Characterizations of Pettis Integrable Functions

Dong-IL Rim

ChungBuk National University, Cheong Ju, Korea

1. Introduction

In this paper we shall give some characterizations of Pettis integrable functions. We used properties of the operator $T_f: X^* \to L^1(\mu)$ is defined by $T_f(x^*) = x^*f$ to give several equivalent relations for the Pettis integrable functions.

E.M.Bator, P.Lewis and D.Race [2] and R.E.Huff [14] used properties of operator T_f to study the Pettis integrable functions. R.E.Huff [14] gave a simple proof of the G.A.Edgar Pettis integrability criteria [8] in terms of the (w^*, w) -continuity of T_f and the action of T_f on the sets $K(F, \varepsilon)$.

R.F. Geitz and J.J.Uhl, Jr.[11] gave characterizations of the family $\{x^*f: x^* \in B_{x^*}\}$ for a bounded weakly measurable $f: \Omega \to X$.

M. Talagrand [16] gave some necessary and sufficent condition for Pettis integrable functions

In this paper we shall modify the E.M.Bator [2] and R.E.Huff [14] as the following equivalent relations:

- (1) f is Pettis integrable.
- (2) The canonical map $\{x^*f: x^* \in B_{x^*}\} \to L^1(\mu)$ is pointwise to weak continuous.
- (3) The map $x^* \to \int_A \langle f, x^* \rangle d\mu$ on B_{x^*} is weak* continuous for each $A \in \Sigma$.
- (4) The above map is continuous at 0.
- (5) $\{x^*f: x^* \in B_{x^*}\}$ is relatively weakly compact in $L^1(\mu)$ and $\{0\} = \{T(K(F,\varepsilon))|F \subset X, F : \text{finite and } \varepsilon > 0\}.$

2. Preliminaries

Throughout this paper (Ω, Σ, μ) is a complete probability space, and let X be a Banach space with dual X^* .

A function $f:\Omega\to X$ is $\mu\text{-measurable}$ if it is the a.e. limit of a sequence of simple functions.

A function $f:\Omega\to X$ is Dunford integrable provided the composition

$$T(x^*) = x^* f$$
 is in $L^1(\mu)$ for every x^* in X^* .

In this case it follows from the closed graph theorem that $T: X^* \to L^1(\mu)$ is a bounded linear operator.

A function $f: \Omega \to X$ is a μ - Pettis integrable if T_f^* maps $L^{\infty}(\mu)$ into the canonical image of T in X^{**}

An operator $T: X^* \to L^1(\mu)$ is said to be (w^*, w) - continuous provided that $(T(x^*_{\alpha}))$ converges to $T(x^*)$ in the weak topology of $L^1(\mu)$ whenever (x^*_{α}) is a net which converges to x^* in the weak* topology of X^* .

 $B(\Sigma)$ is the space of all bounded mesurable functions on Σ equipped with the suprimum norm.

Let Σ be field of subsets of the set Ω and $F: \Sigma \to X$ be a vector measure. F is said to be strongly additive whenever given a sequence (A_n) of pairwise disjoint sets of Σ , the series $\sum_{n=1}^{\infty} F(A_n)$ converges in norm.

Let X be a Banach space and $f: \Omega \to X$ a function, then we say that f is weakly measurable with respect to μ if x^*f is μ - measurable for $x^* \in X^*$, we say weak $L^1(\mu)$ if $x^*f \in L^1(\mu)$ for all $x^* \in X^*$, and we say $\{x^*f: x^* \in B_{x^*}\} \subset L^1(\mu)$ is uniformly integrable if for each $\varepsilon > 0$ there is $\alpha > 0$ such that $\mu(A) < \alpha$ implies

$$\sup \int_A |x^*f| d\mu \le \varepsilon.$$

When f is weak $L^1(\mu)$, the Dunford operator of f is the operator

$$U:L^\infty(\mu) o X^{**}$$
 defined by $\langle U_\phi,x^*
angle = \int_\Omega \phi\,\langle f,x^*
angle\,d\mu, \qquad orall x^*\in X^*.$

The mapping $x^* \to x^*f$ defines another useful operator, $T: X^* \to L^1(\mu)$. We see that U and T satisfy the equation $\langle U_{\phi}, x^* \rangle = \langle \phi, Tx^* \rangle$.

For f as above and $A \in \Sigma$ the Dunford integral of f over A is defined to be the element

$$m(A) = \int_A f d\mu = U(\chi_A) \in X^{**}.$$

The Dunford integral $A \to m(A)$ defines a finitely additive vector measure $m: \Sigma \to X^{**}$. We recall that the semivariation of m on $A \in \Sigma$ is defined

$$||m||(A) = \sup |x^*m|(A), \quad x^* \in B_{x^*},$$

 B_{x^*} is the unit ball in X^* .

For $\phi \in M(\mu)$, the space of measurable functions on Ω , we denote the equivalence class

$$\{f \in M(\mu) : f = \phi \mid \mu - a.e.\}$$
 by $[\phi]$.

The map $\phi \to [\phi]$ defines a function $M(\mu) \to M^0(\mu)$ called the canonical injection. Here $M^0(\mu)$ denotes the space of equivalence classes of functions $\phi \in M(\mu)$. The integral $\int_{\Omega} f d\mu$ of a measurable function $f \in L^1(\mu)$ is called the expectation of f and denoted by E(f).

Our notation follows N.Dunford and J.T.Schwartz[6].

3. The Main Theorem

Proposition 1. A Dunford integrable function f is Pettis integrable if and only if T is (w^*, w) -continuous.

In particular, if f is Pettis integrable then T is necessary a weakly compact operator.

Proof: Suppose T is (w^*, w) - continuous. Let $A \in \Sigma$. Then $\chi_A \in L^{\infty}(\mu) = (L^1(w))^*$, so the linear functional $\alpha \in X^{**}$ defined by

$$< x^*, \alpha > = \int_A < f, x^* > d\mu = \int T_f(x^*) \chi_A d\mu = < T_f(x^*), \chi_A >$$

is weak* continuous, so there is $x_A \in X$ with $\langle x_A, x^* \rangle = \int_A \langle f, x^* \rangle d\mu$ for all $x^* \in X^*$. Thus f is Pettis integrable.

Conversely, suppose f is Pettis integrable. Then for $A \in \Sigma$ there exists $x \in X$ with

$$\langle x_A, x^* \rangle = \int_A \langle f, x^* \rangle \, d\mu \text{ for all } x^* \in X^*.$$

Thus

$$\langle T_f(x^*), \chi_A \rangle = \int_A \langle f, x^* \rangle \, d\mu = \langle x_A, x^* \rangle$$

is a weak*-continuous function of x^* . Hence $\langle T_f(x^*), h \rangle$ is a weak* continuous function of x^* for any simple function h. It follows that $\langle T_f(x^*), h \rangle$ is a weak* continuous function of x^* for any $h \in L^{\infty}(\mu)$. Hence T is (w^*, w) -continuous in $L^1(\mu)$.

Theorem 2. Let $f: \Omega \to X$ be bounded and weakly measurable. Then f is Pettis integrable.

Proof: Let H be any bounded linear operator on $L^1(\mu)$. Thus $S = T^*(H)$ given by $S(x^*) = H(T(x^*))$ is a bounded linear operator on X^* , as

$$|S(x^*)| = |H(T(x^*))| \le ||H|| \, ||T|| \, ||x^*||.$$

Let $x^* \in X^*$ be arbitrary and let (x_n^*) converge weakly to x_0^* in X^* .

$$\lim_{n \to \infty} H(T(x_n^*)) = \lim_{n \to \infty} S(x_n^*) = S(x_0^*) = H(T(x_0^*)).$$

Hence $T(x_n^*)$ converges weakly to $T(x_0^*)$ in $L^1(\mu)$. And so $\lim_{n\to\infty} \langle x_n^*, f \rangle = \langle x_0^*, f \rangle$ weakly in $B(\Sigma)$. We have $\lim_{n\to\infty} \int_A \langle x_n^*, f \rangle d\mu = \int_A \langle x_0^*, f \rangle d\mu$. This proves that the functional $x^* \to \int_A \langle x^*, f \rangle d\mu$ is weak* continuous on X^* . Hence f is

This proves that the functional $x^* \to \int_A \langle x^*, f \rangle d\mu$ is weak* continuous on X^* . Hence f is Pettis integrable.

Theorem 3. Let f be μ - measurable Dunford integrable functions. Then f is Pettis integrable if and only if T is a weakly compact operator.

Proof: Suppose f is a Pettis integrable. By proposition 1, T is (w^*, w) -continuous. Therefore T is weakly compact operator. Conversely, if a sequence (x_n^*) convergers weakly x_0^* in X^* , by processing in proposition 1. $T(x_n^*) \to T(x_0^*)$ weakly in $L^1(\mu)$. It follows that T is (w^*, w) continuous. Hence f is Pettis integrable.

Theorem 4. Let $f: \Omega \to X$ be μ - measurable Dunford integrable with respect to μ . Then the following are equivalent:

- (a) $T^*(y^*) \in X$ for every $y^* \in L^{\infty}(\mu)$.
- (b) f is Pettis integrable.
- (c) $\{x^*f: x^* \in B_{x^*}\}$ is a relatively weakly compact set of $B(\Sigma)$.
- (d) T is (w^*, w) continuous.
- (e) T is weakly compact operator and
 - $\{0\} = \bigcap \{T(K(F,\varepsilon))|F \subset X, F : \text{finite and } \varepsilon > 0\}.$

Proof: (a) \Rightarrow (b). Since $T^*(Y^*) \in X$, by definition of Pettis integrable, f is Pettis integrable.

(b) \Rightarrow (c). Let (x_{α}^*f) be a net in $\{x^*f: x^* \in B_{x^*}\}$ and select a weak*-convergent subset of (x_n^*) of (x_{α}^*) . Let x_0^* be the weak*- limit of (x_n^*) . Since f is Pettis integrable,

$$\begin{split} \lim_{n \to \infty} \int_{\Omega} \left\langle x_n^*, f \right\rangle d\mu &= \lim_{n \to \infty} \left\langle x_n^*, p - \int_{\Omega} f d\mu \right\rangle \\ &= \left\langle x_0^*, p - \int_{\Omega} f d\mu \right\rangle \\ &= \int_{\Omega} \left\langle x_0^*, f \right\rangle d\mu. \end{split}$$

This (x^*f) has a weakly convergent subset of $L^{\infty}(\mu)$. Hence (x^*f) has a weakly convergent subset of $B(\Sigma)$. Therefore $\{x^*f: x^* \in B_{x^*}\}$ is a relatively weakly compact set of $B(\Sigma)$.

(c) \Rightarrow (d). Let (x_{α}^*) be a net in B_{x^*} . The net x_{α}^*f converges pointwise to x^*f . Since x_{α}^*f is a net in a weakly compact subset of $B(\Sigma)$, it follows that

$$\lim_{\alpha} x_{\alpha}^{*} f = x_{\alpha}^{*} f \text{ weakly in } B(\Sigma).$$

Then we have

$$\lim_{\alpha} \int_{A} \langle x_{\alpha}^{*}, f \rangle d\mu = \int_{A} \langle x^{*}, f \rangle d\mu$$

Hence T is (w^*, w) -continuous in $L^1(\mu)$.

(d) \Rightarrow (e). Since B_{x^*} is w^* -compact by Banach-Alaoglu Theorem, and T is (w^*, w) -continuous, $T(B_{x^*})$ is weakly compact, i.e., T is weakly compact operator. Define $K(F, \varepsilon) = \{x^* \in B_{x^*} : |x^*(x)| \le \varepsilon \text{ for } x \in F, F \subset X, F : \text{finite } \}$. Then $K(F, \varepsilon)$ is w^* -compact for each (F, ε) and $(x^*_{F, \varepsilon})$ is a net in B_{x^*} which converges weak* to 0. Therefore $T(x^*_{(F, \varepsilon)})$ converges weakly to 0 and so

$$\{0\} = \bigcap \{T(K(F,\varepsilon)) | F \subset X, F : \text{finite and } \varepsilon > 0\}.$$

(e) \Rightarrow (a). Suppose $x_{\alpha}^* \to x^*$ in B_{x^*} . Then $x_{\alpha}^* - x^* \in B_{x^*}$ for each α , and $(x_{\alpha}^* - x^*)_{\alpha}$ is in $K(F, \varepsilon)$ for each pair (F, ε) .

Since $(T(x_{\alpha}^* - x^*))_{\alpha} \subseteq T(B_{x^*})$, $(T(x_{\alpha}^* - x^*))_{\alpha}$ is a relatively wakly compact subset of $L^1(\mu)$. Since (x_i^*) is a bounded sequence in B_{x^*} such that $x_i^* \to 0$ for every $x \in F \subset X$, $T(x_{\alpha}^*) \xrightarrow{w} T(x^*)$. Now suppose that $y^* \in L^{\infty}(\mu)$, and consider y^*T . Since $Ker(y^*T) \cap \frac{1}{2}B_{x^*}$ is w^* -closed, then $Ker(y^*T) \cap \alpha B_{x^*}$ is w^* -closed for each $\alpha > 0$. Therefore by the Krein-Smulin Theorem ([4], p.429), y^*T is w^* -continuous, and it follows that $T^*(y^*) \in X$.

Next we shall give another properties for Pettis integrable function. The following Lemma is very useful. It's proof is omitted.

Lemma 5. If $m: \Sigma \to X$ is a countably additive vector measure and (A_n) is a sequence of measurable sets decreasing to ϕ , then $||m||(A_n) \to 0$.

Finally we point to a specil feature of X^{**} -valued measures. The result can also be deduced from a more general result of Dinculeanu ([5], p.55).

Lemma 6. Let $m: \Sigma \to X^{**}$ be a vector measure and $A \in \Sigma$. Then

$$||m||(A) = \sup_{\|x^*\| \le 1} |x^*m|(A), \qquad x^* \in B_{x^*}.$$

Proof: In the following calculations we denote arbitrary elements from the unit balls of X^{****} and X^* by x^{****} and x^* . By α_i we denote complex numbers and $\Pi = (A_i)$ stands for an arbitrary partition of A into a finite number of disjoint measurable subsets.

$$||m||(A) = \sup_{x^{***}} |x^{***}m|(A) = \sup_{x^{***}} \sup_{\Pi} \sum_{i} |x^{***}m(A_{i})|$$

$$= \sup_{x^{***}} \sup_{\Pi} \sup_{|\alpha_{i}| \le 1} \left| \left\langle x^{***}, \sum_{i} \alpha_{i}m(A_{i}) \right\rangle \right|$$

$$= \sup_{x^{*}} \sup_{\Pi} \sup_{|\alpha_{i}| \le 1} \left| \left\langle x^{*}, \sum_{i} \alpha_{i}m(A_{i}) \right\rangle \right|$$

$$= \sup_{x^{*}} |x^{*}m|(A).$$

Here the fourth equalty is true because for each element $x^{**} \in X^{**}$

$$\sup_{\|x^{***}\| \le 1} |\langle x^{***}, x^{**} \rangle| = \sup_{\|x^*\| \le 1} |\langle x^*, x^{**} \rangle|$$
$$= ||x^{**}||.$$

The following propositions due to P.E.Kopp will be need in the sequel proof.

Proposition 7 ([15], p.30). If K is a weakly compact set of a separable Banach space, then K is metrizable in the weak topology and hence weakly sequentilly compact.

Proposition 8 ([15], p.32). If the sequence (f_n) in $L^1(\mu)$ is such that for every $A \in \Sigma$ the sequence $(\int_A f_n d\mu)$ converges, then (f_n) is uniformly integrable, and converges weakly to some $f \in L^1(\mu)$.

Lemma 9. For a bounded subset K of $L^1(\mu)$. The following are equivalent:

- 1. K is uniformly integrable.
- 2. K is relatively weakly compact in $L^1(\mu)$.
- 3. K is weakly sequentially compact in $L^1(\mu)$.

Proof: (1) \Rightarrow (2). Suppose K is bounded and uniformly integrable. Let (f_n) be a sequence in K. Then there is a countable field \mathcal{F} such that f_n is measurable relative to the σ -field, Σ_1 generated by \mathcal{F} . By a diagonal procedure, select a subsequence (f_{nj}) such that

$$\lim \int_A f_{nj} d\mu = m(A)$$

exists for all $A \in \mathcal{F}$. Also since K is uniformly integrable, it follows that m is μ -continuous. Thus there exists $f \in L^1(\Sigma_1, \mu)$ such that

$$\lim_{j} \int_{A} f_{nj} d\mu = \int_{A} f d\mu, \text{ for each } A \in \Sigma_{1}.$$

From this point, it is a simple argument to verify that

$$\lim_{j} \int_{\Omega} f_{nj} g d\mu = \int_{\Omega} f g d\mu, \text{ for each } g \in L^{\infty}(\Sigma_{1}, \mu).$$

Hence $f_{nj} \to f$ weakly in $L^1(\Sigma_1, \mu)$. But $L^1(\Sigma_1, \mu)$ is a closed linear subspace of $L^1(\mu)$. Hence $f_{nj} \to f$ weakly in $L^1(\mu)$, and K is relatively weakly compact.

(2) \Rightarrow (3). First note that any sequence $(f_n) \subset L^1(\Sigma)$ induce a countably generated (e.g.by $\{f_n \leq r\}$) such that each f_n is Σ_0 -measurable.

Since the countable set of Q-valued Σ_0 -simple functions in dense in $L^1(\Sigma_0)$, this is a separable Banach space, and we can apply proposition 7 to weakly compact subsets of $L^1(\Sigma_0)$. Now if $K \subset L^1(\Sigma)$ is relatively weakly compact and (f_n) is a sequence in K, we can construct $L^1(\Sigma_0)$ as above.

The operator $f \to E(f|\Sigma_0)$ is weakly continuous by ([15], p.40). So the set $\{E(f|\Sigma_0): f \in K\}$ is relatively weakly compact in $L^1(\Sigma_0)$. By proposition 7 some sequence (g_{nk}) of $(E(f|\Sigma_0))_n$ converges weakly to an element $g \in L^1(\Sigma_0)$. But since each f_n is Σ_0 -measurable, $g_{nk} = f_{nk}$ for all k. Hence for all $h \in L^{\infty}(\Sigma)$, since $E(\cdot|\Sigma_0)$ is self-adjoint,

$$\int_{\Omega} f_{nk} h d\mu = \int_{\Omega} f_{nk} E(h|\Sigma_0) d\mu \Rightarrow \int_{\Omega} g E(h|\Sigma_0) d\mu = \int_{\Omega} g h d\mu \text{ as } k \to \infty$$

so (f_{nk}) converges weakly in $L^1(\mu)$.

(3) \Rightarrow (1). If $KL^1(\mu)$ is weakly sequentially compact, K is norm-bounded.

If K were not uniformly integrable, we would be able to find $\varepsilon > 0$ and a sequence (f_n) in K and a sequence (A_n) in Σ such that $\mu(A_n) < \frac{1}{n}$ but $\int_{A_n} |f_n| d\mu \ge \varepsilon$ for all $n \ge 1$. This means that no subsequence of (f_n) is uniformly integrable. On the other hand, some subsequences (f_{nk}) must converge weakly. In particular, for each $A \in \Sigma$, $\int_A f_{nk} d\mu = \int_\Omega f_{nk} \chi_A d\mu$ defines a convergent sequence in **R**. But by the Vitali-Hahn-Saks theorem (proposition 8.), (f_{nk}) is then uniformly integrable. This contradiction shows that K must itself be uniformly integrable.

Proposition 10. Let $f: \Omega \to X$ be weak $L^1(\mu)$. Then the following are equivalent:

- 1. U is weakly compact.
- 2. T is weakly compact.
- 3. $\{x^*f: x^* \in B_{x^*}\}$ is uniformly integrable.
- 4. The Dunford integrable $m(A) = U(\chi_A)$ is σ -additive.

Proof: (1) \Rightarrow (2). The operator $U^*: X^{***} \to L^{\infty}(\mu)^*$ is weakly compact by the Gantmacher theorem ([6],p.485). Let $B_x \cdots$ denote the unit ball in X^{***} and let $W \subset L^{\infty}(\mu)^*$ be a weakly compact set such that $U^*(B_x \cdots) \subset W$. Because $U^* = T$ on X^* and $T(X^*) \subset L^1(\mu)$, we have $T(B_X \cdots \cap X^*) \subset W \cap L^1(\mu)$.

Now $W \cap L^1(\mu)$ is weakly compact and so T is a weakly compact operator.

(2) \Rightarrow (1). In this case of non- σ -finite μ , the dual of $L^1(\mu)$ need not be $L^{\infty}(\mu)$ ([12], p.349) and so the operator U need not be the adjoint of T. We define a linear map

$$\phi: L^{\infty}(\mu) \to L^{1}(\mu)^{*}$$

as follows:

(1)
$$\langle f, \phi_{\phi} \rangle = \int_{\Omega} \phi f d\mu$$

then $||\phi|| \le 1$, $U = T^* \circ \Phi$ and T^* is weakly compact by Gantmacher theorem. And so U is weakly compact.

- $(2) \Rightarrow (3)$. This is trivial by Lemma 9.
- (3) \Rightarrow (4). Let $A_n \in \Sigma$ be a sequence decreasing to ϕ and let $\varepsilon > 0$. Because $\{x^*f : x^* \in B_{x^*}\}$ is uniformly integrable, there is an $n \in N$ for which

$$\sup_{\|x^*\|<1} \int_{A_n} |x^*f| d\mu \le \varepsilon$$

this means that $|m(A_m)| \leq \varepsilon$ when $m \geq n$.

(4) \Rightarrow (3). Let $A_n \in \Sigma$ be a sequence decreasing to ϕ and let $\varepsilon > 0$. Then, by countable additive and Lemma 5,

$$\sup_{\|x^*\| \le 1} \int_{A_n} |x^* f| d\mu = \|m\| (A_n) \to 0$$

and so $\{x^*f: x^* \in B_{x^*}\}$ is uniformly integrable.

Theorem 11. Let $f: \Omega \to X$ be weak $L^1(\mu)$. Then the following are equivalent:

- (1) T is weakly compact.
- (2) $\{x^*f: x^* \in B_{x^*}\} \subset L^1(\mu)$ is relatively weakly compact.
- (3) $m(\Sigma)$ is relatively weakly compact.

Proof: $(1) \Rightarrow (2)$. By Lemma 9.

- (2) \Rightarrow (3). Since $\{x^*f: x^* \in B_{x^*}\}$ is relatively compact then f is Pettis integrable by Theorem 4. Hence $m(\Sigma)$ is relatively weakly compact by ([4], p.56).
- (3) \Rightarrow (1). If $\phi \in L^{\infty}(\mu)$ is a measurable function with finite many value and $0 \le \phi \le 1$ μ -a.e., then $T_{\phi} \in c0(m(\Sigma))$ [13]

By proposition 1and proposition 10, we get the following Theorem.

Theorem 12. If f is Pettis integrable, the map $A \to U(\chi_A)$ from Σ to X is σ -additive, or equivalently $\{x^*f : x^* \in B_{x^*}\}$ is uniformly integrable, of equivalently $m(\Sigma)$ is reatively weakly compact.

Theorem 13. Let $f: \Omega \to X$ be weak $L^1(\mu)$. Then the following are equivalent.

- (1) f is Pettis integrable.
- (2) The canonical map $\{x^*f: x^* \in B_{x^*}\} \to L^1(\mu)$ is pointwise to weak continuous.
- (3) The map $x^* \to \int_A \langle f, x^* \rangle d\mu$ restricted on B_{x^*} is weak* continuous for each $A \in \Sigma$.
- (4) The above map is continuous at 0.
- (5) $\{x^*f: x^* \in B_{x^*}\}\$ is relatively weakly compact in $L^1(\mu)$, and $\{0\} = \{T(K(F,\varepsilon))|F \subset X, F: \text{finite and } \varepsilon > 0\}.$

Proof: (1) \Rightarrow (2). Suppose $x_{\alpha}^* \in B_{x^*}$ is a net and $y^* \in B_{x^*}$ is an element such that $x_{\alpha}^* f \to y^* f$ pointwise. This means $x_{\alpha}^* \to y^*$ pointwise on span $f(\Omega)$.

The boundedness of B_{x^*} implies that the subspace $\{x \in X : x_{\alpha}^* x \to y^* x\}$ is norm closed, and so we see that $x_{\alpha}^* \to y^*$ pointwise on $\overline{\text{span}} f(\Omega)$.

It follows from the Hahn-Banach theorem that for each $\phi \in L^{\infty}(\mu)$ we have

$$T_{\phi} = \int_{\Omega} \phi f d\mu \in \overline{\operatorname{span}} f(\Omega)$$

and so

$$\left\langle \int_{\Omega} \phi f d\mu, x_{\alpha}^{*} \right\rangle \rightarrow \left\langle \int_{\Omega} \phi f d\mu, y^{*} \right\rangle$$

This shows that $x_{\alpha}^* f \rightarrow y^* f$ in weak topology.

- (2) \Rightarrow (3). Since $x_{\alpha}^* f \to y^* f$ in weak topology, then above map is weak*-continuous for each $A \in \Sigma$.
- $(3) \Rightarrow (4)$. If a linear map is continuous on X, then that map is continuous at one point of X, the above map is continuous at 0.
- (4) \Rightarrow (1). Since a linear functional on X^* which is weak*-continuous on B_{x^*} is weak*-continuous, f is Pettis integrable.
- (1) \Leftrightarrow (5). Since f is Pettis integrable, then T is weakly compact operator. Hence $\{x^*f:x^*\in B_{x^*}\}$ is relatively weakly compact in $L^1(\mu)$ by Theorem 11 and by Theorem 4, $\{0\} = \bigcap \{T(K(F,\varepsilon))|F\subset X,F: \text{finite and }\varepsilon>0\}$. Conversely, by Theorem 4, trivial.

References

- 1. E.M.Bator, Pettis integrability and the equality of the norms of the weak* integral and the Dunford integral, Proc. Amer. Math. Soc. 95 (1985), 265-270.
- E.M.Bator, P.Lewis and D.Race, Some connections between pettis integration and operator theory, Rocky Mountain J. Math. 17 (1987), 683-695.
- J.Diestel, "Sequences and series in Banach spaces," Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
- 4. J.Diestel and J.J.Uhl, Jr., Vector measures, math surveys, Amer. Soc., Providence, RI (1977).
- 5. N.Dinculeanu, "Vector measures," Pergammon Press, Oxford, 1967.
- 6. N.Dunford and J.T.Schwartz, "Linear operators, part I," Interscience, New York, 1958.
- 7. G.A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), 663-677.
- 8. G.A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28 (1979), 559-580.
- 9. D.Fremlin and M.Talagrand, Adecomposition theorem for additive set functions and applications to pettis integral and ergodic means, Math. Z. 168 (1979), 117-142.
- 10. R.F.Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- R.F.Geitz and J.J.Uhl, Jr., Vector valued functions as families of scalars-valued functions, Pacific J. Math. 95 (1981), 75-83.
- E.Hewitt and K.Stromberg, "Real and abstract analysis," Spring-Verlag, Berlin-Heideberg New York, 1969.
- 13. Hoffman-J.Jorgensen, Vector measure, Math. Scand. 28 (1971), 5-32.
- 14. R.E.Huff, Some remarks on the Pettis integral, Proc. Amer. Math. Soc. 96 (1986), 402-404.
- 15. P.E.Kopp, "Martingales and stochastic integrals," Cambridge University Press, 1984.
- 16. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
- 17. A.Wilansky, "Mordern methods in topological vector spaces," McGraw-Hill, New York, 1978.