - \int_E f_{\pi_E} d\mu = (P) - \int_E f d\mu$. Therefore $g = (P) - E(f|\Sigma_0)$.

Lemma 7[6]. Let Σ_0 be a sub-field of Σ such that the σ -field generated by Σ_0 is Σ . Then the linear span of the set $\{x^*\chi_E : x^* \in X^*, E \in \Sigma_0\}$ is dense in $P(\mu, X^*)$.

Theorem 8. A Pettis martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ converges in $P(\mu, X^*)$ if and only if there exists a Pettis integrable function $f: \Omega \to X^*$ such that for each $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$ one has $\lim_{\tau}(P) - \int_{E} f_{\tau} d\mu = (P) - \int_{E} f d\mu$.

Proof: Suppose that $\lim_{\tau} f_{\tau} = f$ in $P(\mu, X^*)$. Then, since the operation defined for $g \in P(\mu, X^*)$ by $g \mapsto (P) - \int_E g d\mu$ is a bounded linear operator for each $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$, it follows that

$$\lim_{\tau}(P) - \int_{E} f_{\tau} d\mu = (P) - \int_{E} f d\mu \text{ for all } E \in \bigcup_{\tau \in T} \Sigma_{\tau}.$$

For the converse, suppose that there is $f \in P(\mu, X^*)$ with $\lim_{\tau}(P) - \int_E f_{\tau} d\mu = (P) - \int_E f d\mu$ for all $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$. Since $(\Sigma_{\tau}, \tau \in T)$ is an increasing net of σ -fields, $\bigcup_{\tau \in T} \Sigma_{\tau}$ is a sub-field of Σ . Without loss of generality, it will be assumed that the σ -field generated by $\bigcup_{\tau \in T} \Sigma_{\tau}$ is Σ .

Let $\varepsilon > 0$ be given. By Lemma 7, there exists a function $f_{\varepsilon} = \sum x_i^* \chi_{E_i}, x_i^* \in X^*$. $E_i \in \bigcup_{\tau \in T} \Sigma_{\tau}$, such that $||f_{\varepsilon} - f||_p < \frac{\varepsilon}{2}$. Since $(\Sigma_{\tau}, \tau \in T)$ is an increasing net, there exists a $\tau_0 \in T$ such that for all $\tau \geq \tau_0 \{E_i\}_{i=1}^n \subset \Sigma_{\tau}$.

Hence for $\tau \ge \tau_0(P) - E(f_{\varepsilon}|\Sigma_{\tau}) = f$. Moreover for $\tau \ge \tau_1(P) - \int_E f_{\tau} d\mu = (P) - \int_E f_{\tau_1} d\mu$ for each $E \in \Sigma_{\tau_1}$. Hence $(P) - E(f|\Sigma_{\tau}) = f_{\tau}$. Therefore for $\tau \ge \tau_0$

$$||f - f_{\tau}||_{p} \leq ||f - f_{\varepsilon}||_{p} + ||f_{\varepsilon} - f_{\tau}||_{p}$$

$$= ||f - f_{\varepsilon}||_{p} + ||(P) - E(f_{\varepsilon} - f|\Sigma_{\tau})||_{p}$$

$$\leq 2||f - f_{\varepsilon}||_{p} < \varepsilon.$$

The next Corollary is simply a translation of Theorem 8 into a form similar to many.

Corollary 9. A Pettis martingale $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ is convergent in $P(\mu, X^*)$ if and only if there exists an $f \in P(\mu, X^*)$ such that $(P) - E(f|\Sigma_{\tau}) = f_{\tau}$ for all $\tau \in T$.

Recall that f is said to be Σ_0 -measurable if $f \in L_1(\Omega, \Sigma_0, \mu | \Sigma_0, X^*)$ where $f \in L_1(\mu, X^*)$ and Σ_0 is a sub- σ -field of Σ .

Corollary 10. Let X^* have the weak Radon-Nikodym property. If $(f_\tau, \Sigma_\tau, \tau \in T)$ is a uniformly integrable Pettis martingale in $P(\mu, X^*)$ and $\sup ||f_\tau||_p < \infty$, then $\lim_\tau f_\tau$ exists in $P(\mu, X^*)$.

Proof: For $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$, set $F(E) = \lim_{\tau \in T} (P) - \int_{E} f_{\tau} d\mu$. Since $(f_{\tau}, \Sigma_{\tau}, \tau \in T)$ is uniformly integrable, $\lim_{\mu(E) \to 0} F(E) = 0$ on $\bigcup_{\tau \in T} \Sigma_{\tau}$. Furthermore if $\pi \subset \Sigma_{\tau}$ is a partition

of Ω , then there exists an index τ_0 such that $\pi \subset \Sigma_{\tau_0}$. Consequently, one has

$$\sum_{E \in \pi} ||F(E)|| = \sum_{E \in \pi} ||(P) - \int_E f_{\tau_0} d\mu|| \leq (P) - \int_{\Omega} ||f_{\tau_0}|| d\mu \leq \sup ||f_{\tau}||_p.$$

Hence F is of bounded variation on $\bigcup_{\tau \in T} \Sigma_{\tau}$. An appeal to [4] produces a μ -continuous vector measure G of bounded variation on Σ_0 , the σ -field generated by $\bigcup_{\tau \in T} \Sigma_{\tau}$, such that G(E) = F(E) for each $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$. Since X^* has the weak Radon-Nikodym property, there is $f \in P(\mu | \Sigma_0, X^*)$ such that $G(E) = (P) - \int_E f d\mu$ for each $E \in \Sigma_0$. But if $E \in \bigcup_{\tau \in T} \Sigma_{\tau}$, then $\lim_{\tau} (P) - \int_E f_\tau d\mu = F(E) = G(E) = (P) - \int_E f d\mu$.

References

- 1. E.M. Bator, "Duals of separable Banach spaces," Ph.D. Thesis, Pennsylvania State University, 1983.
- Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), 265-270.
- 3. S. D. Chatterji, Martingales of Banach-valued random variables, Bull. Amer. Math. Soc. 66 (1960), 395-398.
- J.Diestel and J.J. Uhl, Jr., Vector measures Math. Surveys, No. 15, Amer. Math. Soc., Providence, R.I. (1977).
- N.Dunford and B.J.Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323-392.
- 6. B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
- 7. R.S.Phillips, Integration in a convex linear topological space, ibid. 47 (1940), 114-145.
- 8. F.S.Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.
- 9. J.J.Uhi, Jr., Martingales of strongly measurable Pettis integrable function, ibid 167 (1972), 369-378; Erratum, ibid 181 (1973), 507.