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Topological Dynamics on the Circle*
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1. Introduction

Let I be a closed interval, R. the real line, S! the circle and X a toplogical space, and

C%(X) denote the set of continuous maps of X into itself. For any f € C%(X), let f: X —
X be the identity, and define, inductively, f® = fo f*~! for any positive integer n.
A point z € X is said to be a periodic point of f if for some positive integer n, f*(z) = z.
In this case, the least such n is called the period of z. A point of period one is called a
fized point. We denote the set of periodic points of f by P(f) and the set of periods of f
by Per(f). The orbit of = is the set {f*(z): & = 0,1,2,...}, and denoted by orb(z). If z is
a periodic point of period n, orb(z) contains exactly n points, each of which is a periodic
point of period n. We refer to such an orbit as a periodic orbit of period n.

Recently, there is a growing interest in studying the periodic orbits of maps of one dimen-
sional spaces. One of the most beautiful results in this area is a theorem of A.N.Sarkovskii.
It is a theorem motivated by the question: if a map f € C°(R) has a periodic point of
period n, must f also have a periodic point of some other period &£ 7

Sarkovskii’s theorem is as follows. Arrange the positive integers in the following sequence:

3—=5—27—->22.3-2.83-52.7T—..-—
22.3522.5 522 7 ... ... 285902 4951,

5o

Sarkovskii Theorem [10].

(a) For any f € C°(R), if n € Per(f), then k € Per(f) for all k with n — k.
(b) There ezists a map f € CO(R) such that n € Per(f) but k ¢ Per(f) for any k — n.

Remark. The above theorem for any f € CO(I) is true (see [6]).

Further research starting at this point can go in at least six directions:

1. Replace the real line R and C®(R) by another space and another class of maps (see[1]
and [6]).

Replace periodic orbits by more general orbits (see[11]).

Investigate closer the behaviour of periodic orbits (see[4]).

Study other orbits in presence of periodic ones (see[2] and [5]).

. Derive some information about topological entropy (see[2] and [6]).

6. Try to simplify the proofs and to generalize the theorem (see[3]).

o o N

There are many attempts to pursue these goals, for instance, see references of [11].

In this paper, we investigate the topological dynamics generated by continuous maps of
the circle. In particular, we study some tools, useful for moving in the above fourth direction
and use them to get results concerning a twist cycle (see §2 for detailed definitions) of the
circle. .

*ol BEE IBUE ERYAE BIUSVEADY REFLAN G SR ot ATHUS
133



134 S. K. Yang

2. Definitions and Preliminaries

We think of a periodic orbit A = {a; < --- < a,} of period n as a cycle permutation
@ : A — A of an n-element set of real numbers, which is called a cycle of period n. Two
cycles a : A — A and B : B — B are said to be equivalent if a(a;) = a; if and only if
B(b;) = b;. Aset AC S is said to be an f-cycle if f|4 : A — A is a cycle.

Formally, we will think of the circle S* as R/Z and use the natural projection e : R — S?
given by the formula ¢(X) = exp(27iX). Thus every continuous map f of the circle has
countably many liftings, i.e., continuous maps F' : R — R satisfying foe = eo F. We
note that F is not defined uniquely, but if F and F’ are liftings of the same map f, then
F = F' 4k for some integer k. There is a unique integer N such that F(X +1) = F(X)+ N
for all liftings F" and all X € R, which is called the degree of f, denoted by deg(f). Clearly,

deg(f") = (deg(f))".

In this paper, we will consider maps of the circle of only degree one. From now on, we
will denote by C1(S?) the set of all continuous maps from S to itself of degree one and by
C1(R) the class of continuous maps F' : R — R which are liftings of continuous maps of
the circle of degree one.

As is customary in this subject, we deal with liftings of maps and cycles to the reals rather
than with maps and cycles themselves. Let f € C1(S?), F € C1(R) be a lifting of f and A
be an f-cycle of period n. Then, putting e"}(A) = {--- < Xo < X; < -}, we have

(1) Xipn = Xi+ 1;

(2) FIX+1)=F(X)+1forall X €R;

(3) For all X;,X; € e"!(A), there are integers m > 0 and s such that F™(X;) = X; +s;

(4) There is an integer k such that for all X € e~1(A4), F*(X) = X + .

(4) follows from (1), (2) and (3). See Lemma 2.1 for the detailed proof.
We abstract this situation, keeping only Fle~1(A4).

Difinition: A (degree one) cycle of periord nisamapp: A - A={ < Xg< X1 <
.-} C R such that

(1) Xi+n =X;+1;

(2) Foral X € A, (X + 1) = p(X) + 1;

(3) For all X;,X; € A, there are integers m > 0 and s such that ¢™(X;) = X; + s,

We often suppress ¢ and refer to A as the cycle. The period of A is denoted by |Al.

A set A C S? is said to be a twist periodic orbit (or twist cycle) of f of period n if F is
order preserving on the set e~1(A).

For maps of the circle of degree one, one of the main tools is the theory of rotation
numbers. In [9], S.Newhouse, J.Palis and F.Takens introduced the concept of rotation
interval for endomorphisms of the circle of degree one, which generalizes the notion of
the Poincare rotation interval of orientation-preserving homeomorphisms of the circle. In
particular, the rotation numbers for periodic points have been defined by [6],(7] and [5].
Since we are interested only in periodic points, we present this theory along the lines of [6]
rather than [9].

Lemma 2.1. Let f € C1(S?), F € Cy(R) be a lifting of f and A be an f-cycle of period
n. Then there is an integer k such that for all X € e”}(A), F*(X)= X + k.
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Proof: Let F(X) = F(X)—[F(X)], where [F(X)] denotes the largest integer not greater
than F(X). Then F is a cyclic permutation of the n-element set e"1(A)N[0,1). Therefore
Fr(X) = X for all X € e~}(A)N[0,1), and so for each X € e~(A), there is an integer k
such that F*(X) = X + k.

We shall call the number k/n of Lemma 2.1 the rotation number (or F-rotation number,
if necessary) of z = e(X) (resp.A) and we denote it by p(z) or p(F,z) (resp. p(A)). we
denote by L{f) or L(F, f) the set of all rotation numbers of f. The following statements
are known (see[2]):

(1) p(z) does not depend on the choice of X. Actually, it depends on the periodic orbit.
(2) f F' = F + m, then p(F',z) = p(F,z) + m.

(3) p(F™,z) = mp(F,z).

(4) fa<k/n<c, a,c€ L(f) and k,n € Z with n > 0, then k/n € L(f) andneP(f)
(5) L(fyNZ#0Bifandonlyif1 € P(f)

(6) If am € L(f) form=1,2,... and a = "‘Ii_{rxooam € Q, then a € L(f).

(7) If f has no periodic points, then lim —(F"(X)—X) exists for all X, it is independent
n—oon
of X and is irrational.

From the above statement, we can write L(f) = [a,5]NQ for some a,b € R. That is, L(f)
is a closed interval (perhaps degenerated to one point) on Q and it is called the rotation
interval of f (or more precisely of F). If f has no periodic points, then the situation is very
similar to the case of a homeomorphism and every point has the same rotation number. In
this case L(f) consists of this number. Now, we give a geometrical interpretation of a twist
cycle on the circle.

Proposition 2.2. Let A be a twist cycle with p(A) = p/q, p € Z, ¢ € N and GCD(p, q) =
1. Let

X <X 1< Xpgg X1 <Xy
all be elements of e~1(A). Then for all i,j € Z, we have

Xitgi = Xs+j and F(X;) = Xigp.

Proof: Since p(A) = p/q and GCD(p,q) = 1, 4 is a cycle of period ng for some n € N
and F™(X;) = X; + np for all i € Z. Hence, for all k € Z the number of elements of
e HA) N [ Xk, Xe + 1) is ng, and 50 Xg4ng = Xi + 1. Inductively, Xiyng; = Xi + j for all
i,j € Z. Since A is a twist cycle, the map

Fle—l(A) : e"l(A) — C-I(A)

is an order preserving bijection. Hence there exists m € Z such that F(X;) = X, for all
t € Z. Since

F™M(X;) = Xi+np = Xignap,g,

we can obtain m = np. Since A is a periodic orbit and Xo, X; € e~1(A), for some k € NU{0}
and r € Z we have F¥(Xo) = X + r. Therefore Xinp = X14ngr, and hence 1 = n(kp—gr).
Since GCD(p,q9) =1,n = 1.
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3. Forcing and twist cycles on the circle

Definition: (1) A cycle A forces a cycle B, denoted by A 4 B, if every map in C1(R)
which has a cycle equivalent to A also has a cycle equivalent to B. (2) Let F € C;(R) and
let A be an F-cycle. F is A-monotone if it is (not necessarily strictly) monotone between
adjacent members of A.

Since whether A < B is determined by the Markov graph (see[6] or (4] for the definition)
of A and the equivalence classes of A and B, we have

Lemma 3.1. Let F be A-monotone. Then A< B if and only if F has a cycle equivalent
to B.

Lemma 3.2. Let F € Ci(R). If F is piecewise polynomial and each piece is of degree at
least two, then F has only finitely many cycles of each period.

Proof: For given integer n > 0, since {F*(X) — X : X € [0,1]} is compact, there are
only finitely many integer k such that F*(X) = X + k has a solution in [0,1]. Fix such an
k. Since F™ —id is piecewise polynomial, and none of its pieces is constatnt, there are only
finitely many X € [0, 1] satisfying F*(X) = X + k.

Lemma 3.3. For every cycle A, there is an A-monotone map F € Cy(R) which has only
finitely many cycles of each period.

Proof: Let p: A— A={--< X_; < Xo< X1 <} beacycle. Let F agree with ¢
on A and be monotone quadratic on each [X;, X;4+1]. By Lemma 3.2, F is an A-monotone
map having only finitely many cycles of each period.

Definition: Let F € C;(R), let n > 0 be an integer, and let A= {--- < Xo < X; < -+ }
be an F-cycle of period n. The F-variation of A is

n

varp(A4) = Y |F(Xi) — F(Xi-1)|-

i=1
Note that it does not change if A is renumbered.

Lemma 3.4. Let F € C;(R) and let A be an F-cycle. If AaB but A is not equivalent
to B, then F has a cycle B, equivalent to B, such that varp(B') < varp(A).

Proof: Let A = {--- < X_1 < X0 < X1 < ---}. F/A = ¢ is not increasing. For
otherwise if ¢"(X) = X + k for all X € A, then ¢ is equivalent to ¢ : Z/n — Z/n =
{i/n :i € Z}, defined by ¥(y) = y + r/n, and so A forces only cycles equivalent to itself by
Lemma 3.1.

Let G € Ci(R) be A-monotone. Since AaB, GhasacycdeC={---<Z_1<Zy<Z1 <

.-} equivalent to B. As in the proofs of {3, Theorem 3.3] and [1, Lemma 1.18], F has a
cycle B = {--- < Y_1 < Y5 < Y} < ---} equivalent to B, labelled in such a way that for
all 4,7,k, X; <Y; < Xj41 if and only if X; < Z; < X4, and F(Y;) = Yi if and only if
G(Z;) = Zi. 1t follows that if X; < Y; < Yj41 < -+ < Yj4s < Xiy1 for some integer s > 0,
then either

F(X:) < F(Y;) <+ < F(Yj4,) < F(Xiy1)

or

F(X:) > F(Y;) > -+ > F(Yj4s) > F(Xi1),
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because either

G(X:) < G(Z;) < - < C(Zjs) < G(Xir)

or

G(X,) > G(ZJ) > > G(Zj+,) > G(Xi+1)-

Thus varp(A) = varp(A U B'). On the other hand, since F|4 is not monotone, varp(B’) <
varp{AU B).

Theorem 3.5. < is a partial order on equivalence classes of cycles.

Proof: It is obvious from the definition of « that < is reflexive and transitive on equiva-
lence classes, so we only need to prove that < is antisymmetric.

Suppose that A 4 B and B g A, but A4 is not equivalent to B. By Lemma 3.3, there is
a map F € C1(R) for which 4 is an F-cycle and which has only finitely many cycles of
each period. Applying Lemma 3.4 to F inductively, F has cycles Ao(= A), A1,42,..., all
equivalent to A, and cycles By, Bs, ..., all equivalent to B, such that for each i > 0,

varp(A;) > varp(Big1) > varp(Aigs).

This violates the choice of F.

Recall that a cycle ¢ : A — A is a twist cycle if v is increasing. A twist cycle with
period n and rotation number k/n is equivalent to the cycle ¥ : Z/n — Z/n, defined
by ¥(X) = X + k/n. If A is a twist cycle of period n and rotation number k/n, then
GCD(k,n) = 1. In particular, there exists only one equivalence class of twist cycles with a
given rotation number. Therefore, we have

Theorem 3.6. Every cycle forces a twist cycle with the same rotetion number.

Proof: Let A be a cycle and let F be A-monotone. Then, by [2, Theorem A] (or [8,

Theorem B}]), F has a twist cycle with the same rotation number as A, which is equivalent
to A.

Now, we will characterize a twist cycle on the circle:

Theorem 3.7. The following properties about a cycle A are equivalent:

(1) A is a twist cycle;

(2) A is an almost twist cycle;

(3) A is a minimal almost twist cycle;

(4) Every cycle with rotation number p(A) which is forced by A is equivalent to A;
(5) Every cycle which is forced by A is equivalent to A;

(6) There is a map in C1(R) whose only cycle is A.

Proof: (6) = (5): Let B be any cycle forced by 4. then by assumption, there is a map
F € C1(R) whose only cycle is A. On the other hand, since A a B, F has a cycle equivalent
to B, and hence B is equivalent to A.

(5) = (4) is trivial.

(4) = (1): Let B be a twist cycle with a rotation number p(4). Then, A <« B by Theo-
rem 3.6, and so B is equivalent to A by assumption. Since there exists only one equivalence
class of twist cycles with the given rotation number, A is a twist cycle.

(1) = (2) and (2) = (3) are obvious from the definitions.



138

s. R. Yang

(3) = (6): Let p: A= A= {--- < Xo < X <---} have a rotation number r/n. Then
by Proposition 2.2, p(X;) = X, for all i. Let F agree with ¢ on A, be monotone quadratic
on [Xi, Xi41] if { = 0 (mod n) and linear on [X;, X;4+1] if i # 0 (mod n). Then F is a map
in C;(R) and its only cycle is A.

10.

11.
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