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1. Introduction

In this paper we shall give some characterizations of Pettis integrable functions. We used
properties of the operator Ty : X* — L(p) is defined by Ty(z*) = z*f to give several
equivalent relations for the Pettis integrable functions.

E.M.Bator, P.Lewis and D.Race [2] and R.E.Huff [14] used properties of operator T} to
study the Pettis integrable functions. R.E.Huff [14] gave a simple proof of the G.A.Edgar
Pettis integrability criteria [8] in terms of the (w*, w)-continuity of Ty and the action of T
on the sets K(F,¢).

R.F. Geitz and J.J.Uhl, Jr.[11] gave characterizations of the family {z*f : 2* € B;.} for
a bounded weakly measurable f: Q — X.

M.Talagrand [16] gave some necessary and sufficent condition for Pettis integrable func-
tions.

In this paper we shall modify the E.M.Bator [2] and R.E.Huff {14] as the following equiv-
alent relations:

(1) f is Pettis integrable.

(2) The canonical map {z*f : z* € By-} — L}(p) is pointwise to weak continuous.

(3) The map z* — [, (f,2*) du on B;. is weak* continuous for each 4 € X.

(4) The above map is continuous at 0.

(5) {z*f :z* € B} is relatively weakly compact in L(g) and {0} = {T(K(F,¢))|F C
X, F : finite and ¢ > 0}.

2. Preliminaries

Throughout this paper (2, E, 1) is a complete probability space, and let X be a Banach
space with dual X*.

A function f : @ — X is y-measurable if it is the a.e. limit of a sequence of simple
functions.

A function f:Q — X is Dunford integrable provided the composition

T(z*) = z*f is in L!(y) for every z* in X*.

In this case it follows from the closed graph theorem that T': X* — L(y) is a bounded
linear operator.

A function f : @ — X is a p- Pettis integrable if Tf maps L*(u) into the canonical image
of z in X**.

An operator T : X* — L(p) is said to be (w*,w)- continuous provided that (T(z}))
converges to T(z*) in the weak topology of L!(y) whenever (z7%) is a net which converges
to z* in the weak* topology of X*.

B(X) is the space of all bounded mesurable functions on & equipped with the suprimum
norm.
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Let X be field of subsets of the set 2 and F : ¥ — X be a vector measure. F is said to be
strongly additive whenever given a sequence (A,) of pairwise disjoint sets of I, the series
3o 1 F(An) converges in norm.

Let X be a Banach space and f : § — X a function, then we say that f is weakly
measurable with respect to y if z* f is p- measurable for z* € X*, we say weak L(p) if
z*f € L'(p) for all z* € X*, and we say {z*f : z* € B,.} C L!(p) is uniformly integrable
if for each € > 0 there is a > 0 such that u(A4) < a implies

sup/ |=* fldu < €.
A
When f is weak L'(p), the Dunford operator of f is the operator

U:L®(p) — X** defined by
{Ug,2) = / ¢(f,z*)du, Vz" € X"
Q

The mapping z* — z* f defines another useful operator, T': X* — L(u). We see that U
and T satisfy the equation (U, 2*) = (¢, Tz*).
For f as above and A € X the Dunford integral of f over A is defined to be the element

m(4)= [ fau=U0c) € X

The Dunford integral A — m(A) defines a finitely additive vector measure m : & — X**.
We recall that the semivariation of m on A € T is defined

[Im|l(4) = sup |£*m|(A4), z* € B,
B.+is the unit ball in X*.

For ¢ € M(u), the space of measurable functions on 2, we denote the equivalence class
{feM{p):f=¢ p-—ae}byld).

The map ¢ — [¢] defines a function M(p) — M%(p) called the canonical injection.

Here M°(u) denotes the space of equivalence classes of functions ¢ € M(u). The integral
Jq fdu of a measurable function f € L!(u) is called the expectation of f and denoted by
£(9)

Our notation follows N.Dunford and J.T.Schwartz[6).

3. The Main Theorem

Proposition 1. A Dunford inlegrable function f is Pellis integrable if and only if T is
(w*,w)- continuous.
In particular, if f is Pettis integrable then T is necessary a weakly compact operator.

Proof: Suppose T is (w*,w)- continuous. Let A € £. Then x4 € L*®(p) = (L}(w))*, so
the linear functional @ € X** defined by

<z' a>= / < fiz* >dp= /T,(z‘)x,qdu =< Ty(z*),xa >
A
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is weak* continuous, so there is z4 € X with (z4,2*) = [, (f,z*) dp for all z* € X*. Thus
f is Pettis integrable.
Conversely, suppose f is Pettis integrable. Then for 4 € X there exists z € X with

(za,z") :/ (f,z") dp for all 2" € X™*.
A

Thus
(Ty(z"),xa) = /A (ra®) dp = 24, 2°)

is a weak*-continuous function of z*. Hence (T;{z*),h) is a weak* continuous function of
z* for any simple function h. It follows that (T¢(z*),k) is a weak* continuous function of
z* for any h € L®(u). Hence T is (w*, w)-continuous in L!(p).

Theorem 2. Let f : @ — X be bounded and weakly measurable. Then f is Pellis
integrable.

Proof: Let H be any bounded linear operator on L}(p). Thus § = T*(H) given by
S(z*) = H(T'(z*)) is a bounded linear operator on X*, as

1S(=)| = |H(T(=z"))| < IHINT {I="]]-
Let z* € X* be arbitrary and let (z},) converge weakly to 2 in X*.

lim H(T(ey)) = lim S§(z3) = S(z5) = H(T(23))-

n—oo

Hence T'(z},) converges weakly to T(z§) in L*(u). And so limy—oo (z}, f) = (23, f) weakly
in B(E). We have limn_.oo [, {2}, f) dp = [, (25, ) dps.

This proves that the functional 2* — [, (z*, f) di: is weak* continuous on X*. Hence f is
Pettis integrable.

Theorem 3. Lel f be u- measurable Dunford integrable functions. Then f is Petlis
integrable if and only if T is a weakly compact operator.

Proof: Suppose f is a Pettis integrable. By proposition 1, T is (w*,w)-continuous.
Therefore T' is weakly compact operator. Conversely, if a sequence (z},) convergers weakly
z§ in X*, by processing in proposition 1. T(z}) — T(z}) weakly in L!(g). It follows that
T is (w*,w) continuous. Hence f is Pettis integrable.

Theorem 4. Let f : Q — X be u- measurable Dunford integrable with respect to . Then
the following are equivalent:

(a) T*(y*) € X for every y* € L=(p).
(b) f is Pettis integrable.
(¢) {z*f :2* € By+} is a relatively weakly compact set of B(X).
(d) T is (w*,w)- continuvous.
(e) T ts weakly compact operator and
{0} = {T(K(F,€))|F C X, F : finite and € > 0}.
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Proof: (a) = (b). Since T*(Y*) € X, by definition of Pettis integrable, f is Pettis
integrable.

(b) = (c). Let (2 f) be a net in {z*f : z* € B;-} and select a weak*-convergent subset
of (z;,) of (z}). Let 2 be the weak*- limit of (z7,).
Since f is Pettis integrable,

i, [ @ =t (s~ [ sin)

= (st - [ 1au)

= [ .1

This (z* f) has a weakly convergent subnet of L*(y). Hence (z* f) has a weakly convergent
subset of B(X). Therefore {z*f : * € B;.} is a relatively weakly compact set of B(X).

(¢) = (d). Let (z}) be a net in Bz.. The net z}, f converges pointwise to z* f. Since z}, f
is a net in a weakly compact subset of B(X), it follows that

limz}, f =z, f weakly in B(X).
a

Then we have

im [ (2 pyau= [ (1) d

Hence T is (w*, w)-continuous in L!(p).

(d) = (e). Since B is w”-compact by Banach-Alaoglu Theorem, and T is (w*,w)-
continuous, T'(B,-) is weakly compact, i.e., T is weakly compact operator. Define K(F,¢) =
{z* € By« : |z*(z)| < eforz € F,F C X, F : finite }. Then K(F,¢) is w*-compact for each
(F,¢) and (zf,) is a net in B;. which converges weak* to 0. Therefore T(IZF,e)) converges
weakly to 0 and so

{0} = N{T(K(F,¢e))IF C X, F : finite and € > 0}.

(e) = (a). Suppose z}, — z* in By+. Then z? — z* € B, for each o, and (2%, — z*), is
in K(F,¢) for each pair (F,¢).
Since (T'(zy — 2*))a C T(Bs-), (T(zh, — 2*))a is a relatively wakly compact subset of
L'(u). Since (z}) is a bounded sequence in B,- such that 7 — 0 for every z € F C X,
T(z%) = T(z*). Now suppose that y* € L*(u), and consider y*T. Since Ker(y*T)N3 B is
w*-closed, then Ker(y*T)Na B;- is w*-closed for each a > 0. Therefore by the Krein-Smulin
Theorem ([4], p.429), y*T is w*-continuous, and it follows that T*(y*) € X.

Next we shall give another properties for Pettis integrable function. The following Lemma
is very useful. It’s proof is omitted.

Lemma 5. Ifm:X — X is a countably additive vector measure and (A4,) is a sequence
of measurable sets decreasing to ¢, then ||m||(A,) — 0.
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Finally we point {o a specil feature of X** -valued measures. The result can also be deduced
from a more general result of Dinculeanu (5], p.55).

Lemma 6. Let m : X — X** be a veclor measure and A€ L. Then

Imll(4) = sup |z"m|(4), 2" € Bs-.
llz*ll<1

Proof: In the following calculations we denote arbitrary elements from the unit balls of
X*** and X* by *** and z*. By a; we denote complex numbers and II = (4;) stands for
an arbitrary partition of A into a finite number of disjoint measurable subsets.

Iml(4) = sup 2 mi(4) = supsup 3 lo*** (o)
<:z:"*, Za;m(A;)>|
<a:", Za;m(A;)>l

= sup sup sup
z*** 11 lallsl

=supsup sup
z* T Ja,J<1

=sup |z*m|(A4).
z‘

Here the fourth equalty is true because for each element z** € X**

sup {{z"",2**}|{= sup |(z",z"")|
llz===<2 [EES
=[l=*)-

The following propositions due to P.E.Kopp will be need in the sequel proof.

Proposition 7 ([15], p.30). If K is a weakly compact set of a separable Banach space,
then K is metrizable in the weak topology and hence weakly sequentilly compact.

Proposition 8 ([15], p.32). If the sequence (f,) in L'(p) is such that for every A€ =
the sequence (fA fndp) converges, then (f,) is uniformly integrable, and converges weakly
to some f € L*(u). ’

Lemma 9. For a bounded subset K of L'(i). The following are equivalent:

1. K 1s uniformly integrable.
2. K is relatively weakly compact in L}(y).
3. K is weakly sequentially compact in L'(p).

Proof: (1) = (2). Suppose K is bounded and uniformly integrable. Let (f,) be a

sequence in K. Then there is a countable field F such that f, is measurable relative to the
o-field, &1 generated by F. By a diagonal procedure, select a subsequence (f,;) such that

1im/A fnjdp = m(A)
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exists for all A € F. Also since K is uniformly integrable, it follows that m is u-continuous.
Thus there exists f € L(Zy, g) such that

Iim/ fojdp = / fdp, for each A € %y.
1 JAa A

From this point, it is a simple argument to verify that
tim [ fojodn = [ Fadu, for each g € L2(E1, ).
i Ja a

Hence fn; — f weakly in L}(Z;,u). But L}(Zy,p) is a closed linear subspace of L!(g).
Hence fn; — f weakly in L'(u), and K is relatively weakly compact.

(2) = (3). First note that any sequence (f,) C L!(E) induce a countably generated
(e.g.by {fn < r}) such that each f, is Eg-measurable.
Since the countable set of Q-valued To-simple functions in dense in L*(Xo), thisis a separable
Banach space, and we can apply proposition 7 to weakly compact subsets of L!(Xg). Now
if K C L1(X) is relatively weakly compact and (f,,) is a sequence in K, we can construct
L}(Z) as above.
The operator f — E(f|Lo) is weakly continuous by ({15], p.40). So the set {E(f|Xg) :
f € K} is relatively weakly compact in L!(Z;). By proposition 7 some sequence (gnk) of
(E(f|£0))n converges weakly to an element g € L*(X;). But since each f, is To-measurable,
9nk = fax for all k. Hence for all h € L®(X), since E(-|Xy) is self-adjoint,

[ fortdu= [ fuxEiZ0)dn = [ gEhZo)du= [ ghap os k= oo
1) 1] n 1]

$0 (fnr) converges weakly in L!(y).
(3) = (1). If KL(p) is weakly sequentially compact, K is norm-bounded.

If K were not uniformly integrable, we would be able to find € > 0 and a sequence (f,) in K
and a sequence (A,) in T such that p(A,) < £ but IA.. fnldp > € for ali n > 1. This means
that no subsequence of (f,) is uniformly integrable. On the other hand, some subsequences
(fnk) must converge weakly. In particular, for each 4 € £, [, fardp = [, farxadp defines
a convergent sequence in R. But by the Vitali-Hahn-Saks theorem (proposition 8.), (fak)
is then uniformly integrable. This contradiction shows that K must itself be uniformty
integrable.

Proposition 10. Let f:Q — X be weak L'(u). Then the following are equivalent:

1. U is weakly compact.

2. T is weakly compact.

3. {z*f :z* € B;+} is uniformly integrable.

4. The Dunford integrable m(A) = U(xa) is o-additive.

Proof: (1) = (2). The operator U* : X*** — L®(u)* is weakly compact by the Gant-
macher theorem ([6],p.485). Let Byes« denote the unit ball in X*** andlet W C L™= (u)* be a
weakly compact set such that U*(Bge++) C W. Because U* = T on X* and T(X*) C LY (p),
we have T(Bx+.s N X*) C W N L} (p).

Now W N L(y) is weakly compact and so T is a weakly compact operator.
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(2) = (1). In this case of non-o-finite g, the dual of L}(g) need not be L>=(u) ([12],
p-349) and so the operator U need not be the adjoint of T'.
We define a linear map
¢ : L=(p) — L (n)*

as follows:

(1) (f, b4) = /p ¢fdy

then ||¢]l <1,U = T* o ® and T* is weakly compact by Gantmacher theorem. And so U is
weakly compact.

(2) = (3). This is trivial by Lemma 9.

(3) = (4). Let A, € E be a sequence decreasing to ¢ and let € > 0.
Because {z*f : z* € B,.} is uniformly integrable, there is an n € N for which

w [ e
fl==li<1/4x
this means that |m(A4,,)| < € when m > n.
(4) = (3). Let A, € ¥ be a sequence decreasing to ¢ and let € > 0.
Then, by countable additive and Lemma 5,

sup / & fldus = [[ml(An) — 0

ffe*ii<1 /AL

and so {z*f : z* € B;.} is uniformly integrable.

Theorem 11. Let f : Q — X be weak L'(p). Then the following are equivalent:
(1) T is weakly compact.

(2) {z*f:z* € By} C LY(p) is relatively weakly compact.

(3) m(X) is relatively weakly compact.

Proof: (1) = (2). By Lemma 9.

(2) = (3). Since {z*f : z* € B;»} is relatively compact then f is Pettis integrable by
Theorem 4. Hence m(X) is relatively weakly compact by ([4], p.56).

(3) = (1). If € L*(p) is a measurable function with finite many value and 0 < ¢ < 1
p-a.e., then Ty € cO(m(X)) [13]
By proposition land proposition 10, we get the following Theorem.

Theorem 12. If f is Pettis integrable, the map A — U(x4) from £ to X is o-additive,
or equivalently {z*f : z* € B;.} is uniformly integrable, of equivalently m(X) is reatively
weakly compact.

Theorem 13. Let f: Q — X be weak L'(p). Then the following are equivalent.
(1) f is Pettis integrable.
(2) The canonical map {z*f : 2* € By} — LY(u) is pointwise to weak continuous.

(3) The map z* — [, (f,z*) du restricted on B~ is weak* continuous for each A € X.
(4) The above map is continuous at 0.

(8) {z"f:z* € B;+} is relatively weakly compact in L}(p), and {0} = {T(K(F,¢))|F C
X,F : finite and € > 0}.
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Proof: (1) = (2). Suppose z3, € B;. is a net and y* € B;- is an element such that
z%f — y* f pointwise. This means z}, — y* pointwise on span f(2).
The boundedness of By« implies that the subspace {z € X : z},¢ — y*z} is norm closed,
and so we see that z7 — y* pointwise on 5pan f(£2).
It follows from the Hahn-Banach theorem that for each ¢ € L*°(u) we have

Ty = /‘;gbfdp € spanf(Q)

(foranss) = ([oronv)

This shows that z7, f — y* f in weak topology.

(2) = (3). Since z%,f — y*f in weak topology, then above map is weak*-continuous for
each A € X.

(3) = (4). If a linear map is continuous on X, then that map is continuous at one point
of X, the above map is continuous at 0.

(4) = (1). Since a linear functional on X* which is weak*-continuous on B;. is weak*-
continuous, f is Pettis integrable.

(1) & (8). Since f is Pettis integrable, then T is weakly compact operator. Hence
{z*f : z* € B;.} is relatively weakly compact in L!(x) by Theorem 11 and by Theorem 4,
{0} = {T(K(F,e))|F C X, F : finite and £ > 0}.

Conversely, by Theorem 4, trivial.

and so
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